Return-Path: X-Spam-DCC: paranoid 1170; Body=2 Fuz1=2 Fuz2=2 X-Spam-Checker-Version: SpamAssassin 3.1.3 (2006-06-01) on lipkowski.org X-Spam-Level: X-Spam-Status: No, score=-0.5 required=5.0 tests=BAYES_00,DNS_FROM_AHBL_RHSBL, EXTRA_MPART_TYPE,HTML_40_50,HTML_MESSAGE,RCVD_ILLEGAL_IP autolearn=no version=3.1.3 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id t08MHhXc019751 for ; Thu, 8 Jan 2015 23:17:43 +0100 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1Y9LIz-0008QW-Pe for rs_out_1@blacksheep.org; Thu, 08 Jan 2015 22:11:49 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1Y9LIz-0008QN-Ac for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:11:49 +0000 Received: from smtpout4.wanadoo.co.uk ([80.12.242.68] helo=smtpout.wanadoo.co.uk) by relay1.thorcom.net with esmtp (Exim 4.84) (envelope-from ) id 1Y9LIx-0000gq-09 for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:11:48 +0000 Received: from AGB ([2.31.67.1]) by mwinf5d52 with ME id daBl1p00101e2ES03aBliE; Thu, 08 Jan 2015 23:11:46 +0100 X-ME-Helo: AGB X-ME-Date: Thu, 08 Jan 2015 23:11:46 +0100 X-ME-IP: 2.31.67.1 Message-ID: From: "Graham" To: References: <46D2E1AF22D14849AD1095081F7613AB@AGB>, , <54AD702F.1009.1A52347@mike.dennison.ntlworld.com> <54AE61EB.7134.397DF4@mike.dennison.ntlworld.com> <000c01d02b55$440817e0$6401a8c0@JAYDELL> <8592571821BB4496B94ADC934CBC0555@AGB> <002801d02b85$7089ace0$6d01a8c0@DELL4> In-Reply-To: <002801d02b85$7089ace0$6d01a8c0@DELL4> Date: Thu, 8 Jan 2015 22:11:45 -0000 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal Importance: Normal X-Mailer: Microsoft Windows Live Mail 14.0.8117.416 X-MimeOLE: Produced By Microsoft MimeOLE V14.0.8117.416 X-Scan-Signature: d8e1b950f7fe6351773df30c5c5e7f58 Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << Content-Type: multipart/related; type="multipart/alternative"; boundary="----=_NextPart_000_00D1_01D02B90.16C48FD0" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.56 on 10.1.3.10 Status: O X-Status: X-Keywords: X-UID: 1889 This is a multi-part message in MIME format. ------=_NextPart_000_00D1_01D02B90.16C48FD0 Content-Type: multipart/alternative; boundary="----=_NextPart_001_00D2_01D02B90.16C48FD0" ------=_NextPart_001_00D2_01D02B90.16C48FD0 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable There 1000 miles apart and exactly the same time , the 4 min = shift is not a timed function , this shows 5 tonight=20 19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 dB in = Zakynthos(Zante) isl. GREECE 19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in Welshpool IO82ho yes I have the opds system , even edited the file paths in the = config.sys or what ever , bit like old bike , needs a few = adjustments to get it going , all the decision making logic is = contained with in the package . So far tonight , everything looks ok =20 73-G, From: jrusgrove@comcast.net=20 Sent: Thursday, January 08, 2015 8:55 PM To: rsgb_lf_group@blacksheep.org=20 Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' <<=20 Graham DF6NM's OPDS is much closer to perfection. I take it you've never used = OPDS ... so you're not aware of the differences in performance. =20 Those two spots look good at first glance but they didn't adhere to the = 4 minute time differential from standard mode reception. What is one to = use to judge the likelyhood of a real spot? Unlike DF6NMs OPDS there's = no correlation % and dB 'certainty' indicator, an accurate time = indicator or an accurate frequency readout that can be compared to other = grabbers for corroboration.=20 With so many bogus spots in Jose's deep search it's hard to trust any of = them. Jay W1VD WD2XNS WE2XGR/2 =20 ----- Original Message -----=20 From: Graham=20 To: rsgb_lf_group@blacksheep.org=20 Sent: Thursday, January 08, 2015 12:35 PM Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' <<=20 Jay,=20 Well nothing is perfect , all the beacon systems produce strange = spots =20 I don't even have a 136 Tx and am regularly spotted on 136=20 2015-01-01 19:01:38 G0NBD 2056km 137513.376Hz 3mHz -36.6dBOp 95% = 15.4dB This looks convincing to me, two at the same time into UK/SV=20 00:34 136 WD2XNS de SV8CS Op32 Deep Search 4722 mi -42 dB in = Zakynthos Island with 1w +=20 00:34 136 WD2XNS de 2E0ILY Op32 Deep Search 3245 mi -42 dB in = Shropshire IO82qv with 1w +=20 As for the pdf , I got the impression the 11 dB claim in the = opds document was a little optimistic, I note Markus talked of = 9 dB in a recent post, I assume that was perceived as a challenge ?, = other than that content is solely under the control of the artistic = director.=20 One thing this is 100% certain technical issues still take on a = east / west divide ,=20 73-Graham G0NBD 24 Hour wspr on LF =20 24 Hours Opera LF=20 -------------------------------------------------- From: Sent: Thursday, January 08, 2015 3:10 PM To: Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << =20 > Graham >=20 > I won't be quite a 'charatable' as Mike ... >=20 > There were at least two false detections on my transmitted signal = (WD2XNS) last night that I saw ...=20 > one into G and one into SV. About the only way to tell they were = false detections was the time lag=20 > between actual and the 'Deep Search' output - it wasn't the expected = 4 minutes. Had there been no=20 > 'real' receptions during that time period one might have actually = believed what was reported ... as=20 > you did and reported on the Yahoo reflector. >=20 > On receive from here last night from there were false detections of = VO1NA. >=20 > I saw one detection of a G station in JA make the list! This was = clearly a false detection. No doubt=20 > there were plenty of other false detections but after this couple = hour 'outing' with 1.5.5 I gave up=20 > on it. It's clearly not ready for prime time and should be pulled = from circulation and return to the=20 > drawing board! >=20 > Perhaps the author, instead of taking the time to write a = 'propaganda' .pdf page about DF6NM's OPDS=20 > and include it with the download, should spend more time actually = making his software work as well=20 > as Markus's. In almost a year of using OPDS I have identified only = one false detection. This is=20 > severly at odds with Jose's test of OPDS. Since Jose seems to now = like the idea of Deep Search,=20 > maybe he should 'borrow' more ideas from Markus ... like the = correlation % and dB 'certainty'=20 > indicator, an accurate time indicator and a highly accurate = frequency readout. These indicators,=20 > especially when correlated with other OPDS users grabbers, makes the = very rare false detection with=20 > OPDS obvious. >=20 > At this point Markus's OPDS runs circles around Jose's Deep Search = ... regardless of what his=20 > 'propaganda' page says. >=20 > Jay W1VD WD2XNS WE2XGR/2 >=20 >=20 > ------=_NextPart_001_00D2_01D02B90.16C48FD0 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
There  1000  miles  apart and  exactly  = the =20 same time , the 4  min  shift  is not  a   = timed  function  , this  shows 5 tonight
 
19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 dB = in=20 Zakynthos(Zante) isl. GREECE

19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in Welshpool = IO82ho

yes  I have  the  opds  system ,  = even =20 edited the  file  paths  in the  config.sys  or = what=20 ever ,  bit  like old   bike , needs a  = few =20 adjustments to get it  going ,  all  the =20 decision  making  logic  is  contained  with in = the  package .
 
So far tonight ,  everything  looks ok 
 
73-G,
 
 
 
 

From: jrusgrove@comcast.net
Sent: Thursday, January 08, 2015 8:55 PM
To: rsgb_lf_group@blacksheep.org= =20
Subject: Re: LF: New version OPERA >> ''Opera = Dynamic''=20 <<

Graham
 
DF6NM's OPDS is much closer = to perfection. I=20 take it you've never used OPDS ... so you're not aware of the=20 differences in performance.  
 
Those two spots look good at first = glance but=20 they didn't adhere to the 4 minute time differential from standard mode=20 reception. What is one to use to judge the likelyhood of a real spot? = Unlike=20 DF6NMs OPDS there's no correlation %=20 and dB 'certainty' indicator, an accurate time indicator or an = accurate frequency readout that can be compared to other grabbers for=20 corroboration
 
With so many bogus spots in Jose's deep = search it's=20 hard to trust any of them.
 
Jay W1VD  WD2XNS =20 WE2XGR/2  
----- Original Message -----
From:=20 Graham
Sent: Thursday, January 08, = 2015 12:35=20 PM
Subject: Re: LF: New version = OPERA=20 >> ''Opera Dynamic'' <<

Jay,

Well  nothing is  perfect ,  = all =20 the  beacon systems produce  strange  spots   =

I=20 don't even   have  a  136  Tx  and  = am  regularly  spotted on 136

2015-01-01 19:01:38=20 G0NBD   2056km 137513.376Hz   3mHz -36.6dBOp  = 95%=20 15.4dB

This looks  convincing to  me, two  at  = the =20 same time into  UK/SV

00:34    136 WD2XNS = de SV8CS=20 Op32 Deep Search 4722 mi -42 dB in Zakynthos Island with 1w +=20
00:34    136 WD2XNS de 2E0ILY Op32 Deep Search 3245 = mi -42=20 dB in Shropshire IO82qv with 1w +

As for   the  = pdf=20 ,  I got  the  impression  the  11 dB =20 claim  in the  opds  document  was a  = little =20 optimistic, I note  Markus  talked  of  9 dB in = a =20 recent  post, I assume that was perceived  as a  = challenge ?,=20 other than that content is  solely  under the  = control  of=20 the  artistic  director. 

One  thing =20 this  is 100% certain  technical  issues = still =20 take  on a  east / west  divide ,
 
73-Graham
G0NBD
 
24 Hour  wspr  on LF 
 
 
 
24 Hours  Opera  LF
=


--------------------------------------------------
From: = <jrusgrove@comcast.net>
Sent: Thursday, January 08, 2015 3:10 = PM
To: <rsgb_lf_group@blacksheep.org>
Subject: Re: LF: New = version  OPERA  >>  ''Opera Dynamic'' = << =20

> Graham
>
> I won't be quite a 'charatable' = as Mike=20 ...
>
> There were at least two false detections on my=20 transmitted signal (WD2XNS) last night that I saw ...
> one = into G and=20 one into SV. About the only way to tell they were false detections was = the=20 time lag
> between actual and the 'Deep Search' output - it = wasn't the=20 expected 4 minutes. Had there been no
> 'real' receptions = during that=20 time period one might have actually believed what was reported ... as =
>=20 you did and reported on the Yahoo reflector.
>
> On = receive from=20 here last night from there were false detections of VO1NA.
> =
> I=20 saw one detection of a G station in JA make the list! This was clearly = a false=20 detection. No doubt
> there were plenty of other false = detections but=20 after this couple hour 'outing' with 1.5.5 I gave up
> on it. = It's=20 clearly not ready for prime time and should be pulled from circulation = and=20 return to the
> drawing board!
>
> Perhaps the = author,=20 instead of taking the time to write a 'propaganda' .pdf page about = DF6NM's=20 OPDS
> and include it with the download, should spend more time = actually making his software work as well
> as Markus's. In = almost a=20 year of using OPDS I have identified only one false detection. This is =
> severly at odds with Jose's test of OPDS. Since Jose seems to = now=20 like the idea of Deep Search,
> maybe he should 'borrow' more = ideas=20 from Markus ... like the correlation % and dB 'certainty'
> = indicator,=20 an accurate time indicator and a highly accurate frequency readout. = These=20 indicators,
> especially when correlated with other OPDS users=20 grabbers, makes the very rare false detection with
> OPDS=20 obvious.
>
> At this point Markus's OPDS runs circles = around=20 Jose's Deep Search ... regardless of what his
> 'propaganda' = page=20 says.
>
> Jay W1VD  WD2XNS  WE2XGR/2
> =
>=20
>
------=_NextPart_001_00D2_01D02B90.16C48FD0-- ------=_NextPart_000_00D1_01D02B90.16C48FD0 Content-Type: image/jpeg; name="46A.jpg" Content-Transfer-Encoding: base64 Content-ID: <912C6902BFE449D9A698B299D3809C65@AGB> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCAD2AcYDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6B+Hv /Ih6B/2Dbf8A9FrW7WF8Pf8AkQ9A/wCwbb/+i1rdqCgoqnqt/ZaZpt9f3xXZAIRGGmaMZdiCeCCc AZx7Go9E1O01bSbDUbNQgn81ZFWcyDKMADyTjI5x71j9Yp+29jf3rX+W3oaexn7P2lvdvb5mhRRR WxmFFFFABRRRQAUUUUAFFNlkjijaSV1jRRlmY4A/GubuvH/g6CdoF123u51O0xWKtdPn02xBjn1G OK2o4atX/hQcvRN/kJyS3Omorlv+E/8ADv8Ac13/AMJ++/8AjNWtK8a+E9UuBbWXiHTnuD0gaYRy n/gDYb9K2ll2LhFylSkl/hf+QueL6m/RRRXGUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVl634j0DRADq+s2FiTwqzzqrMfQKTkn2FZK/EHw u+TBNqlzHnAlttGvJo2+jpEVP4GuqngcVVjzU6cmu6TZLlFbs6qiuV/4WF4RRgLrUp9Pz0bULGe0 U/QyooPv6d66HTdQsNTthc6dfW17A3SS3lWRT+KkiprYPEUVerTcV5pr8wUk9mWaKKK5ygooooAK KKKAPnD/AIKA/wDJLND/AOw2n/oiaij/AIKA/wDJLND/AOw2n/oiaiqRLPcPh66DwHoALr/yDoO/ /TNa3fMj/vr+dcN4H/5EzRf+vCH/ANAFbFetHK1JJ834HC8a07WE8cWct7o8skJieO3uLZp1ZuqM ZIyB7/OPwzTfA9nJZaVFLIYkhnnnMCqeQilE59/lNOaW4SC5t44LSeC6VBKk4f8AhJK4KkEcn9KR Zbh4La2eC0ggtg/lJAH/AIiCSSzEnkV4n+rM/wC1vrfN7vLb597bbaHof2wvqXsOt7+R0fmR/wB9 fzo8yP8Avr+dcxfDdZygqzZXovU1NXuf2Ur/ABfgef8AXXa9jofMj/vr+dHmR/31/Oueoo/spfzf gL68/wCU6HzI/wC+v50eZH/fX8656ob26t7KzmvLuZIbeFDJLI5wqqBkkn6U1lKbspfgH159jppJ 4Y0aSSWNEUEsxYAAeprjf+Eo1XxLI0Pgy3ijsgcPrV+hEDdP9RHkNN1+98qccMelYUNpeeMmS61e 3ls9AxugsHYq93no84HRMdIz/wAC9B1qgKoVVCqBgAdAK7llVHC/E+af4L/N/gut+kvGt9CrB4G0 SeRbnxFdXPiS6BDbtRm3wq3qsAxGv/fOfeuns4bKzgWC0it7eFAAscShVAHQADisKkJrGthKtfSp VbXbovRbL5AsZbaJ0nmR/wB9fzqlq2maNq9u1vqtjY30TDBS4iVx+v1rH3UbvesYZY4NSjNpjeOv 9koyeDG0lfM8F6/caI6kstnM5ubFsjoYmbKDP9xl+h6VJo/jOSDUItF8YWKaLqUh2QTrJvsrxun7 qXsScfI+G54zVrdVbUrW01Gxmsb6CO4tplKSRuMhhXf9XVZcuKfN/et7y+f2vSV/Jrcn641sjrvM j/56L+dHmR/31/OvLLa8uvCd3HY6pcy3WiTMEtb6Ztz2rHgRTN3U/wALn6N2J61WBrlrZF7Kz57p 7O2//B7or6+/5TpvMj/vr+dHmR/31/OucBpRXP8A2Sv5vwH9ef8AKdF5kf8AfX86PMj/AL6/nXPA 0Uf2Uv5vwD68/wCU6HzI/wC+v50eZH/fX8656kzR/ZS/m/APrz7HReZH/fX86PMj/vr+dc7mjNH9 lL+b8A+vP+U6LzE/vr+dHmR/31/OudzS5o/spfzfgH159jofMj/vr+dHmR/31/Oueoo/spfzfgH1 5/ynQ+ZH/fX86PMT++v51z1FH9lL+b8A+vPsdD5kf99fzo8yP++v51z1FH9lL+b8A+vP+U6HzE/v r+dHmR/31/Oueoo/spfzfgH159jofMj/AL6/nR5kf99fzrmIRi6nO1hnbyeh47VNQsqX834DeNa6 HQ+Yn99fzo8yP++v51z1FH9lL+b8BfXn/KdD5kf99fzo8yP++v51z1c/4g1q7S/Gh6Dbx3OrPH5j vIcQ2iE4Eknc85wg5bB6DJrWlkjqy5Yy/wCB6h9ef8p0vifxVp2hyQWnl3Goalc/8e1hZoHmkGcb jyAiDu7EKPWspNG8ReIAJfE2tHTLVhxpekzlCAe0txw7H2TYP96oPDuhWujRyuJJbu+uCGu7ydt0 s7D19FGThRgDsK1q61g6WHXLh3r/ADNa/wDbq+z6/F5rYl4xt6os6H4Z8MaIxfS9JsLeU/emCBpX 6ctIcsx4HU1s+ZH/AH1/OuczSFq5KuXzrS5qlRt93r+o1jbbROjZoXUq7RspGCCQQa5rVfBHhS/u /tyWSafqHUXunym1nB92jIz+OaXcPWjdVUcDVoO9Kq4vy0/UHjb7xMyS48ZeFG3yufF+jrwxjRY9 RhGc5IBCTAdPlCt0wDXUeH9e0jXtOTUNJv4rmBjgkHDI3dXU4KsM8qQCPSskuK53XtGn+3NrugSr a6uFAkVjiG8UdElHrjgOOV9xxXXLL6OKVqjUZ/zJWT9UtF6q3mnupWNa6HpHmR/31/OjzI/76/nX C+HNct9ZtHdEe3uYX8u6tZeJIJO6sP1BHBGCK1ga4amSunJxlKzXkX9efY6TzI/+ei/nR5kf99fz rnKXNZ/2Uv5vwD68/wCU8T/b/ZW+Fmh7WB/4nadD/wBMJqKzP25/+SYaP/2Gk/8ARE1FefiKPsZu F7nXSqe0jzHtHgf/AJEzRf8Arwh/9AFbFY/gf/kTNF/68If/AEAVsV9JT+BHjz+Jl7TI7L7Fqd5e 2k92tpEjrHCzBjndn7p9h9Bmk1BbJtO0u+srOe0F3GzvHMzkjG3H3j05PPeq1td6hZu7WF0IPNAE gMYfdjOOv1NF3dahdyr9uuhOISyxgRqmAevT6CuT2dX6zzX93tc6OeHsbW1Kt9j7HLnd93+HrU1Q 3xxZyklh8vVetTV29TnewUUUUyQrkNo8Ya44f5/D2my7dv8ADfXKnnP96OMjp0Zv93m543vLlks9 A02Zob/VpDGJEHzQQKMzSj0wCFB/vOtbOmWVtpunwWFlEsNtbxiONB0Ciuym/q9P2n2pbeS2b9ei +b3sBZNIaKaTXGAMahd6VyScKCSeABWvo2kQ3MAmeUOXBCjkBW/qR+VTVrQox5plQpyqO0TNgs72 4x5Nu7ZxjtnNR3EVzbMRPC8ZHByK7lpRFhYijlBjOQFB/wAiue12/ZlW2Ko5kOwYHygk15tLM6k6 iioaHXPCRjG/MYJl96mtra4uk3xAEZx1rTttDjEyAlmkjP71JB1HHYfWuh0LS5ooZIp12Rq/7vgZ IHANa18zpqP7rVmdLByb985698P2VzZPYzwyTebHiVZNuwqeCCD14OMVwfhqafQ9Vl8IajK7mFTJ pk8h5uLcH7ue7x9D6jafWvWdW067kuCyZcdfMc8AHtgdf0rhfHfh++1vTfJjmSPUrWQTadIicxzL nDHvtPQjuCRV5XmDcnRxEvcl36Po/wDNdvRGmIoRUfcWpcRs1IKzdAuJr/QbXUZoRbyyM8Nxbk/P BPGxWSNh6hgee45rQU13zi4ycXutPuOKzW4+jNMzRmpsA+kpM0UrALmjNIMkgAcmlYYzhgcHFABS 02kzRYB1LTM0oNOwDqWmg0opALRRRQAUUUUAQw4+1T/e/h69OnapqhhI+1TjLHG3g9Bx2qakipbh RRSOyopdmCqoySegFMkx/FmsSaVZRxWUS3GqXj+RY25PDyEfeb0RRlmPoPUin+GdFi0WxZDK1zeT t5t5dv8AfuJSOWPoOwHQDAFZXg5DrN/ceL7nLC4DQaYrDAitQ3DgHvIQHJ/u7B2rqq7K79jH2Ed/ tevb0X538gCmk0E0x2rkSAR2xTEEkrbYkZz3wOlTWFt9sukhaTywx4O0nOOoHvXV6bZQafE0qMg3 KoxnJZhx1rmxOMjh1bdm1GhKrr0OWk0/UI4zI9tIEzjI5qoZCpIbII6g12l9eSQoMbAFBAGcsT3r moYE1OSS7lV44Uby8oOre5rnw+ZOV3UjZLqjSrhFGyg9SgjNJIsaY3McDJrV0/SWbfJeCQRqOPL5 zV7T9Eni8g26I8gfDPj+A85Oe/0ror2wf7K4id8sSzKuBuNZYrMm3y0djSjhLazPJPH2jT6NdQeL tIglea3XZeW64Zrm06kcdXT7y/8AAl/irT029tr+zhvLSZJreZA8ciHIYHvXSX1lqFsoKmKMHghv m2j3PA/SuC0fSbrQ/GJ0uJdukaxJJJYuw2pHdAM8kY7AOqs4Hqr+or1MDivrVBwqyXPBXT7xW6+W 68r9kY16NpXgjpVNOqJDT81VjnPA/wBub/kmGj/9hpP/AERNRTf25D/xbHSP+w0n/oiaivnsw/jv 5HrYX+Ej2nwR/wAibov/AF4w/wDoArYzWL4IP/FG6N/14w/+gCtjNe7T+BHlz+Jjgac5/eP/ALx/ nTAadJ/rH/3j/Ol9v5D+yQ3xxZyneVwv3h1FTVDenFnId+zC9cdKmq+ougUEgAkkADkk0Vz/AI/v Jrfw7JaWZ/07UmFjae0kmRu+iruY+y1rRpOrUUF1JKvg7/icapqHiuQMYrg/ZtN3drVOrgf7b7mz 3UJXUZqDTrSKw062sYBiK2iSKMeiqAB+gqUmrxFVVaja22Xotv67gKTUbmnKruSEUnAycDOB61LI BbyW7xHMmA5KuG/px9K53JJ26jSuri6IkUmq24lYFSxOAM9BnmtaW2vIbxvss6hG3MpZc4PU49M8 /rWVdvps8pntlaKXaHEbfd3A8g9sEVow3yajNl4JIo0VSNhxhsZHA7ccdq8/FqbftEtLap/1qdVD lS5evSxr3E9vp9gzNIHmYEtLIQCc+36VgeG2TV9VumaNHmAyiEfIqZA4/Sn+MZrJ547dwSxZS0id Qnf8eK6Hwnb6TDbH+zcOSBvcr8x64BrjVONLD+0knzS2fb/hzdyc6vKmrI2Y12oBjoPXNOoorhOo D3rnL+BrCR2jGd3zGQj7gznr/ntXR1geOnddEZIxyzgMfbrV0qaqVIxfVkzlyxbPJri4l03x+X3M dP192O0/8s7tEzn/AIGi8/7Se9dQK5vxjYXF74feSxXdf2TreWYzjMsZ3Bf+BDKn2Y1taPf2+qaT aanaMWguoUmjJGDtYZGfQ819rXipUoTXT3X8tvw0+TPEu3qy5HHJKxWNC5AzgVq2GifaEKy3Kwzj 5tpGQFx1rOsJzbXayAA9Rg9OeK09WYyhYiEjnih3lwdpP+z+XNeRXqVFUUI6J9TopRg4uT18jJdQ krpvDbSQGXoaFwCCRkelMWnV1mBaWaCOeN0QAJgfMm7d6kjPWm3FyjrsihWNcYJxy3JP4VUaTnao 3N+gpNrN95+PReK86WJjKXLRi5tdtk/NvT1tdrsJ1XsiTIprH3pvlxf3FP15pjpEP+WaflVqeN/k j/4E/wD5Am8ux0a25uPDe2JEaRT5kkhYf56etYAao4ZmiJVJZI0bhgrEAj6d6n1Nz5qSxxOInX5C 6hWYevHB/SsIVsThpNV6fuvW8XzW9VZP7kzSdTmSdtvmANOBqCORW4B59KlBr0adWFaPPTd15Epp 6ofmjNNzRmrGOzS5ptKOtAEURzdTjcxxt4PQcVNUMRzdTjfnG3j04qakipbhXMeO55LtLTwxaO63 OqvtmKHBitVIMz57ZBCD3cV09cv4bJ1XxZrOvD/j3hxpdqf73lMxmYf9tGKf9s67MJ7rdZ/Z1+fT /P0TJOjgiit4I4IUCRRqERR0UAYApxNBNNZq5d9WAMajb5jjcFz3NWYYAd5nG0BCwBbaT9MjmnW8 9r9he3vEbJBaFx/Cf58kVHtOyuPl7mlZWqy6JbtbyFJgxbJHfofqMZq7o0UrKrXs+YlUOsaJtGcY 5PqDWJaX8dglxDax+akqho3ONy8gYPtmtuB7WDTrmSQOB950kOTnnP1rxsVCom+qb001/wCAehRl FpeS1Mrxbq8bSJaxlFjLAOYyCyL6V1Xh+0SC3DxxJHG6KV29xjuK47w7DodzfyzXgYN5hMcTDKle 31NeiqAAAAAMcCpxcIUVGlFNNb+f/DFUHKo3N28gooorhOkoazaC5iVyT+6y2PX2rzz4k21xqmhn ToZvsd4ki3Fo4GPIlTlGx1wTwR3Ukd69RYgDJ6V5jrrSSa5dPIMZkO0eg7V6WUxtiVUT1jr8zlxk 3GnZdTJ8KaoNZ0G11ExGGSRSJYicmORSVdPwYEfhWqTXLeHP+JV4t1XRGBEF5nUrP0+YgTL+D4f/ ALaV1LV9JiqcYVXy/C9V6P8Ay29UeYjwT9uWKWP4X6OzxsqtrMeCRwf3E1FT/t0ztN8I9BQgARa0 i+5/cTUV8jjJSdaXMtT2MOkqaset+BmDeEtFTcBmzhGT0HyCuovLBIGRY72CV2bbt3AEfWuM8Hkr 4U0naCR9ihzx/wBMxXWLpV5LYwTxRIS/PD8sD046CvTo4l6Qqy5ZLp0aezXlp8ndeb8uLcpSjy3a ISCkhRhhgcHmnyH96/8Avn+dU1YrNsbhg2CKklk/fyf77fzrv5Xz/Im/ui3pxaSncFwpOSMgVNmo Q4YY654xUVtLgvAzZeM+mPlPT/D8DTtZhe6Lea5i+Y6p8QbG1QZg0a3a7nbt5soMca/UKJCfqtdC ZK5jwTILi78QaqOVu9UdI29UhRIePbdG/wCZPeu3DR5YzqdlZer0/K5NzrCajdqjMgpjPk4zXKoi ua2l3sSp9jbbDHKf30hPLD09qdqOnWlrDI/2pePniDcM6+mOvXvWrcWlpPbxWhSJpTFxJgZAGOc/ WsZ9EniMsl0/mhYmZcE5JA7/AJ/pXkU8RTlPm5nHy7/1t6HdKlNRta/6EaCz8qJ7MI0zbw6THPGP 84NXrWxvVytnPbwWsoDEsent6mqlna2IsrW6bZL87eYFJycKTjHtUlhp9veQLOqyIk0xChWxtUA/ 4UYipFXu3bbVX6vzW1tPIKcX0Wvk7dvIztdlmm1BxcGJpIwELRjAbHer1r4nvrS0jgSNGKdXPVhU WsaaLeMSxROgB2tubO7/AGhWURxXo0o0MRSjpdI5ZyqUpvo2epaLfpqWnRXaDbu4Zc52kdRVyuN+ HV0EW5tXIAZgy/XBz/Kuyr57F0lSrSgtj1aE3OmpMK5jxrtjgCrM4lkJbg8DHAz6da6S4bbA7Zxg GuB8RTyksJPnLNt3fr2/rRhYOdaKXcK8lGm2zKhHFYPgH/Q4tU0BuG0y/kWIf9MZT50ePYB9n/AD 6V0EIrAciz+JiE4VdT0kr/vPbyZ/PbOfwHtX2VH34VKfldeq/wCBc8dHSEUrs0jbnJJwBk+3FeHa /wDH6bSdRu7d/At88EFxLClyboqkojk8ssD5eMZx3OCQKwpvjv4pXzLtvCN9HFGu9lP+qVckZJMe cZBGcjkGt3kmZOEakKEpKW1rfq0dNGgqralNRt3vr9yZ9GjimZMnQ7U9e5rxLwz8eW1zxFpejS+D 7m1W+mij843WVVXYKHxsGVyR35r2YzNL8sR2p3fH8v8AGvJzDK8ZTr+xxUHCNr26y+7aPTu35fFh GjKo30iuv9f8OyYske1MgEnCjuTV4zWlkQBazXNwBn96PLjB+h+Y/iBTNFhEInv1BLQJkM3JLVny Ss7liSWY8+9RCEW/ZwVox000+XyR0c1GjFOMbvz2+5f5iNJcEk/ul9uTRBHe3MwhhjSVz2BIxV28 0q6imjiQb2dVPHYnPB/I1u6DpttAqXAEguAu2RWboe4xUV8bTpU+eOr6F01Kc+WUFYxodJERU6mL iBc8sqh0x9QSR9SBXRtBp99ChAiuEjGFKsD26ZFXSAwwRkVmXukRy4+yMLPjDmMY3j0IBHH614U8 ZLESTnKzXbb/ADPSjRoJWUbfiv8AP8/Q5XUBCl/NHA2UVsKQelNjl52t19fWtaXRYjJ9nmcwXTN+ 7kyWjk9h6H2/nUOu6XFYWkboZTJlVY/wknPT8q75Sp8ynh3+8fTpL18+0t11utDx8RgqtJuVvPyY 7TrSO6geWS8ig2tjDnHbNQSRMieYGR49xUMrf0qHRreW8u/KEathSSGYqMUXlpdWQBnTCliobPBI rsw+IhWleM9+jtdd16prUzT5qakojw1OBqqsvvUiyV2OJCYsR/0qYbgeFOMcgc/4VNmqdxJ5RW4z hAdsnHUf/WJz9M1OXqEuhT7lTxHqkWi6FeapMjSLbRFwi/edv4VHuTgD61X8G6bNo/hew0+5ZWuk i3XLL0aZiWkI9i7NWJ8R7+1SLRrG4nRFudUgdwx/giPnH8P3YHvnHetey8SaVdziCK6CyH7okUpu +metdFWrTo0YUpSSlN3tfVpaK3z5jWnhq1SDqQg3FbtJ2XqzZY0kEyQzrJJF5oU52k4BqAygjIOR Wz4VWJjdSzbCipghsHjucVyYiapUnJq5nSjzzSRMYYNWiF5JcKbhSDIvRQgPQntxVBIdMTUTbzTi SLqJFOF5HQ/41c1DRpLrE9iUijkUEx5wPaqkWn2yarbW0xAV4gx3kjeST0/z2rhpVafK7Tez0W6/ 4bodM4SurxXr3FtbZ7lF8pbcTIgaF89QCR83vVjVTqVtpsjXNxbS+fhHQclfT8arrbWjz2tgseJW di0q91BPQ/hVr+xoGi3+VM25mGA/3OeD+FZyq041U5vTdXX632dhqEnBqP5/8DzMfSNQl0y5M0Sh wRgqeh9K6nwz4mlvtS+x3caL5mTGwPT2rj54mhlaJx8ynHFNtXaG9gmQDckisM+xr06+FpV4uVtW tzlp1p0ml0PXKKjt5UnhWRDkMKkr5U9oiu1VoD5jlUXkkHHSvNNSYyXzPvdlJyNx5Heu08SyyrhE b5TgMvrmuFdzLcO5XbzjGelerlUG6kpdEjixsvdSOf8AGP8AoV/oevDhbS8FvcN/0xnHlnPsH8s/ hXUGsjxdYHVPCeq6egy89pIif7207f1xVjw5qCar4e07U0ORdWsc3/fSgkfrX0dT38PGX8ra+W6/ HmPPPD/24+PhjpH/AGGk/wDRE1FH7cZz8MdI/wCw0n/omaivk8w/jv5HrYT+Ej6I+G01u3gTQ3g2 Bhp9usuByWEYHP5VvQsbS4MBwLeTLxH+6epX+o/H0rjvAkItvCmh3/mFoTp1t5qZOceWoz+H8q67 UIWuYdglOSN0LDkDA459K8HG0pte2p6tbfrH59POz6G1WDS9pD+u6/ryYy5fTpUkuDaq7EYLmPnn OD+YrK/sJpd80V2rlizBNu05yeM1HFFcSbGBJGcLk+mc/wAjXT2qYUNyCeSN2RXdg8xqxip05aO3 3HPGEa6u0YkugyQIJ7W5IlUZCsO/1rnL8ywTmWberocSAjqD3P065+vrXdaleRWluzSZZsEqAM/5 FcvruoWWoacypBJ9vkXy8r/yzHPz59K9vA4utU1mrra/b/gGVejTi7Rdn2HwwW9lod5rmo4a3trd 5wobqFUk5/Km+BPDtnbeANCgvUCXS6fE1wyHGZWQM5x/vE1g+PJ7X/hB7nSrS5n8zVmh054z0Xz5 EiY5x2DH8q7BpFlTyg8keR/AM1OYYutQp6Nrmk/LSKVvv5n62Cl7PlSauVL/AEIJGWtJ2Zh/BJgZ 5qGXSI4Yz5lzukxxtXjOOKv2U4acwShozydzg8+9SXiGW0MkDeYq/MdvTFeX/a+McbJ/5g6FOV5J FWHSJ7OeK8hvFliwQT8oYD23ZFasOqWctuERpLrKZcbfm29/TP4VhWLXT3JjWclDykeeMgc11Nu4 eNJHhaNx8uGXB/8A1VdXFqs17X3mlutPk9DSgv5NEctoqpHqcl1bRsYllESxEEnDcZzjtj+dXtLj vdO1M2I8vyJN0iEqTgCuhwp7Dg1naldkSvBaz26TpGWZnx8o44Pp/wDWrqeLliJOPLo1bXXbZ/L9 RqgqSTvsVdJ1YX80sV1EoXO1WUHbn/I71h63bC2u2VYyqY4PY/SpNESM3oN3dKhE3MRJG5h0Pp1r V8STPFbCN0WWNlwCcZV++fwrtSWGxaVJaPp/kc7brUbzexjeHiV1WLZG7yb1K7TjGDyT7Yr1CvMv DUyQavGXGQ+U6469K9D1O7WxsJLlhu2LwOmTWOaJuuklujTBNKm2M1a8tLaArdTCNXGM5rgNXuIZ 7gpbPI0Od2W7nGPT0qPVtQuNUnWSfgL91QelTaPaW9zIUml8ojkc9RXRQwscLH21Tcyq13WfJDY4 P4z6nrmjfDnUdS8O3q2WoQBZEmaNXwinc4wysCSoYDI6+nWvlXU/ir8SNW8k3+utMbZjJHmytlKE gqekXoSMHivef2kviL4RttI1nwfpet3o1qHAzFZM6rIuD5bM21SGHGRkAE9elfNdl4v1COXWs6JD KNYlZ52feGjBLMAhDcYZs87vur75++4fWGWHlLF4dyUtvcvo7d09LX/pipRnCScXZp7lm38ReNLW WWeGaZHmxDMxtIj5vzpIqvmP5sMiFQc7cDbir3hrUPGGsanLbJbXWqTy3L3qxM0cam54QyMSo3AB ypUEDpngYqvc/EDxC9ha2bWETx26SgloxvkLx+XuLDDAgYPykZIyeea5G7v9QubmVjDcIksjSYMr HbuIJ5JJPQDJ54Ga9ytmEfY8mDpuM1teE3FW2VoxT1VuyS3NowXPerqvJq/43PddAtfFdx4m0CO/ 8NW2m6RYXloSwuonaNYXPOQxeRQrMNoz6jnOfbZviV4Gt55befxRpsEsLFHSWTYVI6jBxXw9F9pk OB9oJ3YA8w5z9PxrTn8I6/Cd8+gakhMnlHfbSDLnB28r97kcdeR615VTJcxzDEKeKnBK1koxmur1 969+twxCw0oWpqSd+rTX4JH17L8Z/BtnNILTXLWaMrsdhIvzA9QFPX8cVJpvxe8BG/t3k1u2gAdS d8yFePUg8fy96+PtP0u3tNUs31l1tovNmWWFgwfMaA7GAXcm4ttzg45OOK67U/8AhB2upI7C4sfI aBleWWG4RvPMOFeMDOIw5BIbJ4PBGKmhwWq05fvp6Np2gmtEtL6d/Up1cMoW9lrbfmf39v0PtGy+ Knw5v9ehtLXxbo9zNcrGkKLcoSX3HAxnryK6u913QbC2mvLnVbGKNRl2Myn2HAOSegxX57toHhnU LiF9P1e2wYHS58yYQpFKIsREeZhmVpQSSBwGwQuKuy+FvBjebJaeIIJLVnVo7h7hUaOMNErlomUO zYM7AAZxGuAdwzwVfDqlUtyYhx3WtNvZ2195W2vbqtVcUMXyv3o3+Z9y6R8QfC2pXn2SPU4o5WJ2 eadgf6E/y61uWmr6bdTCGC9t3kP3VWVSW+gBr4Bl8PeCLZbOT7a97FcXhVpI72JAkB+7uDDerDPO Uxwea1/gBZaVB8WvCM9ndLNdtqNysmxvlEf2YlMAqG4LMCTwSMAcZPnY3w8eEwdXFfWb8kXK3s7X sm7fG7bdjepjYSmlThZebv8Aoj7l1DMoaKRQ0TH/ADz2NVorgxoLbUAJYi37mV/UcgN7+h70oHOe uevvUV9Ct1YvblipJBB565r8yo12pWk9Py80a06u8Z7M5T40/Eez+G+j2Gq3mm3N88t2YUEBUbfl JOSexxj64rynxB+1DBd2SQ2Hg3UI9+4u9wFcYXrtHTjuT09K6f8AaM0vxBqnhvR7TRNBm1+e2vm+ 22qAkSwmNtrHHON20+zLXhstp4/0W1hu9a8Da88zYV7maXYHZZEkA2qmMZTBzkkMQGAxX6Hw1kWQ 1ME6+OqKNRy1vVjDTo7O339dLeWT9tSr2hG7dtLXT7etztU/aJgZkh1LwnfJJwI2gjVGfPQFc4PT givWfgv4htPiRo9/qMFlfaYLK5+zMlxt3F9iseB0GGFfOvhS1+IFwLe8tPh3qepwwTWhmm3OZC9s sWwKxBVeUJIKt/rGHvX0V+zPY+IbHw5rU3iPQrrRZ59QQxw3CKGeNLeJN/yqq8lT0UV38Q0MrwGX p5fVUpXW1WM3rvotfmzKVGVSu3VhyvqrNfh0Op1ayurOMRO5mtgTgjoM+oqhpEMt5cCzV8unBZ+M j19//rGukvtZshcvbTxt9mdMOx4x7+46Vg2rWD6tPcyG5s4DjyMZBGP4sckZ618zh69WVP3o62um lv8ALuc1SnTUtHofPv7TvhXw7dfFO1FzqPlXMltFCYDIikpuUb9zDA/1j8d9vGNpz4xB4b0yXQ5Y 2jdNdiieXy/tcRiZRNGgG3bkHDSHG4n5M9DX1nf+BvCHxD8UeItZ8S6a968MqafaS+fJG0axxKSc KwGd8jdR2rkvAPwc8FXMuozav4eNxHazG1CfaJwu9T8zZD/QD6mvrMu48wmT4engsRTlKcbNtKNv 5ratPrZ36rc7IYH29GpXjJJQtprd3000PTPhfo8knw88NySzqkX9kWbDAySDCtdHb6Kty7xwXmwh cYI+9/nir2kWun2Gl2Wn2AWG2ggSK3hBJKRoAqjJ5OAAKo6ktzBMyI5ik6q/Svzv+1sVOqnzKK9N Pnuc86EIrmtc0tNuF0xEt7+5KsinCrtKMAe2BnP1qn4oltroW5EMiTsQEkwcbCevGQf51o6K8oAM iPKsvSQDPPQ59K1k2bQqgBV4HH8qVLGwVT23Lr5Oy/I3VJ1KfLfQ5u4tblrGB4FUS2DsgcjAdQM5 /SprvWbq3s7OV44ma4GWUKQR0rbupYba3eSVkSMdc8A1ymvPcTTWvm3EKwkArtH+qz64/wA8V24V rFSSqRVlf/hvv1M6ydGLcXqaetww3dgLmGJmdQQVxhge+R/SuUkHrXYaOFTTS1rcpLJ8xLseGkJ7 55z0rmdTlE90zCPy8cEe/euzLZuEpUlsn93yMMXFNKfVnc+CmJ0pvkdI9+U3HORj+VbjEKpY8AVi +DJ0m0hNowUARuc8iszxbr00Ny9jbKBhcM+e59q8t0J1q8oRWt2dqqRp0lJh4l1LTpAWiuHecYwq EYyD9K5dMlix5JOTUcKDcC3PPNbVxY2ENj5y3RaRvuKO9exCFPB2hq3LyPPlKde8uxQHArl/AeLW DWdJHC6dq08aDsqSBbhQPYCYD8K6YnArltHP2bx14jsxwLiO1vgPVmRoSfygWvWw65qVSL7J/NNL 8mzBnlH7bx3fDLSf+w1H/wCiZqKu/t0QR23wh0FCR9ok1pHcdwPImxRXx2MrQq1pSg9NvuPYw0eW mkz3jwAceBNCJGf+JdBwe/7sVfsNSisTJY3joq43RZGcKf4TjsD+mKzfArynwBoYtwplGnQBd3TO wVnX9rcQv5k/zPnOc5z0z/OoyrCQxEpRnKy7dfUn2zg+RbS+6/T+uxs3OoxxSMtjJ5glII4+5n7w weev86vz6pHatJFdK0rsQdiHCoOwz696yNACLdGTarfu2Kk9uOtLqcv2i8klK4C/LwPSu7D5ZQo1 Hh0rxV397ul6L5afjxxqThTbvrfYTVtYvLpvLR9gfIjjzgEf7WKpRQCMEjl2+83qaktELr57EkuM gEfcHp/jVjbXsUowpq0FZHPOUpPVmZrtzaSXfhTSXKqZNZErseAVjhlk6/VRXUXlzBps3lOd7BN3 yjlie3tXC6jiX4jaLDsV/stjdXWD0DExxqfyZv1roZvMlP7xi3U8+9Z4vLKc5UpPazbXm5P9EjaO IcYWS1NGzudLuXQSGWKXkkHGCfr3NXI7eaASCFsKxIxj174/wrmnixyOCK2dO1OSVDFO6mTklj1Y HPH1rxsyyyFGHtaOy3LoV03aW5akt8q5RRHLt+V1HQ/Snre3VviJpBIwwxZx7f1pIpdsPI359+ho kspiu4FW9s8188ptKxvrvAqeL/G2heEvDC6tr2owaeszmGFmUkNKVZgMKD2Un8K8evPjL4GhYTRa /HdTM2f9W/5klf8AGj9rh7G38D6Naausgsp9XVXeNCzRZgnw6+4IGR3GR3r56fV/B872UotrO3t/ If7Rbi1ZnBP8IPkg59D5h6HDR5zX6rwhkFHHZc685uMm2tEtktN++vkZTmpTi5q6XT/hj6d8J/Gb 4W3NvNDrOsW9pMDlHMcjKRjHBC9fqO9dF4f8R6T4vtr288O6smq2dg4jkmVWXGeR94Anivki41P4 d/29dT3Cl7aS8jeDybNvLihjcMQcRx/fUlMbG6DJ7175+yRc6Tf6J4nubFja20s0CGJQobd5Q35C qqZzkZVQCMHrmts7ySjk+DeLhUlN3jfmSsr9rdd0OpyVpWjFRXk3+p6Smcgg4Ird1LW5dQ0xbaZM SAjLDvWTPAILho1cOueG9RT0FeDJUsQo1Fr1TOOMpQvFDFTFPC0/FBrS5Nj5N+J+reGLP4m66mpW aSTpdEYa3Rx5pBIlYkEsm0ouzOMqTtOawLzw54f8QalJrGm406wuLd545JrYJAvlIVaMEZ+fMZcg ZO0k445+0YIfPnWINtz1J7CvAfG/wn0e+8fanqV1HdJYvJvdo5ggOIcgLkHA+TFfQQ4tw+G9jh8T B8sUo3Vpa2svdlZLq730ta2p6mBwrxMZuMknFX16pb2t12suvfQ8oTwHbyafezGG9ieJJGg3Wg23 JWRUG0g9CzBfckAZwawvEPg25099PNjGswu4oQ6lAskVw65MLLnIIIYDPXHY5ALiGzSO3S48JaxG 0pTZvuivmbs7cZi5zjjHXBq3Cuq6ZF5ml+FtQhXeju9yJJAkwz5TrhFwQJDgNuB3Dg8V9dhKs3XT +rSinbVxppdesajl22T100RVejBRuqsZeS5r/jFL8SkfD/ie3spbOOSL7Nvjklgivo2Ql1DI5VZM Y2gHdjAAznArX0CLxakVv4ZtNH+2S3E0lwqmbAmSfbbtzu2kHGA2f4sjIxWCus68Gj22qMoiDFQj YmijhMJ3YHKiNXBPbL8jJr2XwH4B+LfihNM1f+0bXStNnSLyczuZFgWUSrKkf97gAFyGIxk96fEu ZYLJsHKtWlCE7Nxvzq87NJJK7lq9upyQjOfwq/3f0i58PPhFrF3420vUfGthBAk083l6aAjQwpHH GCfkYryF24IznmvS/AngLw3beKdaF9o+mGGwfyoBLaxsMN82SCOSFK/nXWeFPhxBoyyXeo+Itf1m /dCpe5v5Ai5xnaqkAdO+a6bRdC03TI5/stuWklk8x3nleVicAcFyTjAAwK/nXEZt/a2IeKrVVOfX l0S8km7peTVz2XjsRSw0sNSgoqUbau+vNdvZdNNN12ON8R/Dv4Ya1Ikl54U0x540ESSxZhygZiAV jIBOWPOM4x6ViX/wh+FMVrPJJ4YhihjiZnlE8vyADJP3uw56VlfGb4o+IfC3jh9A0zwLBqcAiylz lxvZUV5B8ox8odCfQMPWvLdR+MHjbVYnmTwmsVi2NsEbvsPzAdCPmO7HHTJUY5Gfs8DkHEOJwsK2 F5/ZtaWqRX4OatrfoeHSVd1eWrKCXf3vyUZXO38EfCzwEuo6mdd0a2lis3MAVppQrHcAXBDc9V/7 6r0jRfhv4A8N63batpXhSGzv7YloplmkYoSCpxliOhI/GvBNC+KviCK1+zN8N7C/uLmXy/NlkcM7 MAAu3p2X/gQHQ19BfCLxTf8AizwvpniC/tEt7q6lnSS3jkLrH5c0kROf+AZ/GuHNcpz/AC2ivrk5 KMtNailfd6pSelk99D08di6eKrupBKN7aJWWyWmi9Tt4y7orldobkDPOKfWD498a6J4J0Z9W1+aW 3tBIsWYoS53NwOFrz1f2k/hdvKHUNSGPTTpT/IV87Qy7FYiPPRpSkr2uotq/bTqY3S0ueqajK9s0 d3GADDksT/Epxlf896zfGsuma74bvLVZkMzwExfK33wMjt+VeH67+0boF9eMttbzJZRt+7WSGUPI PU4UgZ9OcVNZfHn4ebFWa61CF252NZSHHqM4xXu4fhypjMM6NeE03p8Ela+1rrV31VupvXlWoQjJ NXWqtJN/g7qz1Xz7Hrvw9+16f4Xggk/c28UStKQOdxO5gPck49q27vX8q/2KFo3Y8u5zx9KpaXr1 jq/grTrzTPmtb+3SaEspUlCM5IPIJqhIpaVYFLLn5mbHUZ6Z9/5V0YbCUZRvKFraJbbaXOHE4qrO o5OV3LV+r1GMZL+Tzp382PjYWyS2O/09Pz9Ku6dJHb3iTTDcq9sZoVAAABgCq2qTLZ6dc3j42wQv K2fRQT/SvS9mqkfZ99Diu07i/Dw20/ha71dZEYT6lfXJXuQ1xJsH/fIFXILjSreWRBDL5crtLI6j q7dTj8OvWsDwBFLZ+BdDtf8AVstjE0mOrOyAsx98k1ptF7VzV8qoPE1ZT1Tk7elzolipWtH5+ZvR wWk8EcllKzYOSzdvrjoalljlkJE6q4AAGRz+dYOn3c1lL8pzEW3Mh6HAI/rW2lx50iOJAQRxjge2 a+bzPBfVZe78L2NqVaM49mA8+1kaWKZkhUAiIDv/AFq3Y6g8t0kcojCElgcYK+gqEq1znYAm3ggn rUEttNAWkIzsBIK8578V5yqSukWpSi7rYo+NLmZ72OHLC3CBk9GPc1m6WfMvraF1V0MgG0+hIrZL RXK4uIxMnbd1GfQ9qzZbG0i1OCMTzJbuSS7L8y47cV9Tl+ZUJUfYy92ST/XU46sZSqc/dm7remm2 h83TEdS3yPEgyGB74rnrq3ltrloJxhx15zmuwd7bUY3EM8iFAMsMjb71i69bwyETRXJkdAFIboR7 f571z5fmlpqnU2fX8joxVCLXNEj8PatNpbuFXfHJjcvofWqt4/2m8lnwfnYkfSooxxUyjivc9nGN R1EtWcfPJxUXsMVKdjFPxTGqiRjBiDgE4GTjsKwRJHZ/ErRrsgZubC7tj7suyRD+G2T/AL6Ndhpk aoAjqJPtaMmAOU/2ua4PxZDjxPoBjng823vpI3UyAfI8MgyPxC/nXNLH0KdKu6krJQn1/utf+lae tjaNOatKKueW/txzy3Xw6024dy6/21GoY9yIJqKX9t+JofhXosQCmNdZT5wT8x8mbJ5or5DBqmqK 9nJSXdbN9X83qepRacFy/wBefzPc/APmDwjoMm//AJcoABz8oEY5/rVieUTFiAvMjMMZ6YA/pWF4 OeV/CWkJzj7DCAP+ACugbekSwEpjG44UZB9Ca+hy/A/Vmpy1k9vJHl1anM2lsQWQKSPEDjaePof8 mrUg/fSf75/nUcVvPJco9vbTzY+WTyomfaD0JwOORVm4imimPnQTQ7mYr5kbJu57ZHPUV6TnH2m+ tjSuuaKn3/PZ/e9fmUpk8gNPCApzukGOH/wPvVnFQ3wY2c21dx2EgevHSp8VS3Od7HM2QE3xL1R+ v2fSraMe2+SZj/6CPyrpCtc54aHm+MvFVx2Wa2twf92BW/nIa6U12YzSaX92P/pKYiCReKrMWikE i9RV1hVaZa50lJOMtmSzStoHe0+0GQgcEc8nv/hRruvX2nfZmtNCutSEiMZDAT+7YFdoICngr5hz 2KqMfNkaHh8QvbBWAYsvGfToRWXrvhW+1C/ubmHX7y1WVlKJGuFiVUeMgEN3WVv+BYbsAPgZRSqy jJWs2exQp+6pHkX7UPiK1fwfYxeKPDNwNO/tVBHKshXzJEyfl3KCA0ZY84J5XPUr88Qaj4GSK5a7 Ec809mywmC3wIZxbBNzKdo5kBYYyBkEgHgfaqeCMCAy63cboJS4YRDkMX3ZyTyQyjPbb09Ob+Ivg vdaadcWs6M6Sx2hjjttqYkbG/kk53EZ5r7bIeN/7CwMsPCk53bfxuO9tLcr7fPqdFDBU8XiYwqT5 E9L2v+qPlW413wW9lJZ2OnQ+fPvCO0CfK+7g5ILAMdxUKw2ZRWMgUs32qLd4GYWkUUOeWVFVc471 ZW30zStPjgtoIj5KLFGCg6Dp29Kz8vI7OxPzHJ5rfMs1lxFUp4h0+SMLrV83Ne3dK1vx+88is4w9 1O/4EuVdQSWMncnvUiimItSgVEIKCsjnFArM1fWrDTpBBLI8t0wyltAhklf6KOg9zge9VLjVLvVJ ns9A2iNGKT6g65jjI6rGP42/8dHfPSrul6XaaXC6wBnlkO6aeQ7pJW9Wbv8AyHasPayqu1Lbv0+X f8vU9JYWlhlzYq9+kVo/WT15fS135KzMtx4i1AZeSHRoG/hjxNcEe5PyKfoG+tT23hLw7Np17c3t u2o3aQvg3p84k7SARuyB+AArZtdjXsQk27N3O7pVrxG1tY6c0cMSRzSkAheDjqeM/wCc152ZqnFe ykm21e76Jb+S07JHVgsXXqVFGk1Tj2jpp5v4n/282fJbfDz4uzWjTW3gYIs1tteWTUbVmMh483Pm D5trOoJy2HOWPGI/EcHxMW4/sqbwp9huo3ZgI7iEyrJIyOCjBvVcADqGIOTzX1JZ3Fwqxhw0oYCI xvwpXjAz2rh/iPFqyeKdJufD8AmviWiSSYApb7eVkfsQhYkepAFfW/61Z5KnStTpOWm8ZWV7J/a6 efTYjArBVMRONZyUbStZq90m10e9rHhMvhv4l2nim+0YeB7IajeadNE1rHcwsYbZo9gyVlwgAwRn G4g9e32j4XhW38N2EaRmMrbRqwOM5Cgdq5vwl4M0XT7OS4S7u7m5ucSXV1PJumuJCOXdj/LoOgrp 9GtJNOVozcSyxEjarDG0H0FfOcU5zTzj2bqtc9O60i1va+7e1l1/yWNFSjLRe6yezuYbySZLZjJ5 PDkA4z6A9DVlo5FxuUjPSsTw+0lp4gvLFGIt+ZQCvfjp+f6V0bFyud+5u3v+lfIZnl1BVEl2TTvZ 6rurNeh04ebnC787nz38a/BHxQ17xXqR8MWmmvpF7BhnnnCSEtCInAyeOgIx3A6jivJta8I/FLwv NNFqWmaYXvjHMsjXHmBTG0bYX5sA7o4yeOcDtxX2v5csjKGdVdyeCMAYrE8beFF1c6Puwy2t/HK+ MY8vneD7HivewXHGdZRh4YSChKCsk3DXe/vd/VW811OnB4XC1a6eIvy63s/LofMFp8K/jPLGl1/w j+g/aHeObzZZ1EoAmE+w/NwDJliPUnsBj3j4FeEdU8JfCvR/D+txJDqFq9w04icMCHnkdRuHX5WW vSZgISGJJU9wc1FO4dAyOCG75p5xxXj84oqhiOXlTvora2t+pzfVqcHdHjP7W1pHd/CUxvDcyINR t932aLzJFGTyBxnHHGR9RXynqd34QuvF13qNx5un280exrA2YV4G2BCRg7cg7XHTPzZwQob7+1C6 ks1LeW0hUgbVPJz+FYeqTLdx/aRFEwc4+6CVx6+9evwpxBiMrp+zhS5k5PXmtuldbPtvv2OLESh8 z4wt9e8CxtdXcdlEFcPJHbtbIW8zytqr86uFTeC3DcFlBDDO3A1XxHoU+q6dNa6PGsVvbSJcOlvH iWR4ApwoRRhZNxB5PORjCgfVXijQY7jxvpf7hPJv8+d8gwfK5b81wK8M+JeqeELXxn4nhv7GKa7k uWhKJAFaMiaQs6twASjrj3QZ4r9EyPiOWb4uph6tHl5La87lezj3Uej1bbN8Vh6VGjSqQnzOau1a 1tWrbu+qfY7v4efGvwnovgfQ9Ju5yJrOyjhlDRzbgyrg4xGR+tdn/wALu+FdxAnneIXUnDbW0+53 IfqI+o9jXzzq/ibwEXd7TRYJlW582GP7OkX7oqqNG5HJJzJIDk7TsHbAj1DxB4GmS4TT9Phs7kCC K0uJLNJI1REIZ3Q53M2cHg5JVjyuTceE8JKTnOpN82uvJZa+Sv18/K5y1pwmkowUWuq5tfW7a+6x 9i+GdXs9d0qLU9OuRdWc6h4JhGyb1PTKsAQfqBVD4lsU+H+vBSQ0ljLCpHYupQf+hVkfAk5+GWhl R+7ayRlbGMjc/GO3T9a1fiUN3hcW463OoWMGPUPdRA/oTXxuFgo4yEFspJfic01ZnQQRLFBHGoAV FCgDsAKVlFSYpDXHe7JKkyVLpnmzSC3U4I+7RKOKfpAUXuD6Zx645xXJmUVPCTur21HT+NGtbP8A Y2nU5mUAt8vOSPSsWPxTrj25x4QvFlHlq0RZs7iSrkHYAVVwRnIyGVsAZrote0w6ppLW1pePZNKV /fRKCcDkDqOMgZ9sjvXMt4KvDcyTT+IruQOr+WjoT5ZYyNuA3dQ0zEewUfwivjKfLa8j2o0+RWZJ LqmqkJ5vhmULMykvEzfuwTECX3AHA8xug/gPQZxLDci4KoI134ztJyRSQeFmtlkjXW7hkYOqF4iX hVhg7CGABwTzgjpgDFacFrDZ2dvDJcNKYoEieRlAaQgfePfk81tz0eRprXujnrU03dMrS/aY4TtD RK/B59KplplYC5YlCMgKRz+VP1W7+0S+VGT5aHrk81AiknJ5NfQZdlrp0+arbXy1XzOCpNOVkSIB njOKkApqiqmr6pbaXEhmDyTSnbBBEu6SVvRR/M9B3r1pzUI3k9Ao0Z1pqFNXbLVzNDbwPPPKkUSD c7uwCqPUk9KwX1u61FimgWX2iPveXJaKAf7vG5/wGP8Aap8Gl3Wpzpe+INhCHdBYIcxRHsXP8b/o Ow71rynArGPtKv8AdX4/8D8/Q7ZfVsLo17Sfr7q+7WXrdR/xLUwo9Fku51Ou6vd3Kk4McGYYVH+6 pyR/vMat654M8M3LWui2fh/SnCAzSO8IUluQp3AZ6n36102kwWstiJJYonKk7mIHHPGeawp7t59X neFnWJjsBTJ+TOP6A14ONprEVlTo3i07Xu799H8V+VStrppY78Njq6o1J1Je7b4VorvT4VZfgfPH 7YvhddA+HGnzJL5azaxEotI7qWWOLEExyAxwpIxwFFFan7bkjTfCzR5JI8OutIhkz97EE3BHrRUV qU6U3CpJya6ttv722zmw7Tppo9X0bU59N+H2lPaRrJdz2cEFuGAOZGQBeT0A6n2Fa2haWmiaTbWN rueKFMMCeWbqzfUkk49657wOn9pJpW85t9K0632r2M8kYJJ/3UIx/vmu3r3sIk26i22+7f8AHT5H JmdFKhDD3tL4210bXu/+Su//AG80whu7qGKUWktr5dwFDrPCJFbaSRwfrUkl1c3OyOaS2MUJcRJB CI1GTzwPpWt4QhkA1N7S0trm4CwlI7iQonJfPzBWI49jnA+tP8VJMsenNc2dra3DCXelvIXTquPm KqTx7Vi6tP63y8uvf5EUo1fqqdR6+W2/9PyOev1BsbgbC+YmG0dTx0qeob8ZsbgEM2Ym4XqeO1TV 39TDoc14E/ev4gvP+e+tXAH0jCxfzjNdLXNfDn5tEvJh92bVr+RfobmTFdLXXjv94kuzt92hI01D ItTU1hXMmA/SL57K5VGIMLN8wI6e4Paumt5o5weW+YZKMfun0rkJEzU1neSQ3KM5+XgE4z06GvIz TLViE6tNe9+Z1YfEun7stjf1CaO2tneR1XHAyeprLn1C1uZVhYq6ZUghc5Ixg/XPNSeIf9OtY3tg 0oVssVU9Mcdv85rFNu0OwyAgk8r0IrhwGWYavRUqknzO+g8RWnGdo7FjUJZpLlopflWNioUdBimx rTmAlkDJIWd2xh+D+fSjlWKngjg19FSjGnBU4q1jkldu7G3e4WcxWcQEIT5pGdg7t9QM4965KS9v PEcrRrqy2ejmUxyTLlTcncfkjIXhR0LZycdccnQu5G8RXr6fAzDSoHK3koOPtDD/AJYr/sj+I/8A AfXG/Fb2qRiNLW3VFAUKIlwABgDGPQ1yTjLES0fur8f+B+fpv60Gsvim1+9eq/urv/ifT+Va/F8N LR9qwxQW93A9vCm3y4Y9qqOdgA2gdOwx0Gc1clNPVI0B8uONM4ztUDOOnSoZjXZRhyqx5VSbm+Zk ukWLajqCw4byxkuR2Fbeqafbf2gsSQRowSJDsHUu+D/46h/Otvw7bRW+kQCLkOgctjkk81nx/v8A UYbg8+deyMv+7GjIP1yfxr5DO8bOvCok7R+H/wACdvyufRZVh40f3j3tf9fyuXtX0i31Ky+zMxiA YOGQDrXOQeDZ2eZZrpVUf6plGc/Udqt3XjvQoJZURri4EMjxStEq7Y2VlTksw6s4AP1PTmnxeOdD bT5L/NwlpHhXleMAK5IGzGc55B6Y96eGx2Jw8OSm7I56uGpVZXkjJl8K3VvIHmu4BCGGWyRnnpiu sKgrtI49DVjUrdbuylt2AIkUrz29/wAKzdDu5Lq2e0uCpu7R/Kl4wTjgN+NRi69bG0/aTd3Hy6Pr /XkFGlChLlitx1nNA7TKmC0TFWyMEGppIgRvBOB1xUd/pWmy3H2ydmRymJHWQqMAYyfcVx8ur6hH dN5N5JJCjnZvUfMueM1WHyz6226Ett7/AOa3/AmriVRVqi+46qa2xhwCS3Uk/kRUpmCIAQeB3qnp +orfw+YFYMvDAjgHH8qj1fUYbO3/AHnzs/AQdSK5PqtWVX2LT5uxTrxUeZPQsfaUkYqJQ3sDxToi 2wOy4IbIGe1Zmm3CXCRTW+NycFHxwc9PenXWoNBteVfmlXAUEALjrnPen9WqKp7NR97sYqvFx5mJ qcDSJKskmC4J6msCAuI/LJ+TOce9Wbm+kvWClDjpjPJrJ8Q3cunaLPcW6qbkgRwK3QyuQqA/8CIr 6bL8NPCYeft/W3b/AIJxKDxVeNOnvJ2XzKsKnXfE0mpSgLBpge0tCg2/vSf3rADjAwF/Bvat2Fzu 8uQYfHHo3uKg0XT4tM02GyiZnEY+Z2+9IxOWY+5JJP1q28ayLg8dwR1Br0MPD2cLS3er9WYZo3Vr +0w70iuVJ/aiu/ZvV36NvocX4h0Jbnx9pshjzb3IMk4xwTGM8/X5RXcAcVBHtaYCZVM0YO1sdQe4 qxUUsLCjOcor4nf8P6fzOqvm88xo0U3pTjy27Wb/AB2XyIUGL6U7SMxIN3Y8vx/n1rA8c/vLrw3Z 9ftGtRcf9c45Zv8A2lW+g/0+U4b/AFSc9jy/+fyrA8WfP4o8HxD7y6lNMf8AdFncKf1kWvQwP8W/ ZSf3Js5ZHS0hpaQ1zCI3GRUDbo3DoSrKcg1aIqJ1zVLzEze0vU1ubZEl+SQZyyjAyO2Pcf1q/NtO HXGG7+tccrPFu2HhhyP5H61uaNqEb2/lTP8APn7oU818rmuWexftafwv8D0sPiuf3JbjLvVLeGSZ RKjEYGBz9aq3F45tDPbsSWbYzH+HjPFZ0ljOLhxJGyDJJZlIFOt9nlGJpHQFs9MrXpUcqwkWpRfM 1ZvqjjlWm3Z6DY15yeSasIOKZsZU38FMlQQe9UtY1SPTbZW8tp7iVxHbwIfmlc9APQdST2AJr1p1 IqLk3oiaNGdWapwV2/6/plLxJq8+nXMdtbTia7udot7RB8xGGBJODgZOSR02jqcA1tGtja3D397r 1vd6nISs0uwkKo4KRrt+VQSOB1xk1o6HpQt1ku9REV1qVyMzyldwAzkRpnoi9vXqeTWo0NuWLG3g LEEEmNc4JyR09zXDGhOpL2k/ku3/AAfy2Xn6NbE06EHQoO/80v5vJf3fz3fRIXesSiVt0mPmPHJ/ AD+VV5m7VYlJ5NaPhC3iuNXLycmJN6rjjPTP4ZrsqVVQpOo9bHmxg6k1FdSex0qO20Ce7uYFkkeE vhxnaedoFafhuxhhS5CqpCSiNCR/cVVP/j26rmsASNaWnaaYFv8AdX5j/ID8ayhrmm6JpFrNqM/l C7mlKYGSSS7k/Ttn1IHevhcdWqYitT53e7lL7rRX5s+oo0o0cK0utv6+9M+dP+CgekRWHw50m7il ZvtGuqSpH3T5Mxoqr+3r4nsNa+G2i2dtDcxTQ6xHI6zKowDbyEdGPOGH6+horuVSdRXm9TiUYx0i epfDayhsfBemrFktNAs7sepZgD+gwB7AV0eawPBTz/8ACIaTstnfbZQgYYc/IPetdpZ1JBtX4AI+ Ycn06/5xX1FGVOMVCL6bHkV5TqVJTm7tk7pubcss0ZxgmOQpn64NQlGgkMrSzzIevmSs5T3GT0oE 03/Ps/3c/eXr6dacJZSMG2bBXJ+Zfy61quVO9jkr0ZVI2jKzWz8/Puu6/XUW+I+w3GS2PKb7vXoe lTsQqlj0AyazbmWWCzkR4pFVo2CEMMpweOv5Ua1dTQ6LeTNbsoS2kYksvy4U1UY3mo9x0KvtYaqz Ts12en/Dp9UZ3wvU/wDCv9Fkb789sLh/96Qlz+rGukrA8DedD4N0KH7MwC2MCn5hx+7XnrWwJpyF zauMnB+ZeB69a2xk1LEVH3b/ADNVFk5ptRedNj/j1frj7y9PXrQ0swDEWrnBwBvXkevWue4+Vj2W o2ShpZhuxbMcHA+ZeffrSNJN82LZjjp8y8/rTUrC5WLFJNCcxSun0NWmuY7qLyZYIlm/gkHGT6Gv I/iT8Z9H8IeIJdAl0+9e9hVHkkEatGAyhgB84JPPtVHwX8cdD8R67a6H/Z9+t3dvshcRKqE4J5+c kdPetZZViKsfa+wny2vzqMrW781rfodCoTVL2nMrdrq/3HsENrLJIysQgX7x61keIYr+a+j0HTpQ s0sXnXMyHmCDOMj0djwv0Y9qv6lqR0TSoCtm1xeXnEEW8fO5ztQc9MAknsKXQLO5sYHkuo2uL66J mu59y/PJjAUc8KAAAOw/Gvk8dnFZVpUqbXKvL+nr+R34TDww9L6zUWv2V3fd+UfxdlqrkVhDDY20 dnbxCGKFdqoOwq4j1PMkkg+eyKlh13LlfTvVEQ36Y3WUhUnBZSCB+Vexgcxo4iPL8LXT/I8upGo5 OUndvqWs5FQyjNRxzSnbm3YZOD8w496cZJiP+PZuuPvDp69a9FOxnytm/b6sg04sGZfJTlAemBUF nOIZrJd5zFbMW/3iV/8Ar1gXDzBCFhdSzbPvDkGo5ZrpppSBKcYXAcDI5P8AWvl8wyfnnCEJWU5r vpZOX6M9ihiZwoOT3s/0j/7cztLZbaJGMUFsqSbS2IlG4rjbnjtgY9MCkFlYhtw0+yU7SvFug4Oc jp0OT+Zrm9KvL7Mg2PJsA2jcvStBr69+b9y/HI+ZRn2rzMXQnhqrpSd7GcMRzRudC91O+QWIyewx VNreRLlr+zRftZ+R/MJ2uvHX3GKrWt5cEqJbSRt4+Uqw646Hnj60mq60bTKfY2aR1yq7xj8eaWGh WdRRpq7fTuvPyNXODjzSZl6496bhYbq6WUhc7I+FXPaqSx00z3E0plkgdmfLE7h19OtSI8x2/wCj MMjn5hx+tfc0Y+xpxh27KyPIqe/Jy/Ut6XO1s0ibtqSLg1Tu0d52aQkknjJzx2pweU7c2zjPX5hx +tJvmbbutnGTg5ZeB69azhSjGu6y3asDTceXsFiZY51EZPJPyjucVbuLuGeyZHVt5+6vHyn1qnFL KrAtasMtg/MuV9+tTXwmNz5hszGkhyNrLg8ckc+tc9enRniIzmrNap97dPP8xxUlF2IrYtHIrr1H Ssu9jN/4uitGBNtpiCeQHo0zghB+C7m/4EprWv5vstlLI1uwjhDSM25fuKCS3X2rE8JC6XS2vJ7W QXN9KbmQFhkb/ur142qFH4VKxMcVKNlZbv0T0/H8md+Eg8PRqV3v8K9Zb/dG/o2jogaUGq7PcqGP 2SQgdPmHP60nny5P+jMcAEfMvJ9Ov+cV2xnGfwu553KyeWPzFGDtZTlW9DSJMNjmQbWjGWH9aYJZ s/8AHs33c/eHX061BfGdoHdLdlcRtyWGDwflPNXdbHHWpSpS9tTV/wCZd1/mvxWna3nf/C+Phis0 sy67cuDEu0DT5/mILHAynXkdfaudn+OHgq68Uabqs95IkFnHMgjW2mZiZNg3fcA4Cnj3/PxOy17R pLbZc6XbRHy7Jd8WkQmQGNEEuMjby3mk8ZbK5OAAKtlrekXOpWlxf6bZ2zNevLdeRYIyeSDvSNU+ 7yzMpOOFVOuCD+gU+EsG4qaryjp0cNbrVaxfmtNT1qU4wUk6alfvfT7mvxufV3h74w/D7X9atdH0 vWZZr26fZDGbKdAzYJxlkAHTua76vjz4T6hZ3PxR8PGHToxfSakRNPFarDGYgHKlEUAITuwQMcRr 6tn68E0xAzauMnB+ZeB69a+Xz7L6OXYlUqMm04p62et2unp6nNykxppFR+bMR/x6vnOPvL09etI0 swBxaucHA+deR69a8W4uVjmTNR7SrZUkEdxTmkmG7FsxwcD5l59+tNd5huxbMcdPmHP60+YOVlmC +mjwsoWePptk5/KorxFdvOtkCxMeFyMg+mKryPL83+jtwMj5hz7U/T0ee7JeB9kaeYwDLk47fnWE 4UqN6y0t9xSUpe6x17ALPT5724uI444EMkpbooA9aw9Isbxrj+3NVhZLmdMW8Tf8u0R5C+zHgt+X apzcz+JdTB+zn+x7KQnaCMXNwp+vKIfwLfSug3TSLtNkxGMsSy8egPP0/Ovmqed1p1FKok4rp+vy 6f8ADHr1qMcHSdKOlSXxeS/l9XvL5R/mRSST3qVWzUdxb3LyK0Fo2T95Qw6/nUIa5jKiW0kjyedx AxX02HxVLEwUoP5dUeM4SjuWn5FT6LdrZ3TFsrvGAw7VRWWVgubZhk4PzDgevWms0pHNsw5x94dP XrV1qca1N05bMceaElJG/c3qtftI0jEQW7MD7sf8Fp1mLeext7eeOKYxwquJIww7E9fcD8hXKSzX PlTYD4ZvL+8OnT/P1p32q9ikZ0Euc4yXHI9ea+XeSVKmKaU17kVbfq3f/wBJPYr4pwpRXn+SX6yZ 5R/wUBKP8MNEk8uLzP7bXLqoBP7iXqfwH5UVQ/brmnf4X6OkkbKi60m0kjn9xL6UVhQvyajhLmVz 1zwVBdf8IVpNyqMIlsovmzj+AVuNcl4EZosIxI3ZzyPT86XwLfaOfBGg2U17aiY2FrE0TOAd7RKQ uPU5H5j1rQuE0ltIb7PqFmtsDvE3nKVHylzzn+6CfoM16EcypVXFV4ap6PXRd/U4qmDkruLMtXye tSCq+1o5DG/Uenep0+71r6TSya2OD1FljWWMow4P6Vh+M52t/BOu+afni0y4cN03ARtzW8DVHU7S C/P2W5hEsMsEiOrDKMDtBVh3yCRj0zV0aihUjKWyaOatSkpe1pfEt13Xb17Pv5Nj9Di8nRrGHGPL t41x9FAq7UNu4I2FQjrwV/w9qzbp447t1W/uIW8xi5Cgg5GQMA5AAY9eTjjoKyrTak2+pvQqQrx5 4PT+vx8jZwcZwcUlYltPbS3yPDe3JlwgkVoiMqzfKDlsjqPrkda26iEuY1lGwYpCKWirJPl74+/2 xbfEu/nj0LVJrdpbRob2CyLhE8tfNVH2ldxKIOc4CsOjNnH8A6jqjeM9HuW0PVtM0aPUVuLkNby/ ZbYJBsREJHABL9SWOUyWIyfqPxZZLf8Ahy+tyBu8ouhPZl5X9QK5jwVp76hpmm3E0Pl6far5sKMO biY9ZSP7oyQvr19K9WXFOKp0Vl8aMXFwaT1vro3a9tN/XzZ7eEweGqYN4irNpxlZrTa11bzbVvLd 6JnTeGLe71Sc69qUbi62CK2tyvNtAemf9tsZY9uB2yZ/Et2kKwWyapHYXInik+Yv91pBEMhR8wLu PlJAyMk7VIKGSWCTzIXZGHpXRXulaVfeVc3unWs9xNAFkZ4QdykDIz6cDivgMywCwk1UTupfffqc /wBZeKm5yVraJdEuiX9Xb1erODh1m2mtSreJilvOAkcivOTG7I23DFQxX94jliR0AxgZrrfD99Fb 6lsn1iSdL13WyjlhdcBGkdtrFRuARkG45+51q6dE0UJ5P9nWpRwQ6eXkAcdug5VenoKiurHSLQG5 FrapcoWeJti7vmHUdxnPbiuGC9s+SCu2W5qCuZHjDWLKwtNQ1gxMbaytpJ5REAWcIpZsDIBOB6iv nP4h/tESXNvZr4Ggv7KVXY3RvrWEhlwNu3Dt3z6V7x4pEo8JawYLaS5l+wT7IY1LNI3lthVA6kng CvmnVdX8TwaVMU+HOu6YfM8xX/suRYzIzFstlMcSMWA56KOOo/WeG8DgndYnaHLa84xXW9+ZO/Tb Y86KdWV7avyOf1P41fEHUVRbm+jKLyEW2jCk+pHetfwv8RvifNpj3Wl6jZlHmaPyJIU3DYqF3GRg KBImeffGATWM9x4s/s67i0zwtr9tpcdzbukK2kzQxIiyAo4K4JcyAnPU/hXX+Afhx408X6PealBq LeG7T+0G+y213p5WUxiOIAq5AYx4RFx0Jj5ya+oxOG4dozjXtTbvvdSdrPpBX307b6nXOpiYUXRn dQ7Wsr79evU9U/Z98TeJPEkV7N4guLe7eK5jW3kt4wqSRMucjAGe/UAjHNe3NCsjlmGTxyTXk3wT 8Iah4Ea7/tfVLfUWurhXBgg8pIlCbcBRwAOuAAK9lkjwx449a/HuL5UpY7moL3He2/fz1/4cjCwU kyDyxH+9j3MWwCvbr1H+e1c/4ijxqYfOQ6A/TtXRTMUidwMlVJA9a57TpJL/AFVJLgK+ATtPQDtX Bk/NCU8R0itf6+RWJSaVPuV41K4yCKmHSluW33Uhxj5sY9KFr6aE3OClJWbOC1nYUUhFZ9xc3YYr HPZJ+8cZkO0hAeG5wD3BIz0qSznunuGSeSywHICxyBnIC9evXOO3Q1Cqpuxbgy0wpC52hWG5R0BJ 4p5qKStXFS3IMLxfItyLTSIgU/tCcLIA3SBRuk/AgBf+B1rxJJM6xwoWY9AKztAsU1PV7rXby8gt bRXaws2lcDfsBeUrnrko34RE12/2/QLIG1OoWSNEQCvmqWUlgv1ySQPqR614tXNadFylTXNJ6eiW 3rrd+jPZxGDmoU6D05Vd/wCKWr+5csX5pmDC1xb3P2aSMmQ9F3dKYZg5zgKT1AFbYm0O5uY7iK+s 3myQhEy5bG0dM8/fT/vpfUVlarFCt5K9vcQzEfNIiOCY8sygkDsWRx9VI7UYLGUK9e7jyya37vt/ kefWw06cb7oYhzUgqCI5xzUw69a9pnKiGRTDKZ0BKt/rFH8xXJaJo8EXxF1CZVUxRQLcQgdFMuRn /wAdk/Ou0zWdp9vDaBLoQ7DNDGsjkfOAoJAY+gLN9CT61hWw1OvKDmtYu6/r+tgw2Oq5Uqvs3anU XLL+7dp39Hs+177XNMUoBPQZqnqXlfZ0eZ3WNZASEIG7gjGT0HOc+3HNZb3MAt2ju9TupMZZz5JB xuIK/e45OPXgjpiqlU5XY0jG6ub544NFVdLINrxM8wDYDMu3jAxxk8Yx6fSrVXF3VyWrMMU006kN MRFIOKwdQvprvUW0GwuGhWVQNQuE6wRH+EHs7dvQZPpm5r2oy27xWFhGs2pXIPko33Y1HWR/RRx9 SQB1pul6bHpmnpaoxkfJaWVh80rnlnPuTXPVisTeh06/5ev5L1R6OHSwcFiZr3n8C/8Abn5J7Lq/ JNPcWG20nTwpjW1s7WPoF+VEUdsewrlH1PbqEsC+JE81pnMMSvOWGVTKn5cEHz4cHGE7Bm3Edd4e xexXVleqlxbbAdki7hwRjr24/SrFpoehxTJcRabaQtGMJKse1gB05HNfJV8P9UqulJ3KpPnXO+vc 5fTrpdTZjp/iWf7VM3zCKKZ1XKsOFK4VQWB3ADG0cjmuputX06+0NLi2kjuUnz5TAHjBwTzyMEEU DRdGCKx061TaoVv3YUbRwPwGay79bSOVbexSJLePJURKAoLHJxjjqc/jXVl1D6xXi7Oy1uTXq8kH bqNjqQ4AJPQUyMUl5/x6uo6uNg+p4r617nDRhzzjHuyrtJggBHMkm4/q1OmSp5gPtMCjsGP6Y/rT ZhxXHhHfEVpeaXyUU/zbN8XLnUX3u/vb/wAjwj9trd/wp7RNykY11QD6jyJqKm/bglST4N6EgGHi 11Vb8YJiDRXh4lNV53VtWd2Ht7KNj23wRYeH9V8G6GLqPzLhLGB8h2RkYRRDKkHg4jUZHv6mt2Tw roa2Rs1tZDavP55h899ofbtyOc8rxjOMVxfgxCPCWkMpIP2KHkf7grr4dXuXtRCsTNIq8uDnj1qs VlNSEVOjK6e97aGMMbvGaKeqJDDcpBASUijVBk5OAMDk9ajj6UxiXkaRurHJp619Bh6XsaMYPojz pS5pORJULY+3xfez5T/Tqn+fzqyVUQKxOHz09qrMf9PiGW/1b8duq/5/OmpqauhpWZJLHvwyna68 qf8APanQzMxKNlJF6jP6inCmyxiTByVYdGHUVpo9GcVSlOE/a0d3uu/+T8+uz6NSbm9T+dcv8TPG Vn4F8Nf25fWdzdxeesPlwbd2WBOeSBjiuhWUoQk/B7P2b/CuH+O9rqF34HEWnaLday5uQslrbkh2 jaORGIIBxjd6VvhacJYinGp8Lkk9UtLq+r0WnV7G2Hrwr7brdPdeq/q/Q4K+/aQ06SEJp3hjVhKx +9KEIAHXADcmtn4VfGiLxd4pXQJ9NuIGkiZ0mkVVwQVG0gE9dwrzfUNS+INnpt5IvgDWLIyK4WeR N6w7zjODHz1/iJ5PGBxWv8CrHXNa+Ilje6joN1ptppenGNpShCSuBCF3cDMhZGYsckqAvRBX0Gb5 ZlVKhOpQqL2itaPtoSvqr+6t9L7Hs4dfuXzw9zW8uV6O2mvTW2h9IsoIKkAg9QajZVVAqgAAYAA4 FSmo5K+XW55d9CpMuSB6mux24Ay2AMIoxwMCuWtQhvYt+NobJyfTmunvbmO2gWaY9twHcnHSvBz5 yqTp0oq71/r8DswaSjKTIr5o4YXmk6KuPrXLEtNM0rklmOeTmrOo3ZvbkuqskfHyZ7+tMjXFd+WY H6pByl8T/DyMK9VVJabDo1xUOsWSahpN1ZPjE0TICexxwfwODVpRTq7ppTTi9mRTnKnJTi7NanJ+ FtHLfD37FIgWW9gd3z/ecHGfoMflXQaZaiy0u1swBiCFI+PYAVcxgYFIRWFHDQo8vL0VvkdmMx9X FznKW0pOVvNlWVc11WnXf2zTlkYhZF+Vx64rnGXNM2kDGTj0zUY/BLGU1FuzXU5qFZ0W2upoa/dB l+yxnJzliD0HpWZCChBUkH1FOCe1SKuK1wuHhhqSpR+fmRUm6kuZgop4oApa3uSQGytGVlaAENkE bjyCQcdemQMDt2pYLO1gZmgt0jZm3kjPXBHr6E1OOlFRyrsPmY01j+Kb2Sy0pzbYN3ORBbL6yNwP wHU+wNbBrnrJf7X8R3GosN1rp5a2tfRpf+Wrj6cIPo/rWdaTtyR3lp/m/l+djtwNOLm61RXjDV+b 6R+b38rvodHoGg6RP4Zs9NvIXljsVaJGErKfmxubgjk88+59atLZaBYXpmaU+cWUtmV3yRIJATz1 3DP5+prNO8IUDsFJyQDwagaKvP8A7FpyqOTk1HokKeY1Jay1k92zas/CnhtRHLZ2zwmMRmNo53G3 aVKkDOOqgnjkjmm3OkaZpyXl5bwtFPc/6wmRjvOc9Ccdc9PU+tUtKvZbCUkAujDBXdipNTu57oqJ Iyin5lB9K4llNaniYxvePf8A4BU8Yp0ttSpFU61EgxU9uoaVQ33c8n0FfSVJKKcmefFX0EqHT8fY LcfNjyl+916d6mOAxA6VFp5zY25yxHlLy3U8d6m97MroxVLW3/XHPUfwf/WqwGYj7xx9aaOlQ7Hg 5iy0fdPT6f4VWkvU89KWE+FN0+3WPp3j5brpdbWCSepzSU2ORJBlDnHUdxTqVrHbCpGpFSg7phQa KKCiMom/zNq78Y3Y5x6VDNU7VBNVQ3E9TS8LodtyQcF2VM+3JNbO3ch5z1Bqj4Z2rZkL1yXbnvnA /QVBq2pxCJ7WAFmP8YP3Tn+dfJYqhUxuPnGC629LaHpU5RpUYtlTX5gZhaxs2FwX54J7VSiTFJGp J3Nkk8knvVhFxX1GGoRw1JUo9PzPOnLnk5MVRUc/zTwIP7xc/QD/ABIqYUoHetLl058kr+v5ETIx uvMP3QmB9Sf/AKwpJBUxpjCsqNKNK9uruKc3O1+isfPn7bmV+GOlL2OtRn/yBNRUn7cS4+GWkf8A YaT/ANEzUV4eY/7w/l+R6eE/hI9m8FKD4O0b/rxh/wDQBWwoK5KkjIxxWV4I/wCRN0X/AK8Yf/QB Wxivdpv3F6HmS+JkYWpYCiSBpELqO2aTFGKqSUk0yU7MJGaRy5xk1BFukn8351RQUUHo3T5v0wPx ovlzZyjbuypGM4zU6gKAAMAdKSSS5VsiulxRS0gpaokRgGBDAEHqDUXlOn+pfA/utyP/AK1TUU02 jCthqdVpy3XVaP71+WxTvljurKa0u4iiTRlG7rgjHWsv4fae2neGII5QBPKzSSn1JOB+gFdBRWMq MJVVVtqk199v8jpw9fE0qEsNKd4Np7Wd1fe2nXsughqOSpDTGGa2RIWNs1zdrGqs3c4HQVo+K2O6 CEMu0DJXvnpk1RspjbXKydujfSn6piW7MwkV94B4OccdK8+dCUsdGo9ktPU3jNKjKK3bKca1MoxS dWztA9hTxXotnPYBTqQUtSMKSlooAbRgU6igBuKKdxRxQAgpa8W8efF7xV4f8XX2jWHgkX9tBJsh uPOceaNoJOAp75H1GOtcbffGf4iSE3p8LTW8JIKBGYIoJ4HK8/j+lerHIsyq0o1aNHmUtrSgt/WS /wAzooUY1JWnNR9b/omfTdFfN0H7Qni5bBppfA0Uohj3yyiZ1GAWUtjbxyrf98n0r6Dm1O2ttGGp 3jiGIRCRu/UdB6nJwB3rnx+W4nLrfWo8t79U9t9m+5nGnKc1CGrbsrdfQreJ72e3torOxcLf3sgh g4zsz96THoq5P5etXNLsYNO0+CxtgRFCm0Fjkn1JPck5JPqaoaBZzy3Emt6nHsvbgbYoic/ZoeoT 6nqx9eOgFbPFeVSTnJ1ZddvT/g/5djsxco0oLCwd7O8n3l+qjsvNtrRjSKQqKfRXRc88i2ClYE4y ScDAz2FPoxTuAwCpmkXyFjRNp/jPXNMxRiolCM7X6DTaIZnZQFRSWY4GB09zUkCeXCke5m2qBlup x3NRRKPtkzFecKN2eo54/U1Yp7g9NBRRQKKYiOSFXbcCVf8AvKeabunj+8olX1Xg/lU1FPm7nLPC RcnOm3GT6rr6rZ+tr+ZHHNHIdqt8390jB/KpKKKTN6Smo/vGm/JW/VjWqvIKsNUTCqiUzc0SBrXT JZ2/ds67gXHHTg1zuCzlm5JOSa1luPP0trZ5VQqB1OM46Cs9BhSNoOe9edgKMqU6sp7t/gdFeSlG MY7JCxrTxSKKeK9BmACloopABptOooA+fv25v+SY6R/2Gk/9ETUUv7c//JMNH/7DSf8Aoiaivnsf /HfyPWwv8JHsvghgPB2jD/pxh/8AQBWxurC8ExXLeDNJkSCQxrYREttOMbQOtaay19BSjeCseVN+ 8y3kUVAslSK2apom4y+GbOUbS2V6DqanxVe+5s5RtZvlPC9asVPUvoLRRRTJCijNGaACikzRmgAN NNOppoAQikxQTUtrF5xcsxVEXczYzihuyuwSu7EYpwolaIv+6UhR/ePJoWjdAOFFJSUAOopuaTdQ A/NJmmFqQvTsA+jIqIvTGk96aiK54l8QfDPxQvPGl/daHpGnXGmM2ITLfOvmISHIZPNC/fz/AAjI GDkEg+f+JNC+JEMMOi33h3Sop4oWSGaKbMhEqsjtnzCHZwzAlgTnpg19YRR3MsTSxQSvGn3nVCQP qa5XxfbySapo9/b2Ml5LBMw8tOAflypZjwoDAcn9TxXpy4jx+Dw0Y4ZRvGy1jfTZ9d7P57Hp5XGj WxChiE+Vp7O2qV1q9LXVvxPn3VPh/wDFC1sri61TSdGZTGUSS5ukcxM0axsyAvy7BR1DfNyACa+i 9Bs7zUhY6jq0PkQ20Y+yWbDlWxjzZM/xY6D+HJ6npLZadczXsWo61cx3FxFkwQRLiGAnqRnlmxxu P4AVrNLXNmGY4rN5QliUko7JK3bf7tF83rsTr08JFwovmm95dEnuo38t5fJaauzuFG8VWiLzSrFE pd2OFUdTT547qB1Sa3miZvuh0IJ+ma5uVXseZfqTbxRvFQTLPDN5EsMiS8DYykHn2psZkkYKkbsx 6BRk0cqtcLlrcKMiq8wlgcJMjRtgHDDBwRkULL70uW+qC5ZoqJXzUgNKwyKEf6VOdpGdvPY8VOBU EI/0qc7WGdvJ6HjtU4qUVLcWiiimSFFGaM0AFFJmjNACGmkU400nimgExRSE1Zljjt0CybmmZQdv QL9fek5W0GlchFOpgp9DELRSUmaAHUUzNG6iwHgX7c5/4tho/wD2Gk/9ETUU39uQ5+GOkf8AYaT/ ANEzUV8/mH8d/I9bC/wkfVPwvVV+G/hsKoAOl25wB3Mak1q6jpNjfROksKBnH+sUAN+dZfwx/wCS ceGv+wVbf+ilroq5YzlF3i9TVxTVmcTfeELqGLfaXCzkZJVhtOPaufDMjlHUqw4II6V6txWTrkVg bVo7iJCdpJcjlQB1z+FepQzOd+WornHUwcd4ux5/dsDZy53fd/h61aFULph9klPzAbT06irwNeu1 qcP2UOzRmkzTWYUhDs0ZqFpKarF2CoCzHoBVcork+6kLVXMnrTTL70+Ri5iyXFNL1bXSruS0EsNt PIxOAU2sh/I5qvd6XqdtAJprOVUOc/LnH19KiM4N2uW4ySvYiDBnVdwXJxk9q3J9Ku10SVneMCCU kBMfOPXj9M+tY1lFcwzAvZtKrIrbCD8ykjBwOvbiu5g86fTrppIDbLKw2JIOcbQDkdulcmNrOnyt bG+Hpqd7nCIc1KtQJwxHocVMOldrOZDiaazU1mwKhdiWCqCzE4AHU0JXBse0mKjMtdN4c8OSuZJN UtwqFRsBb5gevSt9dD0tbtLkWoDoSy/MSMk5zj61x1cwo05OO/odEMLOavsedky7Q3lvgnAO04NN kMiEB43UnplSK9YwvGQODkUEKeoz9a5lm/8Ac/H/AIBt9R/vHmunaPqd8Rst5I0IOHdcAnHFa3h7 ws0u6bVFkj2vgQ9M47k+ldp+dFYVc0qzTUVY0hg4Rd3qQW1nbW1sLaGJViH8PXNZtx4a0Z9zG1Kc fwORitmkbp0NcMa1SLvGTR0unGSs0eZ2GmTapqckVgjfZVlK+a3RVz/PFd1p2g6ZZKNlusjj+OQb j/8AWq7aWltaiT7PEIxK5kcDux6mpq6sVj51naOi/rcwo4aNPV6sasaLjaijHTApWVWxuUHByMjO DS/nRXDc6SKa3t5yPOgjkxnG5QcZpRBCGRhFGDGCEIUfKD6VLRT5nsFkRzQxTJsmiSRT2ZQRXP6p 4Utrq5863mNtn7yBcj8PSuj4orSlXqUneDsROnGatJHmmq6Xe6VIq3KqVb7rocg1XjfNenzLEV3S gFQOcjIrg/FC2iX0ZtY1iLrl1HGPTivawmOdd8ko69zz6+GVNcyehlwH/Sp/vfw9enSrIqpbH/SZ +W/h4PTp2q0DXac8txc0maQmmM4FFhEmaTdUDSChmYKGKnB6HHWq5RXJ91JvqqZRVnTYHvZvLjRn OQNqMA3PcZ60SXKrsFq7IQuKYz1cbRdUeZlispwnODIuOlUHtb0PIjW0qtGu5wVIIGcZpQlCWzQ5 Rkt0amhWk9xPHNA0TYlCMrYyB1zz9DUOsW0llqUsEj+Yc53eua1/DT3JUQrpzeY0kRM2DtwuMktn HToBUXjhMX8UmQdwK+/GP8a441n9Z5HszodNex5jGQ0/NRR08nFdjOYUmo2fFNkfFS6fp19qTkWs JZQcM5OFH40O0VeTsgV27IgaWkRnkO2NGcnsozXoEPh/TEhCPbBiQM/MeDt2n+tXtPsbWwtlt7WL Yg59ST6k15881ppe7FtnXHBSb1Z8bftulj8MtJypA/tpOo/6YzUV2H/BRwAfCfw+AMD+3V/9ETUV 5GJre3qOdrHfRp+zhy3Pf/hj/wAk48N/9gq2/wDRS10VFFYosCcKT6Vxvj+FRbRXId9xlKle3T/6 1FFdeAf+0Q9TDE/wpHIzOfsknJX5eo6irytxRRX0sl7x5CfugXNRPIaKKIoGzZ8PaC+phbiWdUt8 8qMljg9Pb61vf8Ijpnm7xJcqOSAHHH04oorw8biq0KzjGVkelhqMJU02i22gac8apKssoXON8h4y cn86rXvhTTLg5UPE+/LFT1BOSMfpRRXFHFVou6kzodGm90amk2f2CwjtBIXWPIViOcZ4zVo+9FFZ Sk5NtlxSSshAAMYAGOB7VjeK742diXXcW+6o7ZORk/SiitcNFSrRT2uRVbVNtHBx1LniiivqHueM iGVyK6jwFp0MiPqUyh3D7Ys/w+p+tFFcuYSccO7G2FSdVXOvooor5o9cKKKKACiiigAooooAKKKK ACiiigBcUhoooAKKKKAK98izR+SxIB5yOteVzDyryaMMzBJGXLdTg0UV7WT7zXocGP2iOtnP2ibk n7vHpxVnfRRXqHC2MZzRaQy3l0tvEVVm6FjxRRVbRbEtWddaeELP7IFuppHmJyXjOAOOnOau2Xhy xtceXLdZ/wCunfGM8D0NFFfM1MXWk2nI9iNCmkmkObw3pLLs+zkDOfvE9iOp+ufrUWl+G7fTtQW7 t5nyCwKNyNpHA+ue9FFSsVWs05OzH7GndOxu03aM5wM4xmiiuc1EkbZGe3HGK878Q3hutRZOdsOV GepOeTRRXp5VFOq2+iOPGtqCRTQ8UjtgUUV7i3PO6BYQm91GC13bfMcKT7d69Os7aG0t0t7eMJGg wAKKK8jNpPmjHod2BSs2S9qKKK8c7z5e/wCCjv8AySfw/wD9h1f/AERLRRRSGj//2Q== ------=_NextPart_000_00D1_01D02B90.16C48FD0 Content-Type: image/jpeg; name="46B.jpg" Content-Transfer-Encoding: base64 Content-ID: <7EBC82BC154847A4B678D11D6EBBD257@AGB> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCADeAdQDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmbhkk ZvLXy1PQA9K7T4eeB7TxRoV9q+oeJINEgtJ0gPmW/mb2YZ671/LnvXFXNvLbPiQcHo3Y12fwt8a6 x4fnn0OwtdLnttRfzZPtcTuQyKSMbXX0H5V7tbm9nemzghbmtIzfH/hZ/C/id9Ehv01NfJjmW4SL YGVxkcbm4981mLpp8ohnG8ngjtXQ+IvEF54q1uXX9RFqLmaNIytspVAFGBgEk/rWeXHJ6AdRiuaW Imkl1NVTjuZsOi3s6ytF5JEY3fPKqk8Z4BPJqgySpnfG6465HSuhMi+p/Co5n+Uhtu0jp61SxbXx IToroYG+lGWyQCQOvtWi1rAZUkwAOMgdDUjlIywjQY64xxVSxtNK6Rn7N9TNt7mWzmLJ1HBB6Va0 m+kN7IZXkJk5IRc5NT2hheX94qht2QT64xUslpAlwtxExt5AfvL0P4ULE05rVWGoS3TNSGdZQf3b pj++MZqHU7X7TYPDDsDE7h6Zzk1Qj1ZkDI0Us7KT8ypgEetKl1diIXCRCZG52Lxj6etLklF3Kumj KjlurQvaktHuI3r3rR8R2qRQwzRIF2/Kfcdqi0zEl5I9xauQ6kZc4HXoM/gK07HT7q7051e2ds58 rfycdq6KklGSZnFXVhLW7gubdGadDIMEcbSPapmnUryV6gZ+vSq+n+HruPWpFjgZoo0+bcM9R0qr qulXUV9IkVsyLx8p6Z9RWXsYTnyxfS5ftHGN2Xr2zjuI97LuYfKGz0rn7iB7dwr4IPcdK6W3tdRh Y288Lo4HrnIrO16zu8rIISUHXAORRSm4y5JMJxTV0ZBORU9i8658pgoU55OMn61WBqW1MzO0MThB ICGJ6YrokvdZlHc7e1k822jkIxuUE1LVbTFCWEKhg2F61YrlNxaoaocFCELENnjPpVyWQRoWbGB7 4rFutft1X90C7e3Smot7CbSMnUA/lAXEbJOGPUYyKqL0xS3E8lxKZJTkk9OwpBXRGPKrGTd2OooH NFAgoJoprGmAjNiprS0nuJCoUqF+8SOlW9GitVkW4uMyshyIwuVY46Z9aluLyf7dskZN0i7xHnBH JOce/Nc1bE8j5Yo1hSurspy2TRxPJ5igp95SecVUD81ce42usjSx7ArFum09zn25qa9tYmMRWJoS 0Yy27IZu59vpWdPGraYpQ7FANTWNEkckThJBgnofWpfKaK4aAxiZyuBg9D6123W6M7MnhvUNo1vc E4xhSBVKQFQGIO1uh9auppM7qDvRTgscnjjsPU1dtNOe3VmYF4iADuXjdz/gfyrH21OF3FmnJOW6 KWgqkly7HlkXKknir0wV77YQSJISCR25/wDr1GbUW1ys9uwVWOHQ9Me1LdbhfwbJApkVl5GfesZT U53i+holyxsy00YaExvtcH1HX60lvkQID/dGaIGdky+MglSR061LHMIGDlEbngMM8/5Nc0m9jVJb iHOKQAnpSLu5LDHNDZRDkEjHFJqwXH/SkY4yarxzNkbsc+napXYbPmwM+tSpJoExPNXOBzTt67ee QeKquNp4II9aI/8AWD61mptPUm4T2Ub3ouDjZtwy46nGKEs7UYAi5HvzUtxJtTGQWPTnFFux5yOc cit3XndK4uWN9iVtrDDAHPY1Dd2y3MeDwwHyn0pzOrFcYwDyfSonuDu2oF6dc1CqOMk0VKzWpANL ATBmy3+7xWbJlHZCckHFbDTyqFb5DuHSkRIWZi8CZ/iyMmuunjLX59TGVNP4TIVmPCgnPoKN/rW1 9mTfG8LbAhJ2joaleNJEKyorcc8Vq8XHohexfcx5ZoWjVY4ipHVi3WoFba5XsfmGT+f+ferd9YtH mWAEx9SO4rPlbCb+Pl5/xreDjKN4mbTTszsPCPOmyf8AXY/+grRTPB5zpknP/LY/+grRUS3EUgbe +gCqwPIZlzkik8NpCvjG0S3cFSsu4E/d+RqwoZZIZB5LEP3x0x71s+DkUeIrVg5ZyJN2Rz/q2qPZ cidnoac97XWpDbWs9s/yyqUP3gf6VNIwJ2VUt47yXy5WmOzOcHviprjd5h3d/SuHEt81m7vyLi7L Qrg3d0rPDOkMaOVUFN24qcHPPTIpLafzIvMcEMCyMOoBBIOPxFZGsxyW94IhJMsl6u2wEchAjm5L Ejp0+bnPCt+OvJFFHFsgLlVHPHU9zXgYGONWJre3leF9NPnp8t/M+kzeWWPAYb6rC1S3va38ndd7 6ryL4jYrkKSMDpTZUfyjhTnHWoLe5mSEAHIHHNWrOZJ2KH5D2969hRiz51WZnSMUUkEZAzk0W09y 64kJ4z3/AKVYvICkx2AsDyDWr4Z0C61G6jVoW8puDgc1fOoRcWte5nZpjbHfc7EjQsx4wBnFdPoX g+8ucAoyqSSAB0zXeeGvA2n6fDDcS3AjMhwgxvLfgK9BsNOt7XMkSL0wNncZ4/GsXXairHRFX0Z5 9o/w8G1WkjH/AAIV09j4LsbeNV2qABwAK6SGUyRhmUxkOVwRnODjt64qK/vI9Os2lmlLtzs3dWPY cClepOXKty7xSu9jn7jSNNt2WSG18xypMg24YAcD9TXM3ul2l9dGVocM2Aqjt6CunsNbkN1NcXEe 6V0CIqcKMdvzqteuRqCypF5NwpBfZhl3ewFe9hKLoTalHW29/wCvS55lep7SN09OxS0fwfb3Elxd XSyxzKpWMyLgZI68+lN1rwtb20UUMqRsZ8qzqMKG+hrVs9aukuSmoZkgc7XDLjb/AJ9K1tYubWaw YPhoWH7uRfmGfT2NcmJhV9uvaRun2/T87G9KUPZvleq7nh3inwJEl0/2SFlC8E+9cgmg3dlqChtw RsrnHNe8oARzg1S1DTLW4IZo1DA5BAr1Pq65OS5yKu+bmPLrWNooFRsg+mKWeaOCJpZW2ooyTXq9 94Ghu9IS6sxvBBOe4rx34iWVxpv+hSxtycg4rzKTUnyndLRXMTVtYFzAYIQfm4Zj6VjquKVFqTFd qtHRGDbe5JBbGZMo435+77etTyabKkLPvViOcD9aqR3F3bs32cw4ZQP3ik7Tu5PHtSS3uryw+S09 uEBxkIdxHrn1rmnOrzaLQ1jGFtQFOpBSn0zXQZCE8VXmniSRY3lRHb7qswBNP+ae6FrHKsbFC5Yj Jx04FMS8ttOidZv9LhaP7Q9zGFYeWT95hnOPoDwPavms34lpZfU9jTjz1Fa62sn59/I+uyLhKtml P6xVn7Ok72e92vK608zfYrb26QIB8gxkDqxHJqjcpbHZJdeUCflBYc8ZPb6mqlvpe61DSXt4pYO5 TecRrk4BGOy4qzp9nDIBcF53hiyqedJuJbOfTpzXXTl7Ve0ndLr316ep85WioTcYyvbT1Irmwscl FtgAWHUknGMDmnXd1Iki+YS64+Uf3fart9FJ5ZmwMg7ic81SugCsYCsZGbEYHc9fywKzhWp0/fq/ CtyYUateap003JuyXcGd7tEIIRY87SepNWFO2R5FADPyaiid1ZbaSBYmOWTBBB6Z59elP/iwOTRD GwxNNSoyvDpYvFYOvg6rpV4uMlumaOlXrW9xCfLMpV1O3Gc4PQVbnZGmkEJbyt/ygjGffFYyHy2B DFXByCO1Mk1ExvhVmlZOWKRltv1x/LrzUSrQpe9UlZeehWHp1a8vZ0ouT7JXf4GtcErFhFw/OGz9 OKp24CXJnuXBk24X0A+nrT471ZI0kYZUqDkdCc1djtFaQXBQ7QoyApYcjjOPWuj2tk+VkPVjNRkt optltKXjf5lcoQfy/wA9KqJdZZRj5e5NWtTSBXmi+YsGXY4zgrg5AyOAT/KsplIIANZRm7ClJpmu MEYodkHBPtzVCO+hkt1dJFYHPKMCOOvNJNI0qlVcHB5A9fetXOyKbJXxvIA4zTMc45KjpmkjG1Rn qetKDk7R1rG5AKAFwOlEZxJ8314paQgE5xzQmBHfqfMRt5KsOParFopyCcj8aYNwHX8+alt5G8w7 iCDVppu40tbikMC4wxBOcg8is+5V0f1XscYrSMTiQtlvUEfyqCcpJ/D1ORwT9c1UloKSuUoyyOG6 4NaaxiTEiyexqtDCpbO0YHGferWYoyCCFycfU0oxCCtuPUhMjrk9aRFG4sRyetNBBfy+rH24ptzl V/1ioCcEsen0rRblti/aIPtBhZlVhjGT1zWZq9vbwWjYbbNg4/2qpTgxTuWfJVvvdc805i05D3Dn KjCjrXoRo8jTTMHUvujqvB8ZGlsSyndKTwenAopvg4n+zJOf+Wx/9BWirle5kcvGgUepzyTWx4PX /ipLb0xJz/wBqyq7n4WeLbjQ5pdKi020uUu5DKZZGZXQqjcAr2NFVtQdkVFJy1OXsZ4yBCWBfGMA EdO9SzR7mR2ZVI4PoaPGOv3HifXm1V7KCzkaNY/Kt87QFGM885NUVna3i8tnLyH73faP8a46mFu0 1u+hrGorWZNNLZFRcSRxSyQuTblgSVYAjcMeoJH40W1/asCZi0RP3lAyprNcKXJUEDtmkK8V1Rw1 NLUzdSVzVcWrRkwkFFPbk/54qOJJd6lF3HIwV/lVG3eSN9qMQHODivTPhx4X+3ul1dDZk56cf/rx XDiqPslzLYuMlL1IvBHg+81G5WaePMfXHpXrml6Ra2No0UECiYL94joauWogtIlhhjCKMAEDGe1X lyd3HH6V4dWtJyuNq+hl21ounwK4fdtOS7Ef5xVie/uCWkhYLG4Cso7YHWlvGU5QgcEYx6VXIzkd AemKU6sqsuebvJmF+T3Y7G7o8rSWpd1YuT8xIxmua8U3LT6w0RyEhUKB7kZJrRsrqSCAq4JZu4OB mmapFFqhjKlLeVersPvDFenlmLp0cReptrqXWftKSinqYsY4qaykdL2AKWIMysQvcg//AFzUd3b3 FjJ5dxGR6MOQfoahS5eCZJojh0OVNfWO1WDcdbo89XhLXSx3t7aw3ds8Ey/Kw6jqD6iuIe3ePUZN Phdm/eFQCcZ9K7UTM9ks6g7tgcqvfjpWNDcKt8rS2Y+0HCBzxwT3z7V8thcweEcovW/5nqYmnGo4 sxEyrFGGGBwQacwyKm1vYuoM8fKng8dx1qGNsivpaNVVqaqLqeZKPLJxNDRdXn0xHiVQ8bnoe30r A8eaXaeI7gzKgU7OBjv3rQkZI03OwUe9RqZ5fuJ5SdmcfMfcDt+P5VjKnSjV50veN4upKFr6HhPi fw1caVOzBDsz0rAx6kV9F6lolpfW7JKu+Q/8tH5P/wBb6CvHPGnhifSrl5EjPlk9qznTm9djaFSm tLXf4f18zlsL70cf3R+NLikPSs/Zp7t/f/kae1a2S+5frcjupHS2keJRvVSVx61T1W+0izhJiJMy jKyrzuPue+e/XFWrh3SImNC7dlHU1XttLkvtHgWOYWkewYjEYJYjuzdeSOxFfF8WVPq06FWM2km+ rt0/E/QOCaf1yniaLhGTaW6V7arTbQzfFkkn2e2uLGYpLtcJsQsZBgEgMOnAI9yQKTT9Hka0Wb+0 owJEVJbdwQZEGCIzk/KM7uMcbyOmMWNNlgi8pYr62tpQjCO3cmTYSeTnOR0OM9AavrcrbATTwy37 XKb/AN3CDIuMDaR0x154HB9a+fznNliK6qUI2dle+t3v1VtLb3PpchyH6th5U8VO6u7WbSSel9Gn d31VjSsYZ7/TYyozLLEG+Xp0B4o0OW2QGCZmDM4wFQscHg4x3qnp91FJYRW4drQGcKytjdFGXwDx xgL79q6T4j6TpXh/ULV9MUW22CMhg5YykuQc56kjvX0tbiDD4VUaFWLfttVa1la279X0PzfD8P18 TXrU4NJ07731t29VtcoxxvfPNDCzW+xGdGnYLkgE457nH51i38qi6ghnciSNMgqzKMtnOSOQBt/M itOKeOZvNDo4YAhh0P8A9es+S/axuLmL7FNcuAZ5GjKjEfQdSMngjA9Ky4grzjgpKnHR2Xp8+z2+ Z3cHYenUzWDqytyptXV7tdLeW/yJYI5YLmA3Nws8TbhCVB4JGeSScjAOD/8AWq07gk7VAIPX1rK8 JB9VnuL2GRns3lItVY4Csc7sZ6cbRjsdwrorWBwCUQnA/u5FPJKM6OEjGpvq+2/fzMuK8VSxeZzn Rd1ot76pW08ipHG8sg4wzHoay5r+bTpLyBLeORbZWuZGaTaWRmY4HuMEc8dPWuiijK4kljAGfukk cetZGr6MNUubSfz0j+zThpEwcyx4J29MffCHn0rbM8BHHUfZS6NP+vlc5shzeeUYl14K900/zW6f VL5FvSwq2yRzMBHIxlZccjJLbQfbOK2U1m3hjaK1ttod9yhudqdNoPpyevtWf5CBUGCxweTxiq81 sy/NGS3T5T3ruhTjCCjHZaHlVatSpOVSW7d38yS+ninuJJQjou7hS2do7D/69U94JyDzUkqssa4R g+TuPYim+U20MoweDjPNWtEYO7Kz2FmEH+jKBjAAJHXr3qW0jit2cxwbWkI3kE846daupFKVx5Ry uN3HTPSopkeFgrAPzjI9aOZvQp3EacY27SGp3mqp2od/pio45UD7jErtjADcjPrU8ECoVfPOO/am k2JXYZbPIpwqRgjLuLZOeaYvAJBHpQ1YsCxKgZ4HSopX2FcEjkVJ8p5C1DdypBHufrn5V9acIuUr RE9EWYrpkULI4GR60ySSJsoZEGcYANYjFpHLuck0oBHQkV6iwenvSMvalrULiRG8mPKY5Yg9antn cRxXFwxSNBhV6ljjrUGn2oncs/KLjI9as6yRsi2sRjjaD2qmoJqkgV7OQ5tUi+YKjHjj3NZ80skz F5XJ747CmqtAAdv9lT+ZrWNONP4US5SluJGu4hz0/hFSMOKWg96tEs6fwgB/ZknI/wBcf5Cijwhx psn/AF2P/oK0VnLcDmK9K+Dfgyz163u9bvNZ/s8WUwhUGLcGLoe+a81P411ngX4geIPBtrdW2jiz aO5cSP58RfkDHHIpVlNwahuXBpPUh+JHhyPwl4mfRra9N3EIY5RNs2lg4zXMYrY8X+I9S8Va5JrG q+T9pdFQiJNqgKMDjNZFVT5lFc24pWvoIBS0Ctnwpo02sanHEikxg/NVpXJehreAfC8mp3K3EyYj U5GRXsWlxQ6eI4o8iPaUI7AnjP60aPpsOm2KW8SgYHJA61JOnFbyoRqwcJdTllN3ujXimUkYAwOD kc0sdwRI0OcoOcgVkfaW2fIG3nCnHJ61PKZWjz5c23OGIPXH/wBfNfE18POhNxmjqjO+qN1beOW3 ByVYkYOOlYi+G9TjjcJ4huAoiCxgx7yrfNltzEsSd3c8YGOlbVlO0tqo8qQsnB6f41YWZgeYZMH2 H+NYxk0dkYrlucnDa6jpl95t5qU95BPldrxqoRyRhuOnC4wOOTWijbz0Ix0zWncxJMrlopl4YHGO /wDkVy/inXLbw3oM2oyxO0oOyOAkAuzNhRnnA5yT2H0xV1qkORS2stf8zJUKlWqoQV22kl5nQLdy CHypFSaPrtkXcKx4JIbfXi88EciNkqgGAp6jjp2rhfBnxCvb/XotO1i3t0S7YpDJAGGxsEhWBJyD gjPHOOOePQpDBJIrMPmAODiqyzNIOnOVJ3i012szbNMsxeXV1RxUeWSs+j0+Rtx60pCB7dkDHG7q Pep7j7IQBLPHvBJDEdDzWCwQbDvJAPAz0qvd3kpYiHDYPzFzxV0lKrOyt8zm+syS97U1Ly5hu4Eg YYTHzHHf1rmdS1Gz0wj7TdQQ7mCoZZAg56ZJqw2oXE7i3tlG9uCwH3P/AK9ed/HvwxNdadpWq2s8 Zls7pYCk2CGM7LEJDn+6xXP+yW9BXo06mJy+Mr6tp2jfd6fcXhqVPE14RrSsm97XsvRHpMEQLCWR hI+OD2H09KndlRSzsFUdzwK5bSpb+y0ax0fQ7WS8FrbpB9suv3aHaoGfU9O1S/8ACO6nfOJNW1yY n/nnbDYo+h6/yr05Y6Xw4em5PvtH73v8rmscuj8WLrKC7by/8BW3/b1jTvdasbXhpQW9M4/n/TNY Gu6naaratD5EkufumOPIH4sR/KtS38I6JEcm3klOc5klJq+uiaQME6fbMR0LoGP61hKnmlXdxivJ t/jY6Y1cmofCpzfdpJfdc8D1nTza3T4QohPAOCR+XFZ5QDq3/jor3jxX4ZsdR011htoo5VXgogFe Garaz6feSW0uQVPGfSuWeXY5O7qp/Jf5M7aea5c1aNFr0b/LmQ20soLmbdMpfYDjgDr1rl/EMRsr 25tbOS5Wa6Mj6UROypEVy7r6DAycHORx2rfMrgEZ4PWn2N7GLq3lECGSB2MM8iFlRmG04J4HHH41 5OYZfUcV9YkrNrsv8m79VbY9TL8ygpSlhIvmSf8AM9O73StunfR2MiwvLfU7C3tLC0SNZbcFZNuR FJgHrjBxkfU9e9WbC3u9F/0O3hS6M7F0ZpSioABleckewHHJ6d6Ws6P4usdXElg0UtkIPtEskUSx 5lOVZETnHGDj1waht9H1jxH4UM8d1JNOX221ysm0oDgSkAfeBUsoz3z0r5F5JWlV9nFrld+/47eR 9tHirCwoe2mn7SNlpyr1tq13+6xf8JGTxFqVxqdrp7y2oJXZIducbAeQcdSfyNXLO9ul1ZdG1QS+ dY2ywWrzMGLx7ncYPfAIXP8AsVr+B7ZNKs7e2Fg8BS0jjnl3AiXZ7YwrEs3OT35qt8QJ5Lt7JrQm 2R7gKjSgOqPnKsTwexUAYzuwa+gzDLaU8AqD0VNNp9u/39T4rKs6rxzlYu15TlZrunp+HQrQXdu0 90ls8chd1jVA38YDbm9hx+O01W1eyuru+05WEWGnCTNH8vmQ4LPGRzkHaD+B9ec3SLe+i0eSKwt4 5poJHWKUEAllQjeCeu5skg9NxGcVP4Ol1u6Q3bA36xsqJ5jBQsrbg/bJCjA+pPTkCKeHxMJ0KVOS dLlV7rf8NOljqrYrA1aeLxFaLjiOZ2adrdEtHr1vudXFYQWSlLaIQo8jysFYnLOxYn8yasxIrylW cIhIG7k0xjK0jLKMFTt656VHOHkm8ot8iAAjrnr39K+hS7HxTLEwJUsV3YUjOPbiq0cjoqwxgfvB hyQPlA5z/L86csRB2xFkDcEJwGqK6lgtb9ra5lKTRkAq3YkkAfmD+VUo6i8x7Q73UtIWAPTtQBMi mNdhUnOSOR/nNVxqdgZPLFwN2A3APA/yRTl1SxdgiXC+YDjGMcYH/wAUKpxfYCdd2CjY3rweOvvU N7MpV/MGdzZUKNoVh1wPTk1MUDMGJYEehxVU7klDbfNxkhu4+vFTy3E9dAlYtDHJGzCTvTIePmIL g9VY8574q2sDyDcko9cADFRi2C7g3IIHGPQ0corFW+gSJRLG29ZOYwOp9c1LbLMLYBxl+Sf5082z KC0YBkAO07eaLdJwQzA7z1JPAp30sJRs7leW4EYY7SQB+dNa6cYyoAPcHOPrVqSCOZiH2Dk5IPJx 7VVMDSpIQMqBgHpxSaE7k0bllznPaoLq0Esocu3oe9JJOCVCgpgcj1qRHTYzZI/iyD92qpzlCV4s HZ6MpyQeSineDliMY9KaRntT2Km2XLktuJAxximjpXtQcnH3tzBlrTWCpICcAcn6VBdTNPLuPQcL x2pOQCBnnrSAVMaaU3PuU5O1hshwvHHqfT3p6ABQB0xRTcFOVyR1I/wqxDyKSl3ZAI6GkoEdT4Sw NNfGf9cf5Cik8Jf8g2Tr/rj/ACFFQ9wOYxRgUtV4Z5WVfMt3RiwUgA8cDn9T+Rqmx2J8CjAqFppQ ARbt90NjvyGJH14H51P3oTuFh8ETzzJFGMs5wBXuXw98Px6TpaSOo85xknFcP8KPD/229/tC4TMU f3c969iAAAA4AFdFOPVmFWXQQ1FKOKm7VHIOK2W5gQ6eCLw4OPlNdDIr/YkgjUsqrlzt69+KwbFW N2FU4LDA/OussD5lqBuOVJBHoa+Tz1v618kd+BhzJoyIPMt4xIytiRsDDegrTcsU5UgKwXOM1W1+ 7i062+1XKNLCDt2gZOef58Ae5ArHufGWnq4SWC9jiI+VjAQD8pbnn0H4ZFeVySeqOyNPkurnQsrM rDdnI9K5zx54cTxB4futN3IJHQtbvn7sq8ofzFOl8W6ZbkC4trtFaGKTcEBA8xQyg4Oc84/A1b0b xJp+syC2hiuYpWQsVlTaVwEJ/EbxQ6Ta1WhUW4SU4uzWqZ80/D+W103xJNc6zdXbNphaJ4XUO63i nDAAf3QTntyuK9itPGWktoq6vcSEQB/KKjIYyY5XB5zjnHpXG/HTwxb+H9Xj13Q4oz/bN0UulkkO 1Z9rPvzz95QRj1Fcdqmn3um/Di38eTruhmmeE2qudq/NsDg45yUbnHIKV4yxNbCc+FoUk4pXT63f Xt5bbI+5q4LAZxTo4/GV2pzlytfZSV9Fu77PfeR7z4e1K28QWs13ptzG0cZ2lB95Dj+IkZH/AHz+ NQ3EcdvdNZxXc1xKyAuUfAQ85PHTPb6V5v8ABG7uprO71lD9mS4CwCJW3ZK4bdkdR84A75J6V6TZ WIEe0oUiznZnlj3LHv8ASvo8nwFXGUVUrLlb8/6/rY+Tzelhsvxc6dCXNFPTS3392np+dis1nDOS ttaxKpP3j8+PUknqfYZ+tWrDRbG2mE/kJJMOjso4+npWiiBQABgDoBUgWvqqeAoxs5Lma7niVMxr yTjGTSfnv6sRRTqjmmigVWlcIGYICfUnApEurVhkXEQ4U4LgEBsbcg9M5GPrXW2jhsyaioYru1ll EUc8buV3BQ3UZK5HrypqbFNO4Aa84+K3hsXFudRtk+deWAFej1XvYY7i3eGQZV1wRScebQcZcruf Mbo75jQMWIPQcis6310/a10P7AQyRpCzM2PmOFB24+7kjvnHOK9I1XQZNK1/UGIdbb7Ozbl7EkY/ WuPj8OX8niGPVDqULL5XlGExcl9oAc9s4LDPXH1r5LP8vp4+UKdT7L7vrv8AkfXcPZ3Wyr2kqT+N W2W6236a6m3pljqfnRx3MomiCgqVTllAIzyOuR/MfSXQdJ0CKxtNOvNRaJ4kZvs6LgIATnJPU4Oc 9qxNWvGdI7ZAym3bDSGQ7nYcbsdh1qoqqsCXRZHl80ja3JxgZJ5zg11zyyVSHNzWl0PLpYz2b5Wr x6mjeajHYwu9pE6SLKkUau4YKXbau7AGRyOR6GqetfbJraVb29Nyl2Rbyb0AKmQ7Q6kdwzA/hUni T+ztT0S7vIIp7O6Rd8ghQyBSPulB1PQYHXOK5y01PUdRmgT51/s5k+2MId484k7Ay544XOexYV4G YYfHvFUVSfKr2kv63TX3M+nyqrlUMDiXXjzTteD6rpbyaevmvmjq74RaXaQQ2xjYRII0wOOBgH34 rPspobSzSG3l8gvK8kmEzhncsx/Nia1pLSHUbJbmZ5lkCFl2YIbrkY7fXNZ91FpkcZwt1xgMyru2 HBOD/wB8kflX09H2MIqM1qtz5CXPJtrY3IWhlhjW3mEihABgY4//AF1n6zcvaeWqx4kbkOewqHTr SNYGmikdxnH7yPGCPTmn6gBc20huLpx5JO0OCSOnQk5OaypxhGsluhybcezNO1SRbJPOcyynBBxj rjimvbxyOTeQRHB+UsAw/Udap+HhNNaH/SVKoQAvUjnIrTEbIcpls/ezyT71VVck2upUPeSZAtrZ YzDbwLjg7UFMNpbI6lIYUxwSIwDj0HFWrpGtnWaQfu3wCAMFuM8fhVMIGiiz50kjg796YA9hWCb3 RTQtyHC7YwSzcAt0FWbWGIJkSAvj5st2H1pLayYt5khOfTcTz3z61aa0iDAqCMepzRZvYFoUlHlu xQblY8bSDVSXSRcXTXSX11EX5xHJgDIA/wDZRWuyL6ggdajWOEtt3cnooJoTaHoZR0h2ZhJqV28e RtXd0xjrnrzViKM20SweZLO4BO9yCx57/nV3ySSSWYADOPahrdUj8wuBuXPPtRKXcTRRaHfzIfm6 /L2qxbpFHbspTKIMnnBAqS9t2sbFL+eSPyZR8gJwx9sevQ/iKz9Ru45VS2tU2Mq7pizZPOOPwqEp TjzRWhN1Hcq+YI1wqgscntx+NZt5dGIC2hhmuZmG51jAJx6nJwPzp0r5lyhYEcE561k6nq8miXoM do1w92iqrZwoKk8Z+jE/gTnrU49V8HhHiKSTkrWT9d36Hdk2Hw2MxsKGJk4wd7tb7aLru9DUtZvt MIQIyNFkOjja6E881KBWFousrquuXsnlvEwVbfA+aNihYsQ3fkn8BW8K9DLMRVxGFhVrJKT3SOfN cNRw2MqUqEnKCdk2FFKDxjt1pcCu488QCl4pMUtADI8fN0+8adgU2Lo3+8ajklkWbaIGZMZ3AZ6A nH8v1pXsPdnXeEwP7Ok/67H+QopvhBt2luxVlJmbgj2FFQwOWnV2TbGwU5GT7VGPtBZtrKU+UK3B J9T+eKmkQSRshyAykHFRm3Uqw3v8ykHGO+ckenX+VU0CF2zby24Y6AdvvE/ywKuaPZz3t1Baj5pH ODjtVD7NHnO6TG0LjPGAQf6fqa9O+DehCSZtTmQlIxtjz3qoRuxTlZXPR/DOmR6TpENqi4IUFvrW lRxRXZsce4GmPT+1IRQBWbdHIsiHDKcg10emXEdyS8Uu0kfOnoawXXPaoYT5FyknOAfmx6VxZhgY 4unp8S2/yNaFZ0pX6HYuwjYlmYbgeQOhqMxvES8UpEZGSOpzVG0meQTRvOU/jTbgh4z0IznB9atI HESyrumRlwUwuRz1GMV8bVpSpS5ZHsKansOUsvDOT6VAJN8rLvPtuHWpopUYMW+TYcNuPT/IrHfU LQ3cp+0YbOFYJkVdHD1a1+SLduxz1aiha7M34i6AviXwVqehb0jlu4SsMhXPlyDlGHPYgHiodZ8M 2l/4MudInCCJ7Q28WVwkXy4XaO2DjGOmKvRainmAyRsyg8c9aTVRM00Zk4RkVkHbFd1HKKsq0YVV ypmH1uUYe6zmPA3h8aD4fsbCVklnggVJJFHDOB8zD3JJJPck106LgVHEoFTCvrIU4UoKEFojkq1Z 1puc3dsUClxRxRVEGfd3FtNLNZzW7yiPYvK/Kxc7CAe+A4z9fWmR3NgLvasDeayLIoAyMBlRfYE5 Q4+npVy9+1FVFs208knjg9s57dzjngU3df8AnJiK3CGYhieoiB4xzySPyPaspXuWtiCK5skUTLAy hVABPUApv/8AZgOfWr6HeisOjKD1B6/Tiqlq+puIzcwW0akt5ig5OMHGOfp69auGqhcUhDUch4p7 HFQTOAK0irkM5X4gaXJf6XJJbJuuFUgDbkkV5ldyass6rGILVk2gsFO5W7n86+ifDVm7+Zcyw5R8 Rx7lyWz1wPp36V5R8UtEj0DW2muN0NrO2ULnlm5Pb2HT2rxcbiYSxPs4pNrr/XY9DDUpezu9jiLP Q9PKFZvtEjk8ybsY/D/9dV9R060t7a5dImUrgJkliDxWwmoWKnAu7ZsEEjzB/jU0ypJKsiBTFKNx wcqw7Y9uayVWopXbZt7ONtDjbm9lnhjicIAmc7VwWPv61DZstqLgW6rEblt0zAcudu3n8ABXVatp ttfuH3JDNggbAFDfUU4aVBFpqxTRQuUXkjqTj25rr9vT5VoZ+zlfc5+31a4t4BAMSIgITdnjn+Va ujX8l/diJ1BiSLe5XOV5Ax6UaXpvhiTVo4b+/uIoBIY5QrBSCOCQSOn86nsDp0EeoW+jlrmGZ8CV /vqByB27NyawrzoyT5Y6lU4TTV3oXoo7a5uEgZmETMRJsAyMn6cnqaY9kJSba6UPGh2ZPBYDvj15 /SqVzpsTyRzxyzpIuD8jlejbv5itW2l0+20p5b2O5d/M2u+0ZG4Eh/cDBHHrXC001ym9k9yhHpln YtJFamSRSeWY4zjvjt196r6hqNvYSCM7y5j3MvBAXO3P+fSpb21vJpTLHqmEdy2VjHC9gP8APelv nWGEyyoXRUYsAM8Yz0/D9au7k7yd2KyS0MyPWLGUgNJIXYE52kcA9fpzUa3sKAOGmWJidgC5BPP4 /wAJ6+oqY6pY7zAI5oSkeSghOQOOP1HH19K3tG1TR7qX7ARI8r/KR5ZwnO3qPU/zoqScFdIcYpvU rW10SNvHTNPeRmHp9KTW7KTSL51xvjdtoJ4IHUfpVUXCuCAQCOo70lNTV1sD0LBn8tSGyR6Yqlfp FdR7dzoMg5UjPBz3FNnnCruyCScAZqLzlYHa4JA5x2pNsi9x0FrFGqql7eKBtDBpRggHOOnTgflW 7BsMxWR4h/FhXyMDnAPP+RWbbw2xtEkMh87axfd3OeAPwpsIzkEttU84HOKyk3IrYn1PEmmbkiSV lkDkP1wOoHoDx+Vc1oct0niKxuZRarAkymaPyiQ6ggkY+nb1rq9Eura11CNbuCOeDPz7xyVx0Az1 rndUMMGu3D2SGOFZi0annaM9PeuvBLnUqbuYzlazJddtDM8J02W2O8MZpCh2qx3bVHToMfXmsrWf DNhfaZuvb+2XUwsi208G8m33fdbHQkEetWWmcxtGDhC+7HpUWK6vqrlHklJ8olWalzRWpR0fSrTS 7dYrZFyERHcDG8qMbseprQApMUtdUYqKsjJtvVijrS0UUxBRRRQAyLo3+8etRKLhQoEiM5cM4/ur 3qWL+Lp940xrdWZm3sC3pjjp/wDEipaKOr8Hb/7LfzPveac47cLRTfCMarp8xBJ3Tk8np8qj+lFS xHOUGig1oIlsLZ7y8itowS0jACvofw1p0elaNBaIuCqgt9a8v+D2jfbNWbUJVzHB93Pc17Gu0A5B 6cexremrK5hVd3YSgUtFamQUUUUAIRULrkVMetIRxTTsIRZ3eERvLiSLBhY8YHdSfQ1DbeKbi21U 2ceg6lcRFhmWIAou7Zg5OOMs+e42f7Qp0iZpbK5eylaSMZJx16V5uPy+Fem3Fe8tv1/z9fU6KNdw mmwvtbe+gcjR9TtPMCqTJDtABBPzemOn1z+NGJRiuiN5/aELRM6hSpBUDGc1ny6cLWPz5LiJ4wwA A6tkjj261y5Vi6WFpThV913vYvFRdWSlHYqKoq7KZ2tokkiIWPo2OTVaaVXYbE2ADpxUltNJE4ZH K4r1lKVanGql56/12OVWi2mC8U4GneZFJIzyfJnsg4phK5O1j+NWptuzTQ7D6UUwNTgaoQtHFFFA BQaKDQBHIeDVnw/YC/1DMq5t4vmkz39BVSWtfwXJB5t1HceXtIUrvx15rnx1SVPDTlDf/PQ1w8VK qkzoYbVJ40kLugBJjCqFwOQO2ehrjvihoSa54WWW+toppIQJI5NuQvHf0Pv0+ld75kMYC71UDgDN cpq/i200yf8Asy50rULiHHlmaCLepGG/X5QMe9fHU9JJxPclZqx84ppGnRB0FnHzkNkZJ5zjmpji 3WLYMRxjasYHbjGBWv4stWs9TEqQvbw3RLpFKOU5OR+lcmmuwRSzCe0uw6uUB2A7uCePbjt/jXrR bnqcz0LF/YWl5P5klxOGD+YAOFU4A9O+PWrVpaR2dnNHHLLIHJcmRs87QP6U+CRbkJKqyIGQ/K4w evGR+dLJHsXCNtyQCvbk4/Crba0ENezsZJlnaGMuDuBzjnIOfzArM19o9Okj1LT4AsceEkgjBwRx n9f6Van1fTrcSrM5QxNtK7eWPtSi6sNRtbhLaZXG0qxCEYJyPTmqi2ncGroamuxoY3TTrudGfJVo yFZQeD64Iz6VNdarbW6Tj+zLu6A3xmExHa/HykHrtJ/lVbw1fmRZdL1CQiW3T9wx54HVf6itESjc FRSxP1AFTKHJOw1Lmjcy9IU3Es8SzXtnAiYt42HOTnAyR0xzkVXv9QvLSQ2t5bpuIBJVuGFaVxew wM0txIgMbcIvJJxxXN3txJeXLTyEnJ4HoPSumjD2jvNaGM5cq0NbTtZjlmaOaHazjauD1z6k/hW/ YLNbxJOVCPnAK4zkY/xrgyuCCCQR0NdFoF213FPFcTOZV+ZCfu9KzxmHUY80NiqVRt2Zam8RWUjK Z7jzQ3by+QDk+nt2zS3FtBfxtLbxqGIyoz144wMUsqmBI5UEQbBJwqkgHisDU9SkmBgib5Qf9YOC fb6VyUaDqu0NDSdRR3JpEjhYRwhHkZflcA8ce/p7UluEhnfemTjI9/X+dZ9hIyXK7iWDHHWpPsl2 xaNb9sIoJDJuZuADhuvX+daVqHspWbMoS5tTYN3CJ1W2dXDLyeD1FWrC1ury5a2tkLybC2NwHQZP WueRL63xHcXSsjHLAQqOM5AB6j0p093nCxFz8vJZj8pPXH8uaVLCuqvdZUqlmaQ8p51gM4FxMwVC D8qZOMk9selZEm0TOIi2zJAz1IqONSzADqTgVIyGNyhIyK9KlSjR91M5276h1OcfhRQOlKK1EJSg UtFABRRRQAUUUUDGR/xf7xp9Mi6N1+8afSBnT+E/+QdJ/wBdj/IUUeE/+QdJ/wBdj/6CtFS9xHMU qIXcIoyzHApK6b4b6SdV8SQhlzFCd71old2Buyues+AtJXSfDsERH7x13P8AjW/QoVVAHAHApcV1 JWRxt3dxKBS4o4pgFFFFAAaTFLRQA0imMgNS0lFxFcoQcgkfSiGSSGQMuGwc4YZGanwKYyiicY1I 8s1dDV07oljkjmtjG4KlWLHanLZ9SPeqWcCpSCvIqtNqVvDD5TTwwqWMZLDG4g7ce+D+ufSuSnRj hJSlHZ9L9i23U9SdYpmRHCHa5wp9TRLFPDIVeM8HGQMim6he6dfLDaWmvpZSo2EeJweinr2+8Qee pGO5qOGC9aJWtvFU8tuYw4kREKkbgcgjHZSO45NeY87mpX5Vb5nR9Vjy3bsTbmQ4cFT7ipEcHvVO SyvJ71LiXXZ5YxKzsFgXy8ED5OOnTIPJ5/OURSoqsdpDKWHPYev5134bNKFZe+1FmFSk4PTUtg/S lqtHJUysPWvQasZXJOM0HpSA+9FIZHKOKfp1zJCTDGIiGOSGXl/bNIwqvKnessRQjiKTpS6lQm6c uZG1A8EIzNEuwuR5rOGAz0HPPt+VTJMrgeVJsgDEKI+Cx6np0FYSyhh87MoXb8i8AgHPHvVn7XAt 1G4fGwE7gO/p9OTXx1TAYiEnFwd/LU71iovU4/4u20dxpkd4rKzROVE8jfMeCdvzckgV5WLllI/e RZB/+tXtWt2Oma1BcWep2xmhkk3xksRsbPDV4R4i8PWmmazc2YiBOSfMJJO3JwBj0/pXdToVaEUq kWio1Y1HoySSS6n8xEuzGckh1yCQRwfwpsMl6t4r3V+sqjOFEYXHAxn8j+dQ24jhXy0cRxoiqB7A YH6cfhTmkhCbdzcnPQk59ap1GXoaUlzERuYxc9yBzVWSfzThMp3PQcDH/wBaoopEGS6qrdNxXGar Xmn295dCWRyQQFO09MHP9DSTuOxcliCSJfRhmljbHA5YYpr3ur3IK29u0SHjJHOPxqGDS4jMHN/c jAPyiXPpg/59atXEn9n6eI1mdmC7I95yT75rqpTvZWu/MUo2V72MRgzSMZHLPnknmnAU1BUlemzl GkcVJp0rW94jKSATgj1pvamkVMkpRcX1DZ3NnxF5RtFKs+93Hf2Oaw0WrT3BlDef852gL7VCBWWH g6UOVjk7u4wqAM55q3o9zDaTPLcQmZCpXbnpnv8AhVYip7ZCS0DgbZAcEeo5H+feqrKMoWkEdyZd 13gqxJ544GOc/lxVO4Ci5k2nI3daWYPCzRF+np3qIcnA61FCgqd5J6MJSvoSwsUkWRcEqc9KfONz GTaFDEsAOnWo2AWMYkBz1HvUkcsYhZCmWxhTV3UvejqHkyMUopKXIrQQ7iim0dKQDqKTNGaAFooo oAZF0b/eNPpkX8XT7xqa3ieadIUGWdgBSQ2dP4UicaYzEYDSEj6YA/pRXXXOlppdrY2gGCLZWb6k milJWZKdzyTMuPuL0/vf/Wr2X4R6VcWOiNetbx+bcEEZkI4/KvKvDdlJqur29mq/MzgOPT1r6MsL dLW0it4wAsaBRitqUb6kVZW0F3XG7/Ux43Yz5h6evT9KQPc4GYIuhz+9PXt/DU9Fb2MLrsQbrrB/ cRdOP3p6/wDfNLvuMnEMfUY/eHp37VLS0WC/kQh7nj9zH1Of3p6du1G+5wD5EWcf89T1/wC+aloo sF12IS9yM4hizgY/enr3/hpd1xn/AFMeN2M+Yenr0/SpqSiwXXYhD3OBmGIdc/vT+Hajdc4/1EWc f89T19Pu1NRRYLrsQl7nnEER6f8ALU/j2oLXGf8AUx43dfMPT16VLQelFgv5FV2udozDEOuf3p49 O1N03S7a4N1dT6Zp8rRqXxIoIdz1z8v45qxKMiptLW2ljkgkMiyE7iBjDgcgfga5Mx5lhpOO/wDV zWhL94jNW2sWx5ui6YgDZjJVdpBznHyevbv1qWyt5khT7NFbRIC6BUPyBN2RgAYq/IxaRIgSoYEk j+X606CNIolijGFUYAr4tyZu5t7lfbeCFIhEPl5z5xPIyB/Dzx/OmrazBA3kq4UYAM5x2yMY4HFS 6jqFvptlJeXLuIkxu2KSeSAOPqartrukqHZb1W2IGO1GPBxg9O+4fnQlJrQFd7IS6tLsXDPAkToS CBvIPv2qsstyp2vCinnILn/CumSKJ0BY42jBwO9XLPkMswRgxPBA6ele1h88qU4qNRXt8mKOFU3p pc5JJrgj/Ux9P+eh6/lUvmXODiGM9MfvT+P8NX9as4LVkeFShcncucgfSqkfSvoKFeGIpqpDZnPU i6cnFobuuN2PJjxuxnzD09enX2ph+0kDMEXQ5/en8P4as0YrXXuRddiky3BH+pizj/nqevp92kKT /wDPGPqMfvD+ParuKMe1Vd9w07Ge6T/88Y8Z/wCeh6flXlvxX0aWO5XVkjRAwxIQ/wD9avX3HFc/ 4v09dQ0eeErk7SQPX2rOvTlWpOCY4SUZJ2Pnq6mEEXmzAMpyEIbPYZ7VI+oxIFMhCBgGG5ucH2xn tWo0Mtsxjf5ipwcjke9NRGZ+cjvzXzTVtGejp2M+3v4ppxCsi7jwVBOcYz6VZju9TaRpLe3hWNsK vmsR0zk/njH1NS3cXlfvIlG9jluM54wCfUA4pUuNSeMg2UTgYXIf744ycdhjP6VcbJXKXkRSX+oW 8mZraAbk4KsevH6dfyFU5ZbieXfLhj0+90H5VFcy3jXSia2UHIDfvfuD/wCtzUygV6eHhGMbrcyq SbdmIvmcZRf++v8A61LmT+4vT+9/9an0o61sQMJl/uL/AN9f/WpMydNi9f73/wBape1JigCPMn9x f++v/rUZk/uL0/vf/WqTH1oxigLkTGTP3F6/3u35VLZTzRyr8oGG3AhyMEdCOOtIRTSKmcFONmF7 EuptcyTCZ4UDFcsQ3U5+lNijl2bo0HQHO7np9KngmSdFt7qUxouSrhN2DjpjI/OoZNJSSN5Y9VIw SwQTbSec8Aj3rlqRl7NQbs/wLVm7jZlcskSqpPP8Rzj8qiPmDjy1B7/P0/SmNZv5xZri+JYYIMnX 9KljjdRtzLIwySX5brnmtaMZRSi9hSt0AeaxO1EHoN//ANam/v8AnEYOP9r/AOtTix9elPDO6yRC Xy9ykB+6nHBq588VeOpKsyEPJnGxev8Ae/8ArU4NLj7i+/z/AP1qqXZmguRG98yIU3Lug3ccLjOe T7+p96gMzs0MQ1CeOTcAx+z4D5LY4PTqPyrOOJUlsaezNMmX+4vT+9/9ajMmfuL1/vf/AFqS3SRE Ilm85txO7btwPSpK3WpAwNJ/cX/vr/61OzLj7i9P73/1qWlzTFcijM2G/dr97j5j/hXY/C3SZtS8 RJM0KtDbncxLf/WrkFJVyuPvHI9z6V7n8K9I/s3w8s0iYluPmP0qqcbsmpKyGeMTIdTi8xFRvIHC tkfeb2FFP8bf8hWL/rgP/QmoqZ/EyY7HL/BvRmM0ustGTs+VB0zXqyMroHQgqwyCO4rM8K6amlaJ b2irghQW+tX7E5s4TkH92vIGO1dMVbQxm+bUmoOKKWrIEo4oo7UAFHFFFABRRS0AJRxRRQAYFFFB oAY44qldxSM8TRXM1sY5BJuixlsA/Lz2yQT9KvkVFIvFDipJxlswTad0P0vSNSAjlutW/tCF4Qfn hVWD8c5X/gXGO9Sw2TO7wtKd8b4jLdOMHHH5VShu7izkDxNkA5KHkGrTeGIby9vNSfUL+J7lo5JI opFWPiPjggkfe9a+TzDL5YWV29Hsd9KUa+26JvJ+0Si2nt1ZZOMOoZGxz396k/s6EzBzZW4fpnyl zjgensPyqnb6NHZyfaI7/VJzBE4KPKrL83PIwCSABj8PXnekWVzGJNoZlG4L0PrivLemzL9nZbkc TYjCt3OBz70RziEMQA2Mn3qR48NHkdOnHP41U1T9zE7bgSAecd6KcHOaiuoSbir9jGuLlrq5aQ52 Z+UHsKmjqvAmKsr0r9AUI04qEFZI8y7k7scKOKBRQMKDRRQA1ulU7kHa2EDtg4XONx9M9s9KuN0q jqFxcWointrKS8YSjciMAQuCc89eQPzocuSLYJXaR478RtL13RdWhFxpcWbiPLGOT5Aw6/Qdxz39 jXOwfapEPnxeTIpwNjAhl45/PNexfEptV1vw19tj8PampjKuryKudp+9wFzxzXkMDXVxIxa3aAxt tIkXrxn19fSvlqcpTV5b9T12ktiRfNRwzbSmME9MUyMuLp9h2Kw4yp61PCA/M3zYx8vQfUf41Vvb hYEDgEtkhPTj1/WrjByfKtyW0lcqasgS5U5JLLyTUUMbOGIBwB1xVeS7SW4/fXEZk7qWAx04/UVq 3l3ZixVYZ4QH5GHA9P8AEfnXpSqOlCMFqzHl5m2UlpwqFJIjj99Fz0/eDn9amxhiDXRdPYmzFooo oEFFMkkCMF2k5HGPqB/Wo0uUZwoU4IBz6Zx/Q/pSuh2JTRUUVzHKEKq2HJAJHTGf8DU2KadwsNIo wKWmscU0IN205FJGHlYJGpYnsBTo7W5m/wBVCxB79B+ddDp2nNaQq7R4cjliOM1jXrxpLuy4U3Ix bOxaZWMu5ADjpzVe+hW2m8sOWOM9OldRKELZX7v8qrXdpDcqBKoJJ4I7Vy08ZLnvLY0lRstDDeJ1 s4p1LENndjtzTBIxHLE1tvbKLP7Og4AwM1hyxPBKY5Bz6jvXTQrKq2nuZSjyjxRTQaeBmtyRKKKV cBgSMjuKQGr4T0ptY1y3swDtLZYjsK+g7JVihW2ACmIBdvt2P44rz/4NaN5VtLqsqYaT5UyO1ehJ /wAfkgyP9Wnb3bvW9NWVzCo7u3Y5Xxt/yFYv+uA/9Caijxt/yFYuf+WA/wDQmorCp8TNIfCjr6js v+PSHJJPlr169KkzUVlxZw8Efu16nPauvqc/Qmo4oo9aYg7VBezSQpG0UfmFnCsACTjnnj8P88VP VO4S5W4eZLlFymyGJmIUtg9R06kduwqZOyHHcUXreZtNrPgz+UDg+oGenvn0460ttcXEkyrJalI2 iD7ueGycg59tv5mnWyagFTz5YSwEe7ZkAkFS/b2YenI96bBFfosCvcJIAF81mYknqWI49SB24A6V nd3Lsi1xRxRRWxmHFFFFABRRRQAUxxxTzTH6UIDO1C4ggA86QpuBIwjNwMZPyg4GWA59RXQRX+k6 pdPaWd3DJJFEEdEk528Df6Y5wD71kwokt/bq6I370Y3KDjn3roNLtbbyXuY7aKJ3X+BApxnIGR9a +ez6bUoRfnY78ElyysIIBaRu8e3y9uWRvYcnP0qAOiXxg8w4ZfMC5+4eOPpWjHlo2Zgu0AjAOciq Nr5UG+S4jWKVxu344YdcD0x6V4CTenU6Groj1PUjbrjYJDMARyQFx1/Wslp7i4ULNIWAOcYoupTc z7udg+6P509ExX2eAwMMPSi5R9/qzy6lVzb10FRcCpBjvQBilFdrIIrvzhbObcEy8bcY9Rnrx0z/ APXqAzX6K/8AoW8qqbfnUFiQu7vju35d803UIW82aZ71oo5LdoUVQRtJ53DBzng9OwpJY5POJTUV jjAkBAPO5yxXv2BGPpWUm7lpaEoOoG4H7uLytxDDI6fJg5z1++fyGKtdqpCNlf5dQ+faIsM2fmAc dM9cuh9TtGatwqUiVSxYgYJJyf1pwbFIU1XnWrB6VFNgKWYgADJJOAK1TsQX7e0l1jwjc6VHdPbO X2iVeqjIb9eR+Jr598Y+HdS0XxBc2/8Aacxy5AxGMcZ55+or3fSppLW+jy8kccjBTg4BPQex+lZX xi0OC70lb22YNcQ5LAkbj3Ofz/lXzWOToYtvpLU9TDy56SXVHhD6RfrYG+m1XgttACruXGM8f571 S1KeORUhQcqQSe3StO6nMDb5W/dgYCd2PpWGxaSRpGwCxzx0rpwdNuXPLoKrLSyIlt7Zplklt4nI IJygyamvrfT5XQxWsYC/7OATx279BSgUY5rtlTi5c1jJSklYiS2t1ZGEEQKHcp2Dg+tTjrSClFUk lsF2xaKKKBEcol3p5Zwufm6eo/pnpTQbjKHy06Hfzz04A5/WpqKVh3IoTcYXzFjUY+YD1yff0x+Z qWiihKwXGtRBtN1GGGVLDIoNRtkHI6jmqtfQR0wAUDHAq6s7CMhMOh+8Mng84IrOhkLwxueMqG/M VJFN5TiVZAhB+8enT3rwZRd7HepaaFOW+uMybdNuCBJtVhyGGR83HTr3qJNQvAm46VcZC7iBznqM D8h+dWBd228p9oQnPTtVlZAWHUnGOvFaqNt0Re4oYtCGKlSwBIPUViX7S3gYW8MZ8tiu9mwSQcED jpnj8K2pThBzXI65cXWn3c8cF00IZPNtIvLDefIzHchJ56lemMbs5448jNq+LoUlPCfFddL6P/g2 Pf4ew2X4jFOGPvy8ra1tqtdXddLk1u4dN2CDkgg9QQcEfnUwqC2TYuM5JJYn1JOSfzJqcV9bDn5F z7219ep8xV5PaS9n8N3a/boKTk5NW9GspNQ1KC0jUkuwBx6VSYhVLE4AGSa6X4b6taaVrEd7qdow t3wFlDZMYPRmXHTuec47dqwxGOw2FcVXmo8zsr9TpwuXYvGxm8PTcuVXduiPcNGso9P0yCzjAAjU A49anX/j7k648tPp1apAQQCDxUaf8fkhwf8AVp392r1Dx11OV8bf8hWL/rgP/Qmoo8bf8hWL/rgP /QmorkqfEzohsjrlqOx4s4cAY8teh46VItMsiDZwkEH92vQY7eldb3OdbEtFLSUxBUU8CTSxOxYe Wc4HQ/MrfzUVNSUmk9wTsU/7Oh3QNvk3QhwpBxksANxx1bjqc0tpp1vbGJkLlo02qWbPGWP/ALOf yFW6WlyIfMxKO1LSVQgoo70UAFFFLQAh6VFIeDUpqGU8GmtxDtLRWvhNJkRwAyOR7V01pFJHY7Cv 7wpnHueorlrORVSeMsQZdsYHrlgD+laniDR7id7i9t9Zv7SVoAoWFvkGwNjgEHq7HqM8egr5XOpO piuR9ErHp4KyptmsIFa3MeCMrg49xXOaneTzu9rIIyEc/Mo64rGnsp2kVBr2uybHZ973JU5OeMDg Yycf/WFW7C2eBXD3Vzcb33AzvuKjaBtB9OM/Umu7LculRnz1Y37eTMK9aMo8sGTRJgVMBQopa9xu 5xi0UtIcUhkdxBFcIEkBIByMMQeQQensSKjeytXI3xbgJRKFJJAbnkDp3P51ZozScUx3aKkOn2cR YpDyZDISWJO4lDnr/sL+VWqWihJLYV7idqhu4I7m3kgk+5IMHGP61PTTQ1dWYJ21MSTw9prXMc8i zymNw6q8m5dwOc4/H8frzTtQ0axvZZpbiKV5JU2MzSsf4NmR6cAdPQHrWwRRtFZfVqD1cUae2qdz 5z8W6E+ia5cRfPscjbk8AD0H41lgV7d8T/D41PSjdRL++iGc14m6sjlGBDA4IqJQUNFsbRlzK7Ep cc0AUtQUJgUtFJkUALRSZoyPegBaKQEUtABRRRQA001hmnnrSUwJRezJCIkAXAxkCq80ks2PMctj pTsClwKmMIxd0httkBSrlnevE6LLlkUbQP6/yqHA7U1lpyipq0hJuOx0G/K5HIxk4HasLXoobyWz kdTvtZjJGQe5Qrz+DH9KSJpdwVJWX8aSRGWQhjlu9cdPCqNRXe2ppKo2hEHFSAU0VS1GRXWS3eO7 AA4e3Uk/d/8Ar++a65z5VciMbmvpmnvql4liqkiX5Wx6d6dpOk69c/Ew+ELtNtsshSQiP5vIAJ8z PQAjbz6tjFdf8JtONgk+sXNrrl06jYiNFuUtwQQfx649favVV0OxtPE9zr/J1CSzSyBAGBGrs+fr lv0FeTmGX0Mx9nzxvKLvby0v+h6uXZzisq9oqMrKat8+j+V2XUAVQq8ADApEA+2SdP8AVp9erU5a ahH2yTkcRpxjnq3evo2fPLZnK+Nv+QrF/wBcB/6E1FHjb/kKxf8AXAf+hNRXHU+JnRD4UdXI+xRt G524Vc4zT4lKRKhYsVAG4nk+9RwoSfOkGHYcAjlBxxU1de5zvTQKKO9FMQUUUUAFFFFABRRRQAcU UUUAFFFFAAagm6VOagmHFOO4mR21vLLJG0X/AD1QEnoPmB/Pg10viS6e2stkcTEygqXHRao6Elrs gZlbzfM/u5APOPzz19qd4ovmL/YYjx1l4+hAr5qUJYjM7NXSf4I9GFqWFbvqzFgQYHFWVHtUUIqc dK+mk9TzkHtS0lFSMWjikooAWigUUAFFFLQAlH5UUUAHFGKKKAGyRrJG0bgFWGCK8T+JXh59L1Jr mFD5MhzxXt1ZfibSYdW017eRAWx8pqZx5kVCXKz50orQ17TJtLv3t5VIAPyms+uVnUFNp1NoAKKc m3eN+dvfHWkOMnAOO1ACU6kHWloAKKKKAExRilooGJRilooAQikxTqbQIBwQR2oOWJLHJPeiloAS tzwdosusarHGFJjVgWNZVjay3lykESksx/Kvc/Anh+PR9MUlB5rjJ9a0hG7InLlR0uk2tppumIkZ Uuq4Vcc5phLO5duWJyaXbTgKqlQVOUpXu3/VvQwlLmSQ3hVLEgAckntSQbndpSGUHAVSewzz+Of5 U1h50hjI/dr970c+lTitdxbHHeNv+QrFx/ywH/oTUUvjb/kKxf8AXAf+hNRXJU+JnRD4UdgKKq6p dixs2uDHvwwXGcckgf1qcQ35Gdlrz/tt/hWtXEU6TtJmUKM5q8UPopnk6h/dtf8Avtv8KPJ1D+5a /wDfbf4Vn9eod/zL+rVew8UUzydQ/u2v/fbf4UeRqH921/77b/Cj69Q7/mH1Wr2H0UzydQ/u2v8A 323+FHk6h/ctf++2/wAKPr1D+b8GH1Wr2H0UzydQ/u2v/fbf4UeTqH921/77b/Cj69Q7/gw+rVew +jvTPJ1D+7a/99t/hUdz9ugt5J3jtisaliA7Z4/Cj69Q7/mH1ar2J+KPwqKynF1Zw3KqVEqBgD2z UveutO+pgBqJxkVLTWFCES6S8SNJFKcb8GMngBh6/nTdSt3+0NIzguMBlLZI4HPuKhKg0Yz1Occc 1zyw37/20HZ9fNGqqe5yND7eSSIkxsVJGCRSimLT8cV0NK9zMKKKKAFIxg5BzSUdqMUALRQMUUAF FLikGKACiijFABRRRjigAooI4oxQByHxB8Mx6rZtcRJ+9UZOB+teK3ttLaXDQzKVZT3HWvpkgHII 615z8S/DtoyG5jwjHngVlUhfU1pz6M8mpp60912sV9DSYFYG42il4zRigBB1p1JxilxQAUUUlAC0 UUUAFFFA9aBhRRRQAU6KN5XEcalmY8AU2vQvhr4etrmdbichm64xTirsmTsrmx8NvCi26LfXaZY8 jIr0TGBxSRRpFGsaKAqjAFOrqiklY5ZSu7iYoxS0UxEVsP8AWcf8tDUtRWw4kOBy7fzqWkthvc47 xt/yFYv+uA/9Caijxt/yFYv+uA/9CaiuSp8TOiHwo//Z ------=_NextPart_000_00D1_01D02B90.16C48FD0--