Return-Path: Received: from mtain-dh02.r1000.mx.aol.com (mtain-dh02.r1000.mx.aol.com [172.29.65.22]) by air-mc01.mail.aol.com (v129.4) with ESMTP id MAILINMC013-a8514ccac561209; Fri, 29 Oct 2010 09:00:17 -0400 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by mtain-dh02.r1000.mx.aol.com (Internet Inbound) with ESMTP id 9EC963800018C; Fri, 29 Oct 2010 09:00:12 -0400 (EDT) Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1PBoXA-00053U-Vd for rs_out_1@blacksheep.org; Fri, 29 Oct 2010 13:58:16 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1PBoXA-00053L-Ix for rsgb_lf_group@blacksheep.org; Fri, 29 Oct 2010 13:58:16 +0100 Received: from 113-mo2-8.acn.waw.pl ([62.121.95.113] helo=paranoid.lipkowski.org) by relay1.thorcom.net with esmtp (Exim 4.63) (envelope-from ) id 1PBoX6-000309-U6 for rsgb_lf_group@blacksheep.org; Fri, 29 Oct 2010 13:58:16 +0100 Received: from paranoid.lipkowski.org (localhost [127.0.0.1]) by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id o9TCwApD005494 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NO) for ; Fri, 29 Oct 2010 14:58:10 +0200 Received: from localhost (sq5bpf@localhost) by paranoid.lipkowski.org (8.13.7/8.13.6/Submit) with ESMTP id o9TCwA9G005491 for ; Fri, 29 Oct 2010 14:58:10 +0200 X-Authentication-Warning: paranoid.lipkowski.org: sq5bpf owned process doing -bs Date: Fri, 29 Oct 2010 14:58:10 +0200 (CEST) From: Jacek Lipkowski To: rsgb_lf_group@blacksheep.org Message-ID: MIME-Version: 1.0 Content-ID: X-Spam-Score-sq5bpf: -2.601 () BAYES_00,SPF_HELO_PASS,SPF_PASS X-Scanned-By: MIMEDefang 2.56 on 10.1.3.10 X-Spam-Score: 3.0 (+++) X-Spam-Report: autolearn=disabled,FUZZY_OCR=0.000,FUZZY_OCR_WRONG_CTYPE=1.500,FUZZY_OCR_WRONG_CTYPE=1.500 Subject: Re: LF: vlf experiments-numerical considerations Content-Type: MULTIPART/Mixed; BOUNDARY="17435139-1031850613-1288339902=:26567" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.0 required=5.0 tests=none autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false x-aol-global-disposition: G X-AOL-VSS-INFO: 5400.1158/64415 X-AOL-VSS-CODE: clean x-aol-sid: 3039ac1d41164ccac55a6819 X-AOL-IP: 195.171.43.25 X-AOL-SPF: domain : blacksheep.org SPF : temperror X-Mailer: Unknown (No Version) --17435139-1031850613-1288339902=:26567 Content-Type: TEXT/PLAIN; CHARSET=US-ASCII; FORMAT=flowed Content-ID: this is a nice plot showing field strength vs frequency and distance, calculated from Piotr's code. please notice that for a given distance there are two frequencies which yield the highest field strength for a constant antenna current - see the second plot, calculated for 904km distance (my distance from DK7FC :) btw, Piotr's code is very fast! i made a slightly modified version to include calculating of multiple values, and some additional stuff (compiling via gfortran, a makefile, ploting the data via gnuplot etc). it was used to make these graphs. i can post it if anyone is interested VY 73 Jacek / SQ5BPF --17435139-1031850613-1288339902=:26567 Content-Type: APPLICATION/OCTET-STREAM; NAME=plot_80km.png Content-Transfer-Encoding: BASE64 Content-ID: Content-Description: Content-Disposition: ATTACHMENT; FILENAME=plot_80km.png iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAMAAAACDyzWAAADAFBMVEX///8AAACgoKD/AAAAwAAA gP/AAP8A7u7AQADu7gAgIMD/wCAAgECggP+AQAD/gP8AwGAAwMAAYIDAYIAAgABA/4AwYICAYABA QEBAgAAAAICAYBCAYGCAYIAAAMAAAP8AYADjsMBAwIBgoMBgwABgwKCAAACAAIBgIIBgYGAgICAg QEAgQIBggCBggGBggICAgEAggCCAgICgoKCg0ODAICAAgIDAYACAwODAYMDAgADAgGD/QAD/QECA wP//gGD/gIDAoADAwMDA/8D/AAD/AP//gKDAwKD/YGAA/wD/gAD/oACA4OCg4OCg/yDAAADAAMCg ICCgIP+AIACAICCAQCCAQICAYMCAYP+AgADAwAD/gED/oED/oGD/oHD/wMD//wD//4D//8AAAAAU AAodABUjAB8pACkuADMyAD02AEc6AFE9AFpBAGREAG1HAHdKAH9MAIhPAJFSAJlUAKFXAKlZALFb AbheAb9gAcZiAcxkAdJmAdhoAd1qAeJsAeZuAutwAu5yAvJzAvV1Avh3A/p5A/x6A/18A/5+BP+A BP+BBP+DBf6EBf2GBfyHBvqJBviKB/WMB/KNB+6PCOuQCOaSCeKTCd2VCtiWC9KXC8yZDMaaDL+b DbidDrGeD6mfD6GhEJmiEZGjEoilEn+mE3enFG2oFWSqFlqrF1GsGEetGT2uGjOwGymxHB+yHRWz Hwq0IAC1IQC3IgC4JAC5JQC6JgC7KAC8KQC9KwC+LADALgDBLwDCMQDDMwDENADFNgDGOADHOgDI OwDJPQDKPwDLQQDMQwDNRQDORwDPSQDQTADRTgDSUADTUgDUVQDVVwDWWQDXXADYXgDZYQDaZADb ZgDcaQDdbADebgDfcQDgdADhdwDiegDifQDjgADkgwDlhgDmigDnjQDokADplADqlwDrmgDrngDs ogDtpQDuqQDvrQDwsQDxtADyuADyvADzwAD0xAD1yQD2zQD30QD41QD42gD53gD64wD75wD87AD9 8QD99QD++gD//wCOKCsvAAAgAElEQVR4nO3diZsdRbkG8NN/a5BgZs0smcxkJpMJWdhX2UVZDYSE RRQRBAUVERBEZBMQAdkiqyj33ucuz+3av6r+qrv6zDnTXWfe93k008k5ZIbzo/rrr6qrBwMEQRAE QRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE QRAEQRAEQRAEQRAEmdAUxTZe0PhmZJelKKQJ9Usho34ZeL8U9B2N/8i6v4F5w57g+Exw/G3ST4Lk GI2C/BL7zXb/zAHR3PgPA8Ddm5CcHaaiZvRo6A2SA2+M9EfO6j9M/ULeAIC7ODy5yinYe8eAM+pe E5xq7d9QOHnktL5Hxb78jIo9/lZlfP8GkK7jC2JPyMHLkwCGI2BhfnMQ1pUYAXd3HA97NA6AAw8g fQMA7t7QmixywTAswMrfQIo/AER0/KuIoPjTrwhfb14zIJi8oo+pAdliE0FcAAJBEARBEARBEARB EARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBkP6kIPt78b/oHDm8sb6+vnF488iRzfLL tdXV1bVD6xsbG+uH1g4eXFk5KI4Pra0eXDlwYPnAysHyWHy9vLS0VB6ulK8ov15cXFxaXj5Qpvx6 YWFhsfzDMuLr/fsXyj8UWSy/Lo/EH8o/mJ+fF0dl5NflUXm4IP5grow62q8OxFGZ+fm52dlZfVT+ waw6ElEH+qj8emZmRh2VfzCjD0TkgT4Sr5qe1kfqQB6JyANzJL/WB/IPpvSROJiakkci8sAcMQf6 iB7Ir/fJo2l9sE8eiIgDeyQP9NEUPWgtg1Ew8njb09TtMQKAuwzgzuzbUdTsbgOAuxrgYLAzG8cY gG7LuOAXmVJfgWQeZzDyglAG2U1w7AAj+rx9lVqPgEXrEbBoPQIWrUfAouUIWLQeAYvWI2DRegQs Wo+ARFHxf1yqzKoKxgaw+RQMgLsU4A6dgusBluYAMHeA5BScAHCHLkIKc6ZvbMMUxeENwW9ra6sU WKpbE/4OH5YYD5beSn7r61qg8Le2VsirkGXpr4zSKDmuHFAaS45ao+JYCI1KoL4kWbQcF9XXAcfC cZyPXJIoggKZtFnMOY7z3iWJxKWPnMcivCbRBxWP9qAwHisXJfRAy5IHResrlEIfOJ7a2UwMJP0s /5cLWwOOuw2THgDcZQB7la3yFLzZGuBqa4BLrQHOtwY41xJgpSvTCHC6NcDhezQtAJb/rz/O4n+4 9BlgGQFQ1IC6CDzkFYGrQRF4QBjUjcBlYc6vAiW6oAosPS34nUBlUKtTBnVJKA06aIG6+Zi6WU8d XwdSdrPDNQMr0sxRs7QYLrYUNLqmPGpcKSgP6AgIgAAIgG1SmgPA3AGWr9MfZ/HfXPoMsExxZFNS W/PUrYhab003X0ixJ7svQbW3bNVJWcuqyRJAmw+geQWePFSerLTAFl/UtcCVUMeZ0s0VclbNdFC7 xT3Rei0kNMUTCrsr6pXmQB7Zg33qLym/+O531REdAQEQADsF+F9c+gywPO8CYO4AyVVwdgAH4iLk yJEjpgGjEa47hIfW7CTICl0IIxEahUtLZBbEdF1Uo0VNfCiS89KkYyj/1MibT+208Otf2pd8s3ON VV4blA1F33SlzptqIlpRSf7IGN3nX4QAIAB2CvA/ufQZ4FFxFQyAeQOcdnPB2QEcyIsQ0YLZOlpm S7RkDomJkM3N8nfXTU9mfWOd1oauKaPXp6qJEVUqruiJEdWjsZWiJLrsE9VrFRbo1IgmagrH/Qvu gDRpPLDztEljxLoD5TeYHVFIzSHhOzfvxM7V+3VNm6SujdXszZc4zYQ2b9srOd0RHQH/gwsAAiAA xgOAANhdSnrF5qaRJqiV/tYENN2I0X0Y3YihuGTNJ9jITozmtLDgrzWocFowBaABtBABFC/6AjPs qgKyrGDWMokrMRMajkml0IvMb6gGDKn07AGd09jn1X2uAzO1zxV+tANT34KRPRh3RGdCvuXSZ4Bl CjHawWC+BukICIAA2CnAf3HpM8CjW0cAMHeA5BScHcAyxZaYi1tXC2LKKw+1HkZeetgrj2Bi7oCc mHMLUQ94HUE9M7eoJLqLDbsUdUHDXAhagvYCw8LcT2EqjHamLliAyk3VcU1Bb9UpYaqvKdKcRpqE nNPaybuK2n0VtfwaGMo26xFwAIATBfAbLn0GKE7BAJg5wGk3E5IdwIEaATdNH9BalHWhXBqj6kLd CDyobgpRjcAV2whcpY1AqXTJrZpZTukENlWNdcto2F5gsKqGhRpvBjqcTElZ6QbyFSbbDiSMq24T +4FB+UlHwH9yAUAA3LUAm+4LLu0BYO4AySm4bwCTtubYNP62jtiZOFMNrrlqUN8goqpBOxUnAeql qnqFjFq2umgbNcqfatQYf2r2bcmtmFkk/qpLZjQ5d7jfATTkCEBHjp2B8/o4szFy1Sm4Ga2KkBum WpxuaS4oF4Pi0b8I+ZoLAAIgAFY3yJIpzektvAAwQ4CV7dm+4tJ1Ddi0PZsqAc0QWFIzHZkNOjui S8A6gcuqIaMFLlUELi2bGzXtbIk8oAKDDs1+KtAn6JV9we0kPsFq3TccQaZlUyEYFH7h7AoxOEPU TTcYnIkb9EfA3gEcJJyCAXByAH7BpRen4AjAY0e3ADB3gFNuLrhvAJO2Z5PulMEtWwbK7YkOb9gy 8JArA+VWCZIgMXhQr1hwBpfaG1xsMphWCBKEc3YxanRJQ+tK0CCcbYGQKwWnCUK/FPTXPPAzKdP2 qM8jYEoAcIIAfs6lzwC3trYAMHeA5BScHcCBmIoz6qQ7vTmC3BlQz3mocs9VexIaabmYJQhmDYKE tbysNS00FHjuPo95c1zpq6gj21fRmOpqulkfU7jyoInPjMcnBMP1UgIwzDpBmSl6OBUeeXdm+isF /S0TpsjiQDoCfsYFAAEQAOMBQADsLmWdV2zqrREEvDWNcF1uiKANqqbLijEov1529d4Bs0Z/mZZ7 drVBsEp/wRnUCPcHfZb9eoFBTYU3Tyo8grBCcs71Tyo13WzQWnEKt2/Sb6fwJuWbHUNWqIJXT3Qf 3ZzoH1z6DHAgbkoSTT8YzNYgHQEBEAA7Bfgplz4DPHp0CwBzBzjl2jDZARzIRrS6ChELUVX3b13f FrImLkz0FJyWt2pv0rT7cCx79JasPHub5qLdIVotfXHrTe1FibW3n7b45h29cKZtztHzL0rmKvZm 3EXJrLU3x9ibCS5KovZmYva4CTXeXlxbeFkyNeXXfJXLkqxHwAEAThTAT7j0GaBYjACAmQOcdusB swM40HPBogjcOlqhqIrCVVUXrpv+IFkQYxqEB/WeCcyKmIjMRTcXVzsZV7smplolVqDOVaHOU6hz rn9I3M5G3HJVo1SW4patGsmhZEUU03UyNYzpCPgxFwAEQACMRNwVB4CZAySn4BSA7jmq/Xhcprwp SfjbUo2YdTMjp+7EVLsksLWg3Dna1oLq0Ulq9YsBt2RuBHFTdLoYXDDF4WLTFB1pzFhiQWNGFYvV xswcFTbnCWOn7OKdGXo84zVqPGIOVT0xWhxO+6ZMbRgUhzW1Ih0BP+ISfV5wPwKAuxRgLwZAcQoG wMwBklOwyIc0vLPxPzG9RSzA0p9eFWMAHjIAhcA1H6BajaoAuskQHuCSYmbbMQTgIgXo92M8gFqc BVhZJuOqvDmuyuMBkirPEiMAwyrPIzfjV3lxcuRw2tR1VYGOVTM5dxTelPQhl5CZJQmAANgBQMeu BwAv3NoCwNwBklPwB1yqNeBg0KdTsCj+jogacEt1YTa8Lox8fpJsw2iDcn2C3LrXb8NUlifwbZgl rw1DRJIpErNBAhUZFoWpIsmhVxRWpkz8RsysXcpaVxW6o2kOaFrrJQXoNDOHYg7pCJgE0PVhdpga HwCcIIDvc+mHs2gAEADHl6Yb048du1DtD7iplgSKpyZtyM0RXCdmza5LkOgO2kaMuS/zwIrrxCiC tg5cWjKdGC3QdGLsnZnqdhF/nYIRaG/G9NcpaIH+7Md8bPZjjq0K5+aJOVoW8gTZstAday4ztiyc oeRqCVpO9sgRtMpCc94RXQ/YN4BJ27Mdu/AoDGZskI6A73EBQADcrQDtxHNsf8ASnd4fEAAzBKg+ OnIK/huXPoyAdfsDGnd2Hm49aAKumY04VBfQXHLIBzYcWKGXHMvqGQ3uikPeHlyVthCVZmztd9cY njTvEsNIS7ElWYS07EVFnS1Ha2Zm1okJaIVXFVSTPk4YzbhWn38kj8Uv7H3BvQVYv0UvAE4KwL9y 6TPA48eOAWDuAMkpuG8Ak/YHPCavQtSiVDEhZ3qBwuFhTVE3A20ReNDUgHK7LF0CuiLwgH54knO5 rFySZuCS3wxcDCboFtwEnZVpj5lmIDmeD5yGTOeM0qZmoJuv00VgulraDZxJWSVDDq1P0w2cJkqr iPs8AqYEACcI4Dtc+gywtAeAuQMkp+DsAJYpSn4yR9U9IYKfnolT/ZhDat8svUPlqisMV8O6UDdf 7PIY0pJZNh0Zsz7Gbp5AF8gsLhJ95jcW+DJR/UbYkXFTc/OE4lxAsVo0Un2BRXML5yzBZr0FFmf8 IzMZl96SYWrIaVpDTnv4psOLkLe5ACAAAmAkYm8YAMwcIDkFZwdwoLbmsPzkNIjjt6H5mWclUX+W n7srk/iz/JZ9fksev0WP3wLl56o/w69ykwjTqJm3cyIeOfL1rP4NZyxa/s3OmN+wqAJ+0bbNDPXW Fpw5NsTIb3JdHDoCvsUFAAEQACMRV8EAmDlAcgp+k0ufAQ7kRUhp76iKInhYbhkon1eoisD19XVK 0EyOrB40kV+urLgKMFyXsOyvSzAE3bqERVcB2obMAvW4P/Ro9kbgp07mzYEHMqwB50gF2LRANch2 QQY8U0FOV0DSERAAARAAWwYAJwjgG1z6DPDE8eMCoC4CFUAn0AJsFLiqK0IC0D7OwRNoKkOlbmmJ CLRVITMpslBXE+6nACs14TwtCSNdmTnLkYKkAKlAfUD9BV0ZDyBpypDVDGkeqT+PIwm9LTM7gGWK 48ePwWDGBukI+DoXAARAAIzk6IUXAmDuAMkpODuAA3ERIqK7gJvq6sPAc5ErYtjrD90EJPAOeNcf xpqbhPOuPxbtalXv8iOgFl5++NL8qw9W2lwlnjQHay52wdEEbWbWd0YwBdDYe0EYWUGYFmBle7bX uAAgAAJgJCdPHAfA3AFOu1Pwq1z6DLBMcUIUgRcetdkydwlbiYbihqWoFqgqiqtueepBMzu3or86 4GXZj63+qEs7O2dWq/IwqcsIzKAg9FwGSOfsbh2M0kpjcDxMQ6WB2Wpj0ISOgAAIgADYJifKUzAA Zg6QnIJf4dJngAM5Ah4zMbWgiezHbLiY5ak6a2Z5jP4iLAv9utDcLUIKwwrFsCOzuET41VaJ+2so 1leJnMUqxRqLVYq+RUfP18dSTFhHE1CkIyAAAmCnAP/EpdMb073dMKv3BZ+Up2AAzBogOQX3DaD8 ppq25ihrwONE4JbZsJIINOtTjUBVC+oa0HZmqq0ZktpqMBTopkSWjMBoNegtlakA3D/PLJTh4/jF AAYamRkSNoSff/MI5y/U2DxB0ucRcOA2owbA3QDwZS69ABjZnu2ikyf19mwAmCFA9dGRU3D/AJqi r2Z7tpMnT5zwxkBr0BI00R0ZR9C2ZAKD6os6gvGeDDEYVoShQYYjY7BaEuoHK/EEfY+xUIEpBAOP zCKFNI7VipCOgH/k0geAdadgAATAsUVBiwMs7QFg7gDJKfhFLt0DrN+e7YSIEOimQ7bUygQ3G3J4 Y8NsWETomV6MuVtz1fZi3L2aVp75QnlzX7luTLwZ47mr68XozRIi7CKFIFGXxC5Rnb2tk0rbJrtp JvSz7B3AhAAgAHYaAJwggH/g0meAF198UXFS+pMhCNWDk6oKN6xCb1aEZZjUkWlqyZBqMF4MctlG MdjGJO3PNJukPJ3IliT9tQtF+T/9ceYHsExx8UUnYTBjg3QEfIFLAJC9EugwALi7APLNuK4iTsEA mDnAGXcKzg7gQI6AF5UET2qFshWobxMJGoKqJUjXxrg7RoKW4GpFYi1Au1CmSWIVYBrFWokpc3SJ ErugSEdAkedpCvZMG0zIdhsAnCCAz3MJmZkVen0YAS+55GIAzB3gjDsFP8elchFi/r8HAMsUl1ws CF5ECWqErg70CNppOXrjZmiwSnA05WCdRYWNt6itRSzOx28hqWKci91BUsWYumCGwZi4XsYfARMA 2skxAATAbgB6q+Q7zqWXXgKAuQMkp+BnufTAWV2KSy9RBLVATdDWgUcJQd/gxg4ZjCPkK8FYRagF brMiJDeSNBKc23ZF2HIEBEAA7BTg77j0GeBll14KgLkDJKfg7AAOxAhYFoKXKISa4Ak1JWILQV/h ZlVh2JEZicMqxOUlniPj0C8L+WzPYSAyLa0YVkRO4Ag4AMCJAvgMlz4DvPzyywAwd4DkFJwdwDLF 5ZddJg0G3Zjjx2w/xq5M0ArJ4gRmaiRYn8A5rGPY7LBNSZjgcFQQx++weQT8LRcABEAAjAcAAbC7 XHHF5QqgLAKNQLs6kAqszoqQUjCsBNcZhMm1YIUgXxBGIbYnmOCwvxBpDfhrLn0GWKa44vLLYTBj g3QEBEAA7BTg01y6vTGduSOdrIO48sorATB3gOWh+bj7BpDdkyPcG+bKK68wBjXCiy3CQCHD8AjH kEAM7xppbzGhPxjFOJbLkpYcW2gcimOfR0B/8SEATjzAp7h0vUVv3f6AV191ld4fEAAzBKg+ull3 Cu4fwIg+OgJedZUYA68QY6AzeJG3POZ4sEzV9gXrykFmgq5WYUuGEYctasKUurALhtsYAX/FpQ8A 607BAAiA40ojwGuuuRoAcwc4607BT3LpcxtGHF1z9dXCoLkU8UvBmMILicItT2GFId+aSYbYLHE0 FJswjopiC4lpGuln2TuACQFAAOwu37v2WgDMHSA5BT/Bpc8AyxTXXnuNNGhKQYeQFoNxhT7DsB6M 76SwTYfJEnmIw3ZoOqKYOAICIAB2CvAXXPoM8PrrvgeAuQMkp+DsAJYprvteWQnyCMNiMJgc8Rj6 jZl4RRgpCdMlVilWJbIUIxKHt9goMdXitihmPQIOAHCiAD7OBQABcBcALExaveuGG64vrpMCBUDT jtECSSXoEyS1YE0xWDHYrHAtrrCxJGQUtmIYV7hthuNFSGvAx7j0GaB44w3XXw+DGRukI2CXAINf 098IgAA4ggwH8KabbgTA3AGSU/CjXPp+EXLTjTdogw6hp/DSQGEzw5hDrjvItwdrJY7qqmTkEnce YjACAiAAdgrwZ1x2DKBaa9XqLbfccjMA5g6w/MUI6BpgMcxFyC03l5Wgj/AagpBUg7UMaWcw4jC1 JIz2BxuKwp2UuD2Io3TYoxFwAIC7HOAjXHYQoDLYIrfe+n0AzB0gOQV3D3CIRvSt3y8rQYLQTc3V K6xhyDusKQnbQuxPUbgdh6NRSEfAn3LZSYBDPPwGAAGwu9z2wx8AYO4AySm4S4BDzwX/8Ac/uPX7 HkKvGNQKdVemkWELh/lBHAfDbSOkI+DDXAAQAHcDwAHTggkeTFe9L/iO228HwNwBklPwj7l0CtD+ Et+a4/bbb/thiNArBrVCUg56DIPGDC0IWYftSsJRtGdG7HAYhttFmDgCJgG0o9BoH5fJnYLd7lgA CIAOxWAwRLtkOICGXGR7trvvulO/DQAzBKg+OnIKfoiLT60gI+CoDbJp3J7trjvvvMOMgqIlU1Go qkG/HKxhGCsImxyOvSRMcDhWhdszmDQCivj4GGd2BNwZgY3bswHg5AB8kAsL0PtiJM6CX+3fAIAA 2BnAxu3ZTp36UXHXXXfeQQTqSjAk6NeCFYNcW6YbhGMw2IrgcACH1Tfnt2Ee4LIzp+Dh74o79aO7 YTBjg3QETAAY9IZHFgAEwMQRsE85ffpeAMwdIDkFn+XSZ4BlitP33nNKIZQXIwkK6xhe4jMc2uFm 1SHfHExj2KBwaIRtCY6hCqQjIAACYKcAz3DpM8CzZ88AYO4AySk4O4ADMWyfue/0vQrh3QLhHQRh oDAsB0OGl1UZjrwgbGSYqrAR4XYIjtRfHF/2I+AAACcK4H1c+gzwoQcfAMDcAZK9YbIDOBDTNw/c f/YMRah7MozCG32FhGFYDo6UYZ3C5mow3WAzwVSALfkNjS/cHes0FwAEwN0AcKi/5icP/xgAcwdI TsEdAhx6Yq94+McPPWgQnr73nntO/Uj3ZKoKb9YKw3IwWLJanSCpNGaowtplq5VqkJkfaawF4wbr CSYATObX2l4TPG6Dynu47BDAwZCDIAAC4Cgy3GKER3/2CADmDpCcgk9x6ft9wT975Kc/qSDUxeCQ CuvKwTaLVtNrwTYE4wIb/KXoS7fXHl7lCQ2VEbBLgINhT8EACIBdBgAnCOCPuPQZ4OOP/VwAdALP nrnPNGTCSlCvUCAtmYS5kWgp2GYvhWgZWOuP1ZeKr4FeErx0dS3JqczoFOX/9MeZH8AyxWM/fxQG MzZIR8C7uQAgAAJgJL988gkAzB0gOQVnB7BM8eQTv3hcIfxJBaFsClauRm61VyPsMpnhbhyJGmwg WAOw0V9UXzt7SfDasGsu/EjoCHgXl44B1m7PNgBAABxvitqdEX799FMAmDvA6elp82HfwaVTgEU9 QPGKp5/61S8JwodbIExarZpikFSClKBXB6YCrPpj9cXw1dlrgpfGrpU5RpzOtA4dAXsH0OyHFdue bWCn8AAwQ4Dh5GvvANoxL7Y927PP/BYjYL4A1QhITsG3c+kUYMIp+Jnf/ubXxKCamSsRPtCIsDo3 V7NEJmWD6YhADmCEX40+Fl+MXh28JnZp5lp6m46GjoB9Ayi/KQDcPQBv49I9wHgb5oXnfg+AuQOc mpoyn3UfATaleO73zwqDTz+lDXKl4OkGg94dIyHBpoc8cACJP4Yfr6+Cr2qPlReDV8euyVyiuLba ppjQEfCHXAAQAAEwkj+++AcAzB3gvn379MeZH8AyxYt/eN4a/JUw2DwvUlmecDOzr3TsQUvsg4c5 fxV+nD4fX5QeJ6+ZXR26RnKJ3FpQ09nnh46At3IBQAAEwHgAcIIAfp9LnwH++U8vK4C/kwB/VS0D H/BXCJIq0PPH1oD0icMRfQaftcfSo/I8eBF3Ibt6dDFyNd4asSVTS1Tm5bteivJ/+uPMD2CZ4k8v vwSDGRvMegQcAOBEAbyFS58BvvHaqwCYO8ALLrhAf5z5ASxTvPbqK3/640svvvD8758tDf7aXxwj bxV56EGWIO0G1j9o0wJ0/jh+jD6Hj9rj6DXAq1UXM1cnrpFbsrXUYi/MBSp0BLyZCwACIABG8vZb bwJg7gD37t2rP878AJYp3nrz9df+/MrLf6T9QEfwEe9+zXD7rECgLgIdQOPPbSHt8eP0xexV6XHw Iuxq0cXItfGWZq29swsaUuKjI+CNXAAQAHsFUC3G27EnptfmvXffAcDcAZJT8A1cAmdmUeiIH9c6 dIp333nrzTc0wRcYgnpO7oH771dloBVYfb4hacNof6YAtPWfp4/g80o/hl4EHusuZFdnLglcg7ZU asMp29sQOgImACzG9LzgoQOAEwRQxMfHnGkNwD6cgz/84D0AzB3g+eefrz/O4nouEYBFX0bAD96j BPWUSHivphV4+jR5qJIB6PnT8yCWn6n/rD4Pny79WHqBvIo7j12groKOIRfxVqsthVprZ03G9u49 Px46ArYB2JtTMABODsDruPQZ4Kcf/R0Acwf4ne98R3+cKQDNbgr9aMOUKT76+/t/++s7shkj1iXI GRG3LMEClNMhqgg8dcrUgLfdFvrz+Onyz1R/FJ9X+VF6nrwAHnVH2UXQVcg1g6vVlkZtSGY1xLx8 J0zrEbBnAcAJAvg9Lt1uTsTckR5saAOAADiusHty0PLzs3OfqBrwL7IGdPxECRhUgOa5wrL+E/jK 8k82YJQ9030x9GjlJ+UF8Jw7ys6oC9DVk4uBY7jFsNVLS2e2TWEVXQmhNeA1XLrfmqN+b5hzn3wI gxkbpCNg7wCaC57m/QEBMEOAlf0Bewdw0LA/4Jefn8MImC9ApfC8884zn/XVXPoAsO4U/Pm5T+R1 yNtCoLwMka1AdRWiABJ/p6U/cQnirkAsv1CfwCd7f84epaevO7Q8Cs93R9gx6BrJsd7qtKVRG55Z S2Hn1YeOgH0D2HgRMgDAiQJ4FZfua8B4G+afX34OgLkDJKfg3gFMSPGlEKjm414Xt4e8+IfnxZIY CVDUgKoENBWgagKqWThR/91yiyv/GHzWniz8KD0lTxd9FJ5f8Dl2VJ2PLiTHiYtya8Y2HLSRAWsK HQGv5AKAAAiAkfzr6y8BMHeAe/bs0R9nfgDLFF9/+dm5jz+0RaAE+LtnRBvmySd+UZaAwt9Dzp/i J+o/Wf7ddJOp/kp9Ep9vTxd+hh6V5+BRdxw7qs4zVyHHiavhloZtBMy2iUxmDx86Al7OBQABEAAj +fc3XwFg7gDJKfgyLn0GWKb45qvP/yEmQyzAF5579neyBDT+RA/G56fKP1X9ieLvWlH8mdLP2dNd F132BfJ8eNYdp45DVyHHiqvl1sbaDjCLAGsKHQEBEAABsE2+LU/BAJg5wD3uFHwplz4DHMgR8AsB sKwBRRvm5ZdECfjb32h/chakLAANvzv1CgSrTxR/Ap+s/WTp5+z59AJ5pOSruCPVHoeuao4X18Rt aGw7baweIPksARAAOwV4CZc+A1SnYADMGuAedwrODuBAXYSc++TD9//2zluiBLT+nnzicVEAPvzj hx64/6zg58o/qU82X2TvxeIrSz/fHqUXyNPwqu4q7Hx19eZqxQ2lrTfO4gDJZwmAANgpwIu5ACAA AmAk337zZc340cAAAAn9SURBVPHpR39/T9R/ogMj8IkpEFH9ifaLsiebL5SeXHgg5j08eT486o6y owWfUefQ1ZljxNWBa6ut586ioTXgSS59BjgQI+CXn8FgxgbpCAiAALjjyRrgv7/+AgBzB7jHnYJP cOkzwIFYjiXagO+/+/ZfXn/V+vvlE48/9ugjYhWM4aeuP4w+2f2TVx8ePt8eT0/Li8Dj2DWoazI3 MnBdS4uEjoAACIA7HgrwOJc+A/zmq88AMHeAe9wpODuAZYqvyhLwg7+985c3Sn+yCfh0WQA+XhaA Yg7u7BnDj5R/St8VQp+aejtxQtR+Ep+xt27t1dHj5QXwOHZDq8sfXJhej4Ap27MB4OQAPMalzzsj fP3FOQDMHeAedwrODqB4zRfnPv77e399641XXxH+nhGzcL9QBeAD9/v8iL4rjT5S/Mnaj+AzlZ9n L0KvVl4MXjK7STPnhY6AR7n0YnOixu3ZADBDgJXt2foH0GyIHtue7R+fYATMF6AMPQX3DqB5MGLd Kfgfn3wo/L32iujBSH9iGcxPRAF43+l7Tt191x233ybrP1L+idkP2X2x1Z/Vpxe9+LVfFR9vL5Fe qrxJdmdDR8AtLh3XgAMABMCuEjyUpNqG+fzTjwAwd4B73Cn4CJe+N6I//ej9d99+87VXXhazIMrf z4S/+8/eJ1ahqgLQb8Dw/A5veM2XdH1+6VfFV1v4bYte13hGEToCAiAA7ngowE0uAAiA40zWAM99 /EHxzl9e//PLL73wnJoCecyVfyE+vfyvtvrTzReJz634C1svsdqPmfOAvabQGjA7gGWKj8U8HAxm GzoCbnDxAYbN684DgJmnNcAdBlabTz58DwAzDz0Fr3NhRsCdlxZPIbuAciXMs8/IpahiIYyZhpM3 gshlMPQSRAAUi2DUJJxcgnq4GaB3DRKdgMM1SMvQEVDEx1fh1pNHpbsAYOahABNGQPm63gD86P13 ATDz0FPwIS59BlimkF3AP7/84gu/JyXgQ2Ip6j0U4I3sQphjDQKX+UWoaRNx20O4S2bivBEwAWD/ TsEA2DWh7YUCXOMSaOvVRUh5AQyAuQPc407BKQD7lkI0YV4Vu2I9+8xvZAloAcoa8I7bgsWoV5mb Mf2bQSqrYZjVqEMtR01fj7r9Bak5Ymw7AvYtADhBAFe59BlgiQ8Acwe4x52CswNYplA3ZLotEfSe RGfP3Kc2pbydCLyO3xHhWNqOCDWbEbXfEWHv3gaNNVsitADZf5R0BFzhAoAAOM5kDfCtN18DwNwB 7nGn4OwAlilED+YleUOm2ZRI74lw372yD+PtC62eisRvC+0Qupszo5tCB49BSt8ZcHtbQsdRDgGz HzrpCHiACwACIADGA4ATBHCZS58BlsVf8cJzzz7zm6efsg9G0k8mpA8mNM8Fvu4681jgK65QTwW+ uPJgpCPWYPhgJMLQPQs48iTgWQ+jfTbS1FQVZM3Dkdo8jrCe5tA+x++U1oDZASxTqOdjwmCuBvs9 Apq9OWr2BwTAyQG4xKXjDSoHdVtzlPIAMHeAe9wpuG8A9TZY9XvDCHzl5YfYlNI8nfp+/+nU0l/4 eGr7fGruAdXqIZnhI6qDZ1Q7iw6j95xq7dE8qdqQtCbdYzMJS+oyeGB19ZHVrM86o6lQR+A11S4d ARe4dH8KTtkfEAAzBFjZH7C3AGP7A5bsMALmC1ApLP/cfNq9BVh3Ci7lPfaofDC1Lv0EPW1PVH+i /FP4tD7Fj/iTALVARdAZ1AiFQsHQOJQQpURHUWNUGjVH7VGDtCStSYuSsKQwfZuBTkYoi7ROajPX 9mzb+aUj4H4uAAiAuxVg4/6AJTkAzB1g+ULzec9z6XsjWpd8puYzRZ9kd9ONNyh3ATwpTxZ/il5p z+HT+gw/6c8ClAIPqbXiq06hYqgdaojLpo+w6GN0HB1IapKq9GGGNkOevFGWab3WZrOt7NYqpiMg AAJgpwDnuPQZYIkNAHMHWP5T9MeZH8AyBfFmCj3CzfPmgdPiDDnPnEOn2Sl3Hjwt76BZN3nA1+f8 OYEUIWXoQfQthhyrJDmWEZtxoU1Qk8C2kmuT9Qg4AMCJAlj5UUX6DLA0BoC5AyzfoD/O/ACWKby6 ziCrGDPEAmOHI8YMMqPMMrPOHDRKjVrztPneKuQq6nh6PL+4wQaKzSJb2Gyr1ISOgOx3D4AACICR lLAAMHeAF7hTcHYAyxTe2oFNH1Vy4cZVbjWYQk1VTpyniKg4qkZZCbpaKRvK27b4+SMg+50DIAAC YDwAOEEA2W+lzwBLSIVW1DT7UNP1qGBpZaQTH9sRMiSUpLRqwOg2zF43E5IdwIHZzgEGszWY9Qg4 AMCJAsh+l30GWEoBwNwBnn/++frjzA/ggExgR6W0EDGej72Lj3U0abnWZajQEZD9JgAQAAEwklIM AI4xOwKQLMlnv4k+AxzwV07bs9Dbj2oUGeLOjjGHjoDstwyAADjOZA1QDNCMwAaARWuA/LmhDiD/ 77Iubd8x3N/QEkd7Tu3fQW5M51/QKbHGFFEcw3904/4g+NsTk25iHP71vX0H+SzzABjsJwKAmb+D fJZZAKQ7I4jvHwAzfwfZno1/Qfj5d/ywwnBrjp7+a2V/t2mfvDZp+/revoN8tPy/yrqPv4Pw27N1 wan9O0b50fWUU6sXh9uz8a8KP/7OARaDKkAk2wyaPsvg4x+Ev7XD6f4/AaTDFP7408l3AIC7OD34 +CujMrKL0gOAyK4Oxh8EQRAEQRAEQRAEQRAEQXYwuiXp/9L8plbvaP93tH1H8yORt/d6MnGQ/LMP +3e0eAf70ryazLVP8Iq/qdU72v8dbd9h/s2nvqvt6807Bi1+9mH/jhbvYF+a2TTbMN98MQTAyl81 yu8q5ZHI23m9fUeLn538HYk/+xDf1QQAFClijxGuf3nyO/R6tHZ/R7t3mI+uSPzO7B8k/yRFQV+e /I5WP7v5O9r87JVvJ+nfb5+if9zKY4Tjr2c+6q7fYT7s1He58Sz1Z/dHp/68o/IDpPz77VPsf9n6 v6UEHMOcgsf8Dv+jSzt5tfvZ3XiW+n21/Z6GeAf3A6T8++1R7FDQ6pufDICtfnb7Rz0CyP4A2QE0 JYf9TzzpXa3e0b5N0O4d/A8Rf5cdyJJ/dvPSQfLP3vZ72pl3IAiCIAiCIAiCIAiCIAiCIAiCIMj2 Quai7OIm/88xW4WMMR7A4Dcqr0CQUQcAke5SeCfYcMkcWdOCIGNIUPJZgGbdUmRIRJDRJALQLpUD QGSsqQcYLQoRZDSpPwUDIDLuhBchRJ77EgARBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ BEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ BEGQ3ZT/B1GNbqZXOfLwAAAAAElFTkSuQmCC --17435139-1031850613-1288339902=:26567 Content-Type: APPLICATION/OCTET-STREAM; NAME=plot_904km_80km.png Content-Transfer-Encoding: BASE64 Content-ID: Content-Description: Content-Disposition: ATTACHMENT; FILENAME=plot_904km_80km.png iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAMAAAACDyzWAAABKVBMVEX///8AAACgoKD/AAAAwAAA gP/AAP8A7u7AQADu7gAgIMD/wCAAgECggP+AQAD/gP8AwGAAwMAAYIDAYIAAgABA/4AwYICAYABA QEBAgAAAAICAYBCAYGCAYIAAAMAAAP8AYADjsMBAwIBgoMBgwABgwKCAAACAAIBgIIBgYGAgICAg QEAgQIBggCBggGBggICAgEAggCCAgICgoKCg0ODAICAAgIDAYACAwODAYMDAgADAgGD/QAD/QECA wP//gGD/gIDAoADAwMDA/8D/AAD/AP//gKDAwKD/YGAA/wD/gAD/oACA4OCg4OCg/yDAAADAAMCg ICCgIP+AIACAICCAQCCAQICAYMCAYP+AgADAwAD/gED/oED/oGD/oHD/wMD//wD//4D//8BUJrxz AAARVElEQVR4nO3di5raKhRA4fjl/d+5dTQJRCBAgL03WetcrDMGo/zNRe10WYiIiIiIiIiIiIiI iOjb63/S60DP7a0PgSQaAEkubxf8IsqvncH9V7UjjF3OyGrytOQOBMApljOymqdBXgCcZTkjq3ke xd2XG3kIRlaTp0XDkDRtALTX5Zlj6gbR7/19o/CktME5LACl+x6+fC6+r0y8nGv7F50lLodM3UNq Ie+7/k29Ub7fBqD9viici9gXy8ZcHM1Zg/1+4/OV4CifrwNwgs7k9s1U1MzrgLFvJANvBSQAfi78 jeq2xM/QEYCnL1ZTBKB0YXI/BLwllpBR54Uwf1e738PrwOLv1h1WzrWfO90Wd9n9DrZe5T/8Zk9k zyEnzxcU3CGfbp4F8Lzt2vhsG7AYQP9+X95vA89weLDCx1632OAhJ++Y2P1aD4C+meAmc/uSp3HX ddpERwYrfOx1iw0ecuL8Xdsvq6Ue4M89eHvNOEDn+7FRvl8JDlb4+OsWGzzkzPlnEaeDv+8tzrff buNicW51AnEaOiD22L++3MG8/erP2U6Mf+HDr1ts8JDPqHYOTQdAEg2AJBoASTQAkmgAJNEASKIB kEQDIIkGQBINgCQaAEk0AJJoACTRAEiiAZBEAyCJBsDiIn+8i6oCYGmHOwg2CIBlncxh8G4ALOqX GwLvBcCSgtgQeCcAFhShxkbwRgDML+4MgdUBMLuUMgTWBsDc0sbYDVcGwMyugCGwLgDmde0LgVUB MK8MXQisCYA55dkCYEUAzCmTFtvA8gCYUbYrBBYHwIzyWQGwNABeV6IKgYUB8LoiVAgsC4CXlZHi MLAsAF5WKgqBJQHwqmJPbANLAuBFFZoAWBAAL6rRhMD8AJiuzhICswNgukqACMwNgMmqISEwMwAm A2DvAJjqBiME5gXAVHcUITArAKYCYPcAmOieIQTmBMB4dwUhMCMAxrsNCIHXATDafT4AvA6A0Rrw QeBlAIzWQg8Cr6rV8vqfd+W4OgnAJnYAeFWlljc3h5w3CgCbjzJxjQB628PbK6WiRnQQmO6GFn8L GONotWZwEBjtlpTzorMdAwJwTPUnIdEvALDXSDN24xjw+MVpF3x/reRrqIaPR6eqBvjZfX934tOd hDQ1A8BEd7UEDiIB2He0ueKdkGCNySAwGgBDtQYDwGgADNUcDAJjATBUey8IjATAQB20ADASAAP1 0ILAcAAMBMBxATBQFyy8IRIMgL91kgLAUAD8rZcUBAYC4G8AHBgAf+rnBIG/AfAnAI4MgOd6KkHg TwA81xUJAs8B8FxfIwg8BcBTnYUA8BQAT/UWgkA/AJ7qDhCBXgA81d0HAL0A6DeABwLdAOgHwMEB 0G+EDgQ6AdBvCA4EHgHQaxANBO4B0G0UDADuAdBtGAwEbgHQDYDDA6DbOBcI/AZAp5EqEPgJgE5D USDwLwA6AXB8AHQaawKB7wB4NFgEH8x6B8Cj0SAAuADQbTgIBALQbbwHBALwSEADAAF4JKEBgQDc E8HweIEA3AOgRADck7HwdIEA3BKS8PSXowG4JQbh2QIB+E2OAQD1DzkgQQaPFgjAb5IAnywQgN8k EQBQ+5D9kzXwYIEA/ARAoQD4SZjAcw8DAfhJGoD0/YsFwE/iAMRXQCgA/iU//U/dCQPwLwWzr2AV JALgXxpmX8M6jA+Af2mY/GfuhAH4TsnUK1mNoQHwnZKZV7IaQwPgOy0zr2U9BgbAd1om/oGHgQB8 p2benyewjZbX/xoPOTJNs65pXUbURMtb3yEQgHfStC4jAqC2Ode1Nt1rpsUB6O2QDaRsypWtTsca SjF9DKhsxpWtTudanYQ0H3Jg2mZc2/p0rdkxYOMhR6Ztwh/1WkwjgO7O3BpAhdOtcJV6xQvRKmdb 4zr1CYAqJ1vjOvUJgDonW+VK9QiAOuf6MSciAFQ600pXq3kA1DrTD9kGAlDtPKtdsaYBUO88612z hj0eoOZZ1rxurQKg9AokesJhIAClVyDVAwQCUHoF0ilfvfsBUHoF0k2/DXw6QPXzq34FbwZA7elf w1sBUH1z74UfDtDC3AJQfshu2ZjbmQkC0EAAlB6yW0ZmdmKBALQQAIWH7JWdeZ2WIABt9B+gnZUt CYBWmnQbCEArrXMKBKCZ5twLPxqgrflcp9wLA9BQ64S7YQBaCoBCQ3bK3mzOdxwIQFPNdxz4ZIAm p3I2ggA0FgAlhuyT0Ymc6zgQgOaaaxsIQIPNtA18MEC7cwjA0UN2yfIczrMbTmt5bbUbUk2mJxCA 1UOqyfgEzrIXvgCYdauiIdVkfP7WSd4YBqDZ5tgGPvckxPzsrVMQfCxA+1O3TPHnRK61THoSYn/q /jL/MC61zHoWbH7mPpk/E8kB2HpIFRmftyPjDyRnF9x8SA0Znzcn26ci7ILtZ1rgUwEanrJAhgk+ 9WUYsxMWzPCpyNV7wc2HVJLZCQtn90Xp6w8jNB5SSTZnK9Fq1OCVlgqBAJRoB2jskWW9E9J6SPmM zVJG62bQ2EPL0DLjWbCxWcprB2gJYZaW6QAamqCCfIBGHuMzX4YxMjmluQCtILzQMulZsIGJqWz1 Aep/oNcAZzwJ0T8vtYUAqn60OVrmOwlRPSW3WhfvOBCAKlM9I/faX43Zfnm8UazzUT9yF6xzKloV Aaj0fZLqkxD3Gz7TMoASz4rKmWjWfhSYAKjnGajdXL18gNVDinyOQ8/T36Pt4O94b+4HoKJPz1R+ HvD1uwXMH9JJ5sUqNc9+l1yAy+oAPB73OuQ5WLeL1H1VfyD1vAV0dsEFh40yZ2lzA3xXDLDHNvES YL6UC4D+9YItoMzp2fz+LgAG9ju+kjbPkAMwPqAowPV0OagnAFyuAPrPgk9ybTMxbQBe7IL/Lk67 4NI1BGDzkgD9C+f2+7VWAPdTobsAw1997R/VqjwJAWDPto8jHJ9TLQW43jtEagPwohDO3GXXwK9G 9CyAO8MEwNM++T7A44WfHWBkFMmPYwkBfIg/Zz8cBnh+/t2rX3k3AK5NAPb9+YAA7FshwOO6D7Dm Ew3WAA5F8RiA77IAnvfJUYDZT91h7ybArj8jGoD92/WEFJ0k9gG4qgV4Pgsb1aMALhkAA1tELQCr Ug7wWf6SAE/XfwF+dtwAbNrDAP4VBbguAYDrcUsH4Hq+efoOAwDXAMNVCcBxLJ7oz9mkLefn3fkQ Qgrgx1AewBWAuff6lOIATzfbL1yAh6gcgGsY4LquygCuiWsdeyRA7yXlBgBTT+LpFRgrAIfBeDzA xBOQBzB+QrEsCwAL7/YpDQL4ZRcD+PuphMcBfKi/rfTWKx9gbJCdHQDz7vVpNQQYHCcD4OrfPOPn A5a+WAhAvRUBXJdSgGsE4BoGuOYAfL36/GSEn/UfQ+PxANPnD/tFGOCmcCjAvz+DWfAYAai4rgDX BMD1BsDSfbBmgA/3d/EElAEMzGAxwDVnF/wKfe4+tUTOjUK/fwb0eIDp/BdrfIDLuv+zAfSfzTUX 4HoskQGw00kIADVWCtB7On8BrgGAazHA4gBottX7XxHAXd96XDYAWOOzEuAQHABM1h2gexz4uXb1 ieiKR6EYIP7ShQA6/4YArvuihQDXLIBLxUYQgHbbDv8yAR5nFGsngN3+TAgAVbYD3JQEAfr/7Prc V50bAVx6AQxJAKB8xQC3DWIxwDUP4NJpFwxAnTUB6KgLA3S/JPQyTFBCdx74u+oMcFkvAe4HgwCs u1dyugJ4nHoAsCIAXlUEcDsdXqIAHYXng8AnAsTfZTUA/25WDDDzLLgmANotF+D+MnQZwO36ZxEA 0k/r9ixdA3S07iQLAGa9FVdVxpARCp2FAPC6IMDD3HHgt56fz+9etQDg39kIAMktG+ACwNLwl9F2 UHcC6P3vNkBnAV0A+xoBYEYlAE9LpgEu+/kvAClRNcDPjT//fvevABw3+HytNQCXEMDjvQ8P4GcJ AFI49+XAX4CxRSIAFwDir7A4wNT0OQA3hWeA/hIiAKMWAKin7dXi48rq/iKyiGMPgOPGnrgQwPTN LQPsqQSAVZ0AZtwcgINHfkJzAUw8EAAaLwXw5xwYgNShCMAffJ/bApAaFwcYCoDUuDPAxRLAbk7w NzAAjhuXwgFwyLAUawe4ALDjsBTLOxBUBjCJAYBzdJADYMdhKd4PwHAApD4ZBdiHCv5EAmDXQekq B2A0AFLvAAhAvT0CIP70BkASbTzACw0AfFaNALo/R/8ewB5aAKi3NgBfAKS6mgB86d4C4k9xPXbB 6b/Z5pJDcy8AVFrx34GUGsr5dfqmACQnAJJoDwCIP821OQnxduYApPyGvxB9zaExGPypTiHAxmQA qDoAkmgAJNGmB4g/3QGQRAMgiQZAEk0jwKZoAKi70QCzPDREgz/lAZBEAyCJBkASbTDAPA/t1OBP eyoBtnMDQO0BkETTCbAZHABqb26A+FPf1ADxpz8AkmgAJNEASKKNBZgvooUd/BkIgCQaAEk0AJJo EwPEn4W0AmzAB4AWAiCJBkASbSjAEhK3+eDPRNMCxJ+N1AK8KwiANgIgiQZAEm1WgPgzEgBJNL0A 7xkCoJFGAixEcccQ/qykGOAdRQC0EgBJtDkB4s9MACTRAEiiaQZY7Qh/dgIgiTYQYDmLSkj4MxQA STTVACspAdBQEwLEn6XGAaxxAcDpmw8g/kylG+C440YSCoAk2nQA8Wcr5QDHvXtCMgGQRBsGcND7 uvgz1mQA8WctAJJo6gGO/ZFaNDoAkmgAJNFqAb7+5105rjYGOPhH69PYKgG+uTnkvFEASPk1Auht D0MLjPhD5vgzWD3Al78FjHH8NuIHvQDQWEEp2Yued7zpY8ABAPFnsSa74O0riSH7A8Sfye4C3P/X EWDewgA02c2XYfyL+JD9f+Az/mx294XowEGkCED8GW3QOyHd/9oZABptEoD4s5oRgBcDrAC02hQA 4We3MQAbCEkNAUC72QEYHwN/hjMDMD4I/iw3BGAbIuFROP+wnSGAwWHwZzxLAAPj4M96pgD+eMOf +WwB9Ida8Wc/awAPdeibohEAW0tZ/2o8KMlkESBNFABJNACSaAAk0QYAxB/FAyCJBkASDYAkWn+A +KNEACTRugPkPTNKBUASrTNAPjVA6boD5BiQUgGQRAMgidYfIFEiAJJoACTRegJcAUhX9QXIq4B0 UUeAKwDpMgCSaJ0B8iogpesNkChZV4DsgOmqfgDxRxkBkEQDIIkGQBINgCQaAEm0rgDbj02zBUAS rRtA9sCUEwBJtJ4A2w9N0wVAEq0fwPYD04QN+hvTicIBkEQDIIkGQBINgCQaAEk0AJJoACTRFAEc vJyR1eRpyRrlf2KrMvkzzdOSMcjr85/Mqkz+TPO0ZAwCwGmWM7Kap0Fei7MPfhHl1wbga2kzElFF /i6YaHAAJNla7cuJiIiIiIiIrFV4Tvy58Xch/yLjXkqXq1xsW9Gau6tZ7s7Dq13PirurWy4x4y1e Tyl8VXC74+87eu5Fxr2ULle52LaiVas58OFty456WqqWS8x4k1eUywb5vok3cobqFntVAnxttxoC 91hGLcDUjLcCWLQd3VbnO8HORdY9FS63gyi8u+1mxXdXv5pV6+nc5YCnpe7hxWe81E7ssRQp/q5O YF2u76dmuehDv1rJmuXG31/V01l9d6/vjqFoufgqltpJPZii2zu/lZyL68Uqlqvd19Ttguvvr/5Q IbZ4l7urWS6+iqV2Ug+m6PZ1M1Sx3NhneuzB1b7guKelbrnOAJeiU+k7rxvULhe7uFzViuVq769+ ufjiOlYzOXNFdoiIiIiIiIiIiIiIiOiBeW8oBd9e4j0n6tfL+1CR9/mA5fRlovb5tgBIg0sA3D4L AkDq1un4bvO2fxmA1Lf0LthjSNS+FMD9ewCkXiWPAcM3ImrXGaCz9Tt9IJ2IiIhITf8A3Vg8hJ/K h0EAAAAASUVORK5CYII= --17435139-1031850613-1288339902=:26567--