Koniec NDB BIA na 474kHz

Ze smutkiem dowiedzieliśmy się że radiolatarnia BIA na 474kHz na lotnisku w Rzeszowie została wyłączona.

Przez wiele lat nośna na 474kHz oraz wstegi boczne na 473kHz i 475kHz służyły krótkofalowcom do sprawdzania swoich odbiorników i anten w paśmie 630m. Zagraniczni krótkofalowcy oceniali za jego pomocą propagację do Polski.

Zmieni to sposób pracy segmencie telegraficznym pasma 630m w Europie. Dotychczas pracowaliśmy 472-472.7kHz i w okolicy 473.5kHz, koniecznie z wąskim filtrem CW. Po wyłączeniu BIA możliwa jest praca w całym segmencie 472-475kHz, również z szerokimi filtrami.

Antena NDB BIA 474kHz

VO1NA na 8270Hz

Od paru dni widać słaby sygnał na 8270.0075Hz na naszym grabberze. Nadaje go Joe VO1NA z Kanady. Odległość do Warszawy to około 5100km!

Widok ze znormowalizowaną średnią amplitudą:

Odbierałem już Joe VO1NA w 2017 roku kiedy nadawał on emisją Ebnaut:

https://klubnl.pl/wpr/index.php/2017/12/26/pierwszy-odbior-sygnalu-8270hz-pomiedzy-kanada-a-polska/

Na grabberze widać również bardzo silny sygnał od DK7FC na 8270.0Hz

Odbiór Świątecznej transmisji SAQ na 17.2kHz

Świąteczna transmisja SAQ 24 grudnia 2018 8:00 UTC

Antena aktywna składową elektryczną, odbiornik vlfrx-tools i Spectrum LAB

QTH Jacek / SQ5BPF Warszawa KO02md

Nadano komunikat:

CQ CQ CQ DE SAQ SAQ SAQ = THIS IS GRIMETON RADIO/SAQ IN A TRANSMISSION USING THE ALEXANDERSON 200KW ALTERNATOR ON VLF 17.2KHZ. = WE WISH YOU ALL A MERRY CHRISTMAS AND A HAPPY NEW YEAR = SIGNED THE WORLD HERRITAGE AT GRIMETON AND THE ALEXANDER VETERANRADIOS VAENNER ASSOCIATION = FOR QSL INFO PLEASE READ OUR WEBSITE WWW.ALEXANDER.N.SE WWW.ALEXANDER.N.SE = DE SAQ SAQ SAQ SK

Eksperyment w paśmie 630m z anteną unoszoną za pomocą balonu.

Okres jesienno-zimowy sprzyja eksperymentom w zakresie fal średnich. Przeprowadzony został test z wypuszczeniem balonu z podczepioną anteną o długości około 150m. Celem eksperymentu były:

  1. Sprawdzenie jak zachowuje się ćwierćfalowa antena o długości około 150m na pasmo 472kHz
  2. Sprawdzenie działania wytwornicy wodoru
  3. Doświadczalne sprawdzenie jaką nośność i jak będzie zachowywał się balon o średnicy 1m.

Otrzymane rezultaty okazały się inspirujące do przeprowadzania następnych testów, a oto analiza uzyskanych wyników:

  1. Podczas trwania eksperymentu zerwał się silny wiatr, osiągający w podmuchach do ponad 15m/s, co spowodowało wraz z opadami deszczu uszkodzenie balonu. W takich warunkach optymalnym rozwiązaniem jest wypuszczenie latawca jako elementu nośnego. Niestety wolny czas od innych obowiązków wypadł właśnie w taką nienajlepszą pogodę… Podczas dużego wiatru występują ekstremalne siły i niezbędne jest zastosowanie wspornika w dolnej części anteny. Na początku zastosowana została wędka z włókna szklanego ale siły działające były zbyt duże i eksperyment uratowało zastosowane solidnego masztu drewnianego.

2. Jako linkę nośną najlepiej zastosować miedziowany drut spawalniczy 0,6mm. Jest wystarczająco lekki i wytrzymały. Niestety nie nadają się druty aluminiowe – są za słabe mechanicznie. Nie należy też stosować przewodów w izolacji np. PKL-ki, ze względu na dodatkową masę.

3. Podczas nocnych prób praktycznie niezbędne jest sygnalizowanie położenia balonu na niebie za pomocą światła. Wystarczające wydaje się być zastosowane pulsującej diody LED wraz z baterią od zegarka.

4.Antena była strojona do rezonansu za pomocą analizatora antenowego poprzez regulację długości anteny. W ten sposób łatwo odnajdziemy rezonans anteny. SWR zmienia się wraz z położeniem balonu względem ziemi od 1,3 do 2,3 co można uznać za satysfakcjonujące.

5. Zastosowano uziom-masę anteny w postaci studni o głębokości około 13m. Rezystancja takiego uziomu dla częstotliwości około 70Hz wynosi 37Ω. Dla częstotliwości 472kHz jest dużo większa. Impedancja anteny wynosiła około 200Ω co wymusiło zastosowanie transformatora dopasowującego 1:4. Teoretyczna rezystancja anteny ćwierćfalowej wynosi około 35Ω i największe straty były w uziemieniu. Teoretyczna sprawność anteny wynosi około 15%, co przy mocy nadajnika o mocy kilkunastu wat dawało dozwoloną moc emitowaną około 1W EIRP.

6.Nadawany z anteny sygnał był odbierany przez bardzo wiele europejskich stacji. Niestety balon został uszkodzony przez bardzo silny wiatr i deszcz, przed nadejściem warunków transkontynentalnych.

7.  Optymalną reakcją w warunkach amatorskich do otrzymywania wodoru jest reakcja glinu z wodorotlenkiem sodowym NaOH. Nie należy stosować do wytwarzania wodoru pyłu lub drobnych wiórów aluminiowych – reakcja przebiega za szybko. Nie nadają się też puszki aluminiowe po napojach gdyż są pokryte lakierem i w tym przypadku reakcja zachodzi za wolno. Optymalne wydają się być większe wióry aluminiowe. NaOH do naszych celów kupimy w prawie każdym sklepie z artykułami gospodarstwa domowego jako środek do czyszczenia rur, tzw. kret. Układ do wytwarzania wodoru powinien składać się z trzech elementów: wytwornicy, płuczki wodnej na pozostałości NaOH i osuszacza wilgoci. Podczas reakcji wydziela się dużo ciepła. Należy koniecznie stosować okulary ochronne i inny sprzęt bhp. Gorący, stężony roztwór NaOH po dostaniu się do oka spowoduje jego nieodwracalne uszkodzenie.

Historyczna radiolatarnia NDB S (GDN) 383kHz

Media obiegła ostatnio sensacyjna wiadomość że na lotnisku w Rębiechowie im Lecha Wałęsy nie działa system ILS II służący do naprowadzania samolotów z powodu: „gdyż na antenach zaczęły siadać ptaki, co zakłóciło sygnał”. Zanim w Gdańsku powstał ten system stosowano min do nawigacji radiolatarnie NDB (Non-Directional Beacon) pracujące na falach średnich, Dalsza radiolatarnia pracowała na częstotliwości 322kHz ze znakiem „GDA”, a bliższa na 383kHz ze znakiem „S” (pod koniec pracy zmieniono znak na „GDN”). Przedstawiamy kilka archiwalnych zdjęć bliższej radiolatarni „S” („GDN”) robionych poprzez dziury w siatce ogrodzeniowej podczas deszczowej pogody. Dziś to urządzenie nawigacyjne jest wyłączone a antena zdemontowana.