Return-Path: Received: from rly-me02.mx.aol.com (rly-me02.mail.aol.com [172.20.83.35]) by air-me02.mail.aol.com (v126.13) with ESMTP id MAILINME024-9a14b4b685638c; Mon, 11 Jan 2010 13:05:34 -0500 Received: from post.thorcom.com (post.thorcom.com [193.82.116.20]) by rly-me02.mx.aol.com (v125.7) with ESMTP id MAILRELAYINME025-9a14b4b685638c; Mon, 11 Jan 2010 13:05:13 -0500 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1NUOcY-0004UM-AQ for rs_out_1@blacksheep.org; Mon, 11 Jan 2010 18:04:06 +0000 Received: from [193.82.116.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1NUOcX-0004UD-PO for rsgb_lf_group@blacksheep.org; Mon, 11 Jan 2010 18:04:05 +0000 Received: from smtp-vbr15.xs4all.nl ([194.109.24.35]) by relay1.thorcom.net with esmtp (Exim 4.63) (envelope-from ) id 1NUOcV-00033C-2n for rsgb_lf_group@blacksheep.org; Mon, 11 Jan 2010 18:04:05 +0000 Received: from pc1 (ndb.demon.nl [82.161.81.65]) by smtp-vbr15.xs4all.nl (8.13.8/8.13.8) with ESMTP id o0BI3wdr015596 for ; Mon, 11 Jan 2010 19:04:02 +0100 (CET) (envelope-from roelof@ndb.demon.nl) Date: Mon, 11 Jan 2010 18:03:53 -0000 To: rsgb_lf_group@blacksheep.org From: "Roelof Bakker" MIME-Version: 1.0 References: Message-ID: In-Reply-To: User-Agent: Opera Mail/9.63 (Win32) X-Virus-Scanned: by XS4ALL Virus Scanner X-Karma: unknown: X-Spam-Score: 0.0 (/) X-Spam-Report: autolearn=disabled,none Subject: Re: LF: CW S/N abilities Content-Type: multipart/mixed; boundary=----------jltRp0vfzlVOkfIV09aV1V X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.0 required=5.0 tests=none autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-AOL-IP: 193.82.116.20 X-Mailer: Unknown (No Version) X-AOL-VSS-CODE: clean X-AOL-VSS-INFO: 5400.1158/0 ------------jltRp0vfzlVOkfIV09aV1V Content-Type: text/plain; format=flowed; delsp=yes; charset=iso-8859-15 Content-Transfer-Encoding: 7bit Hello Andy, This is an interesting question. The last few years I have increased the readibility of very weak non directional beacons by decreasing the filter bandwidth. The results have been quite spectacular. Using a SPM-30 selective level meter, I found looking at the bouncing analogue meter that the minimum required S/N ratio for aural copy was between 5 and 10 dB. However a PERSEUS SDR is much better facilitated for this kind of measurement. Attached is a small part of my PERSEUS GUI and shows the signal of NDB BK from Kazachstan, which is excellent to copy in a 5 Hz wide bandwidth. Creating this picture was not trivial, though. The signal level excursions of the band noise are around +/- 3 dB and the static disrupted the measurement from time to time. Hence 15 second of not by static interrupted recording was played back in a loop for 5 minutes. The averaged band noise is around -143 dBm and the averaged signal (BK in morse code, 7 w.p.m.) is -135 dBm. Thus 8 dB over the band noise. This may appear to be a wide margin, but both band noise and signal suffer from quick changes in signal strength. In practice the signal to noise ratio varies from 4 to 8 dB. I will try to do some more measurements on weak daytime signals, but that will have to wait until later this week. On an other note, using software that takes advantage of the repititive nature of beacons, it is possible to achieve a considerable improvement in S/N. This could also be used instead of QRSS and enable the receiving party to control the needed time for reliable identification, depending on propagation. Best regards, Roelof Bakker, pa0rdt ------------jltRp0vfzlVOkfIV09aV1V Content-Disposition: attachment; filename="Weak CW.jpg" Content-Type: image/jpeg; name="Weak CW.jpg" Content-Transfer-Encoding: Base64 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAkGBwgHBgkICAgKCgkLDhcPDg0NDhwUFREXIh4jIyEe ICAlKjUtJScyKCAgLj8vMjc5PDw8JC1CRkE6RjU7PDn/2wBDAQoKCg4MDhsPDxs5JiAmOTk5OTk5 OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTn/wAARCAJsBAADASIA AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAMFAgQGBwH/xABCEAEAAgECBAEICAMGBgIDAAAA AQIDBBEFEhMhMQYiQVFTYZLRFDNCUnFykbEHI4EVFjI0Y3M2Q5Ohs+FidWSC8f/EABgBAQEBAQEA AAAAAAAAAAAAAAACAQME/8QAKhEBAQACAQIDCAMBAQAAAAAAAAECEQMhMRJBcQQTMlGhwdHwFGHx QuH/2gAMAwEAAhEDEQA/APDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZUrN71rHjM7MUmD6/H+aP3RgAAA Azw45zZaYqzEWvaKxv4d1vqPJrW6fhtdffLp5xTbJXaLTzb0isz6P/lH/dW8P/z+m/3a/vDvuK7f 3Rxc0TMdbVbxE7f8vE5cmdxyxk8/xWydK85Fzw/Poox8Sx0y10mLNgilK6jfLebc0T2tWnaO0+rx jx27Wmj4vgxcOwafUcTrfU0rkjDnrOa3Q5qbRMzau8bTtEcnb0+jdzz58se2Fv8AnouYS66uSG9x vPi1PE82XDfqUty732mOe0ViLW79+87z3792i7425Yy2aRelGVKze9ax4zOzFJg+vx/mj91MRgAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+xMxMTE7TDPrZfa3+KUYCfDmyzmxxOS8xNo+1PrYdbL 7W/xSYPr8f5o/dGCTrZfa3+KTrZfa3+KUYCTrZfa3+KTrZfa3+KUYDb0GbL9P0382/1tftT64d7x bLk/ujjnqX362q9P+nief8P/AM/pv92v7w77iu390cXNEzHW1W8RO3/LxPPzfFh6/aqnavPetl9r f4pOtl9rf4pWvD8+ijHxLHTLXSYs2CKUrqN8t5tzRPa1ado7T6vGPHbtYYOI4raPh+nz8dtiyYss 2nPinNNsdJr/AId5jeJ8IiK9vX4d2fNlj/zfr8t+Uvo2YT5ua62X2t/ik62X2t/ils8a1Eariupz 1tivGS/NFsfNyz8URMz65mI3ndpO2Ntxls0mzV0k62X2t/ilnhzZZzY4nJeYm0fan1oEmD6/H+aP 3Uw62X2t/ik62X2t/ilGAyta153tabT753YgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7EzExMT tMM+tl9rf4pRgJ8ObLObHE5LzE2j7U+th1svtb/FJg+vx/mj90YJOtl9rf4pOtl9rf4pRgJOtl9r f4pOtl9rf4pRgNvQZsv0/Tfzb/W1+1Prh3vFsuT+6OOepffrar0/6eJ5/wAP/wA/pv8Adr+8O+4r t/dHFzTMR1tVvMRv/wAvE8/N8WHr9qqdq8962X2t/ik62X2t/ila8PwaTJj4lTFbDkr0I6WTVTTD eLc0TtWJvMeG/r8PRv33axoLcO0X9oW0WPNTJMxOPp2i8cvmxfpRzVrvtE7xNp9G3fZl7RJda/Pb fZU49+bnetl9rf4pOtl9rf4pbXHIwV4xrI018NsHVmaThjzNvc0XbDLxYzL5oymrYk62X2t/ilnh zZZzY4nJeYm0fan1oEmD6/H+aP3Uw62X2t/ik62X2t/ilGAyta153tabT753YgAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAD7E7TE+pn1beqnwR8kYCfDltObHG1O9o+xHr/Bh1beqnwR8jB9fj/NH7ow SdW3qp8EfI6tvVT4I+SMBJ1beqnwR8jq29VPgj5IwG3oMtvp+m7U+tr9iPXHuep+WUZcPkH5Pxkx 8lrabV22tSI7TfeJ2mPCYmJ9+7ynh/8An9N/u1/eHrn8Q9RbU+S3B6X5Kxp9LOCsxE/4fo2nvvPv 3yT4eiIceTHdxvy/9bK8f6tvVT4I+R1beqnwR8lrw/hdNRj4lXFjtrrYcEXx5dPF+Ss80eMTWJmd t/Hbwnx9FroODaXUaTR5NVw7Lp8295nHXHki2oiKb15a2t5++288s19XpiUZ+1YYd/3ptc47dOV6 tvVT4I+R1beqnwR8m1xvSxo+KZ8EVrSKzExWsWjliYidtrTMxPfvEzO07tF3xymWMynmizV0k6tv VT4I+TPDltObHG1O9o+xHr/BAkwfX4/zR+6mHVt6qfBHyOrb1U+CPkjAZWtNp3nb+kRDEAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAfY7TE7b+5n1K+xp+s/NGAnw3rObHHSpHnR33n1/iw6lfY0/Wfm YPr8f5o/dGCTqV9jT9Z+Z1K+xp+s/NGAk6lfY0/WfmdSvsafrPzRgNvQZK/T9N/Kp9bX0z64971X y8tWvk3pqTjrzY4vjvWd96XrpNLW1Z79piYmJj0TDyfh/wDn9N/u1/eHq38QY30OviZiIni3Eu8+ jthRkPJepX2NP1n5nUr7Gn6z81rw/hdNRj4lXFjtrrYcEXx5dPF+Ss80eMTWJmdt/Hbwnx9Fvw3g 2m1Gl0mTUcKviy/zOanJlicsRTes1rNt8nfaZ5Zr4uPJ7Vhhvf7026Tjt05PqV9jT9Z+Z1K+xp+s /Nu+UGlx6LjGp0+GsUx0mOWu89t4ifT3jx8J7x4TurnfDKZ4zKeaLNXSTqV9jT9Z+bPDes5scdKk edHfefX+KBJg+vx/mj91MOpX2NP1n5nUr7Gn6z80YDK0xad4rFfdG7EAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAfY7TE7b+5n1K+xp+s/NGAnw3rObHHSpHnR33n1/iw6lfY0/WfmYPr8f5o/dGCTqV 9jT9Z+Z1K+xp+s/NGAk6lfY0/WfmdSvsafrPzRgNvQZK/T9N/Kp9bX0z649713y8wVvwDjWr2r/I 41rMXLMT53PSJ3337bdP/v6Nu/mfkL/xt5Pf/Zab/wAtXfayOb+FOriNt54pt3nb/kWceW6uP937 Vs83lPUr7Gn6z8zqV9jT9Z+bdw8OxxTX1z5f52nwxkpGG9MlLedETvaJmPT4R/22WtPJvHi0OHVa n6RMRjyZcnJtFbxFItWKW2mJ8e8947TtvtvOZ+0cePe/utqnHlXO9SvsafrPzOpX2NP1n5tji2lp o9fkw45tNNq2rz+MRasW2n8N2m7Y5TKSzzQk6lfY0/Wfmzw3rObHHSpHnR33n1/igSYPr8f5o/do dSvsafrPzOpX2NP1n5owGVpi07xWK+6N2IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+xtvG/gz3 xfcv8cfJG7fy68lMnCs3lFxHLpfo2LHxqNLpceO1OnyXpky7cseG1JwzHhERaY8Y7GbcfhnF1se1 L780faj1/gw3xfcv8cfIwfX4/wA0fujGpN8X3L/HHyN8X3L/ABx8k2TQZcfC9PxGbU6OfPlwVrEz zRbHXHaZn3bZK7fhJj0GXJwvUcRi1Ojgz4sFqzM802yVyWiY922O2/4wCHfF9y/xx8jfF9y/xx8k aTPhy6fPkwZ8V8WbFaaXx3rNbUtE7TExPhMT6AX/AJBUw28q9Fl5ckW0kZNZTz42m+HHbLWJ7eE2 pET7t/B3Oaceb+GvEtPy2iMWXJq9+bx5YxY+Xw9PX33/APj7+3DeRP8AJ1PEtdXvl0uinkif8M9X Jj09t/8A9M1pj3xHjG8T2+GOr5E8R01NpzZ8GrjHWZ235Po2S3ee0bUx3nv6vXs8/L8ePr9q2dq8 w02uy6SLxps2qwRkja8Y8015o9+0d/F8way+ntS2DLqMU0mbUmmbl5ZmNpmNo7Tt2d5i8iOF/wB0 +F6zPlzRr9RouJ6y9sOWmSlpwRHJXmiZiKxt323mea3eNoiOavwD6PptBkyabV6nJqbzS1cNopWd 6xavLeazE9pnefDtO3huZcvFO/n9en4VjMr2UmXNGbLbLl62TJed7Wtk3mZ9czsx3xfcv8cfJNxP Fp8Gvz4tJlnLgpbal5nff+seP4+lqu2NlksTe/VJvi+5f44+TPDOLrY9qX35o+1Hr/BAkwfX4/zR +6mG+L7l/jj5G+L7l/jj5LjgnCPpnAfKLiWTBz4uH6bFy5Ofbp5b58da9t++9Iy+iY/rsowZW5Zn zYmI987sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABeeQ3/G3k//APZaf/yVddx3iGn4j5BYtDix 5Yx00mm4vN7TETzY+Th84tu/bek3i2/h25Y8XB8D4h/ZPG+H8S6XV+h6nHn6fNy8/JaLbb7Ttvt4 7L/yG0uXjduI8Kyam9K59Jg0uO1t7xhrfXafwjfw3vM7du8z62Vl+ap4RwjPxKtMukx81vpmn0dc c5Ii1smXnmm28bbfy533mPGP6XnlrpdJxXyn0FuB4bXwcUx48Whwxfbzcd7aXHG9+/nRhrbzttub afDees1HGNFwbPTLxK1634nkzeUGixRXnpTNkjTZsHNt6OfHnw80bW2m3+GL7qXg2p0vD/JvBxrV Yepiw8FzaDS56Vi1sGvvqs18fLP2L1p5/NG01jafG1YnNs21ONTjz/w+4VpclbWz8Nx481cPN5+G mbLqZva0bb8tojSzvPbz6bbc/nR8Mxaa38N+I3nBEzNs95mdt5tTLoa1nfbxiMuWIn0RkvH2pQ4v KCnlH5RcS1HGc30bFxLhvR1eaOWb82HFS8WrHm15r5MFPN7f4prExO0xa/2f9H4vovJ3RZfp1P7J 4jWceGu8am8/SbYsnJEzva1cemvXxmYrimJnasg2cOl0uj4H5L8X6Vo1fAdNm1OstF+aMUzaM+ir eI9GS+avhtO1r7zHJblqPKTyb1/FOI5uN6fT82LiuvwUxU61YtOfVYozxjjePCvPFZtO2+8T69q7 yv4pi+na/hWhzU1OhpbSYvpHLETltpsE4IvXa0xy23tPp7cvvdnwTjeC2i0NM8cl6cJvxbR0tM2r bU6WMWOkTG33dBkmbdp5c1qRMeNh26uT1+svpNDwDgcTemLp4dXqcETG3WtfJbHeZ272nDlx94nw 5YnvXaOv0U4/7BnzbfUcV+1/+HHuecavi+u475RU4lxLP19Zmy4+pk5K1322rHasRHhEeh6BpdVh 0XCeH5tTjyZdL9K1NNRjxxvbJhtjxVyVjvHeaTaPGPHxjxceXpnhf7+1XO1Z6LysweS/DNXSZy3t jxcFvo9JTNFYjfHTPm5Y+zW818+Yid7WjeO7l54ThjUcCr5NcW1mTHxDUTpK5s1p0801E9Pm82vN y1iuXHWZ3mZmttu3LvWcYx5eKcV4xrdRitoL0/nY9Hkrbmpj5oimOvaIitazWI8O0RERt4b/AA+3 GOF8HnR6bVRhjWWyRqYtWZnT4px7ZImd9oi9b0m0bb748f2qxEbeTi8/P8NnHn3kVflVgx6Pym4t pJyanUfRtXlwRlzZea9opaaxNp27ztELuvknocWHg19Rm1Np1MZs+sjHascmDHp8Wp2xzMd7zjyT 47RzdvCOad/XeSeXjXlhr+H4bXy/2dwLDn2xxPUy2x6PFFK1rtO8zeadvVvtO+zdw5sWTJ/EHiWP LTJoqa/Lec1LRas1y4ddixzG3jE3y443j72/hEy6Y2XGeHsi2qPj3AtJquGaDVeTuO2u0ui0V6az NijltfJjtS+XJtNK2tSPpNKxMxvtSd42rvNd5T8Jx8H4zptPGmthi2DFvHV5v5tY6eb1+GbHlj1d t482YWvkP5QYNLw6ODajNh09dZrY02XLbeJjSamnJqZ5p82vL08Fome8THprzQ6bVZcHHPIjj3lH Gn5MuTBixxMXm0YpycTzZb4pntE2iJwz3jfaaz2i3fezN6c55ETjy+SvlJpLVtODUcvVrzf4unpd Zmp323ja+Kk/02ntvE6Oi4Bfgnlxp+HcX01L20HLrNXh54yVnHTF174/Da08kTXbwme2+3dveSUY rabyc0GovfDPEdXxDTUmtItatdRgxaemTlmY3rz80b7/AGLRHeJht5OJ4OO6TinlTXLhwajQabWY b8Om8zktXVZckVyVttETWs6u0T28cdfDqRyhyflhhw4vKPW302KuHTam1dXgxViIimLNWMtK7R2i YresTEbxExO0zHdTLHjGvxcQpw/JFb/ScWkpg1F7RERe1JtWkxt6IxRir4R3rM957zXKVAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAH2Nt438FpwDiv8AYnEvp+C+brVwZsVLUnktS2TFfHF4mJ7TWbc3 9PR4qoBY6jiGo4hfQ11erzZ/omKunwc9Y3pji0zFd999om07b+EbR4RELS/GtHH8PcXAKze2e3Fr 6288u3JWMVaV7eE7zNvT25fDvDnsH1+P80fujDSTbF9+/wAEfNu14rqa8T0vEq6q8azS9Ho5OlXz elWtcfbwnaKV8Y77d91cAk2xffv8EfNnky9WmKmTUZr1xV5MdbRvFK7zbaO/aN7TO3rmfWgAbegj F9P03n3+tr9iPXHvd7xaMf8AdHH599utqvs/6eL3vP8Ah/8An9N/u1/eHe8W/wCEMf8Avar/AMeJ 5+b4sPX7VU7Vw+j1ttFXNXDkjbNXkvz6el949Xnb7f09UepJHFtbXDgwxxLWRTBPNiiJmJpO23ad 947dtvfPra+l0eTU4dTmpbHFdPSL3i1oiZjeI7R4z4tzS8A12prpJx1rvqpty17zasViLTaYiJnb ad49M+iO8b7neGW3LX7Pw2TPXR1+g8s+EYtFwvWZ8eonjen1en+n6rl3vrNPXNfLNIjfljl6eniJ mYt2isebVy3BuIYNJwjj+jyavNSmt0mOtMXLPLkyVz4rRvETtvFYybTPrn17TVavBOl1OTBa0Wtj tyzMVtXv+FoiY/rCF1xk107Is69Um2L79/gj5u48itbjz6bh3A9Pq7dfNm4lPQvbp0vfLo64sO8z PLvNuesd9+/o378GkwfX4/zR+6mWLvyj4tXU8f6+i1+ptg0HJp+H5Y3rauHFEVx2jeYmszFYtO0R 51pnaN9lJti+/f4I+aMGsrcsT5szMe+NmIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+1je0R37z 6IT1003re1aZ7RSOa0xi35Y3iN579u8xH9UWH62n5oXul0msy4Zvgrbp5cldPMxbaLWmYmKz6+8R Pu7JyymM3a2Tap0+CbZ8cY8ee95tEVpXFvNp37RHdH0Y/wBb/p/+3Q6LBqdBrserjFTNXR2pnydP LW1YiLRtE2rMxEzMfi1tJos+r5uhFLWrG/LOStbT6e0TO8+HoT7zHrdzTfDVTbTTStLWpnrF45qz OLbmjeY3jv37xMf0I00zjnJFM80rMVm3S7RM77Rvv7p/SVvqtNqcWDDfPek0msdOvWra1az50ebE 7xHffw9Pva8XvGOccXtFLTFprv2mY32nb+s/rKpl4puVlmmhj005clceOme97zFa1ri3mZnwiI3Y 9GP9b/p/+1jjvfFkrkx3tS9Ji1bVnaYmPCYkx0tkyVx0rNr2mK1rHjMz6Gsa2nwzp9Zgtkx6mJra l+Xpd5jtMbd/TG234uq13FqZPJ/Hp66LieOa5c9oyzp9q72pjjtPN4xy7z+MK+mg1n0iMmeaR0cs YrdTPTfem3aImd52jaO2/odFxbFkw+TeDHlpNLdbUW2nx2nHiefPPHLLGb3/AJV+G9ejjdPrdRM6 zLmw5ddfLiimXJnre01rvHpi8enl8fc2MHGdfkjFppxfSeabUms6bz83NWK8tprMWnwj0777d52h Jh4dr5iK0pNK5sUXnmyVpW1JtG28zMR3mI2ifc1InLp80TE3x5cdu0xO1q2if+07t93xZ71q/v0b 4so1eIZra/V31GSl6WtFY5aY52iIiIiI3mZ8IjxlBbTTStLWpnrF45qzOLbmjeY3jv37xMf0bz7a 971pW17WikctYmd+WN5naPV3mZ/q7SeGSTshoRppnHOSKZ5pWYrNul2iZ32jff3T+kstPgm2fHGP HnvebRFaVxbzad+0R3W2n0msz6eOjW04cmauP/FtW2Sd+WO/p7z39G/vT6LBqdBrserjFTNXR2pn ydPLW1YiLRtE2rMxEzMfinLkk3NzbZjvTnujH+t/0/8A2yvppx2it6Z6zMRba2LbtMbxPj6YmJWe m02bVWvXDjm80pOS3urHjKTV6bU48ePNqL0nnrXljrVteK8scu9YneI228Y9SrnPFrbNXW1HkryW 2jm8PtV2YNjW/Wx+VrqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzw/W0/NDpcPFuXR002TTxPJa k1y4rzS8RWZnt4xE+dPfb8d57uXEZ8eOfTJsys7Ory8VwZsue+XTZrdTBGGLTnjnnad+a1uXzp7R 6I7Qh4frsGhyWy1w57XmnLt1oitt47xaOXvWZ9G8fj6XNCPcYTHw66etV48nS6ziFdRocOlimael MTF82XqTWNtuWvaOWvu7+ENBUjphhMJrFNtvdbJtHqbaTN1K0pfes1mt99piY2nvExMf0mFGNsmU 1WS66uxxcZpkz59tPlr9Ky79Prb4qzMx35JjvaNvHfx/Re8W1GO/k9p70xWryXzVrFrRbvFMXee2 0xt6P/48xHD+NhLLPL8aX7y9d+bsL8dpnjkz6KOS1dr9LLas2tz88Tvbm28Z7e/8NqnU5p1Gpy57 REWyXm8xHhG87qUdMOHDj64xmWVy7rYVI6JdRh4ty6OmmyaeJ5LUmuXFeaXiKzM9vGInzp77fjvP dnl4rgzZc98umzW6mCMMWnPHPO0781rcvnT2j0R2hyg4/wAfj3vX1q/eZOm0HE66KL0rpaZcd694 yWnfm5ZrM7127d57Tvt+Pd81nEK6jQ4dLFM09KYmL5svUmsbbcte0ctfd38Ic0N9zh4vFrqzx3Wm xrfrY/K1wdUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/9k= ------------jltRp0vfzlVOkfIV09aV1V--