Return-Path: Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by klubnl.pl (8.14.4/8.14.4/Debian-8+deb8u2) with ESMTP id w93FPlKq005321 for ; Wed, 3 Oct 2018 17:25:55 +0200 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1g7ixi-0001Wa-LW for rs_out_1@blacksheep.org; Wed, 03 Oct 2018 16:21:18 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1g7ixh-0001WR-N9 for rsgb_lf_group@blacksheep.org; Wed, 03 Oct 2018 16:21:17 +0100 Received: from mout02.posteo.de ([185.67.36.66]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.91_59-0488984) (envelope-from ) id 1g7ixf-0001Sv-7T for rsgb_lf_group@blacksheep.org; Wed, 03 Oct 2018 16:21:16 +0100 Received: from submission (posteo.de [89.146.220.130]) by mout02.posteo.de (Postfix) with ESMTPS id 833D620F42 for ; Wed, 3 Oct 2018 17:21:14 +0200 (CEST) X-DKIM-Result: Domain=posteo.de Result=Signature OK DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=posteo.de; s=2017; t=1538580074; bh=MDC3jGKYSNHszIh6xhT1k6AdT4xLv5LzCQQnYX8ZwBA=; h=Date:From:To:Subject:From; b=Yz+TGdRNBJ4R/kswnyTFdwRDIi5Y55Ncd1HplmT6hdHHlXgcZZICgydIIxYZVOEhs +zrnRU1I3DIMdGUjisVXJhI90IU709aRNg0qCjcC2Z4Eg68NBlEO+T9ggycV4FecaL SMBRZDTpcy63CN3mwpQJaFCjuzAzMgFtLng9rnbIY350xx3P/amF/S7N/AeYOwVscX iY1Z7eVgW4eVkqwDsO0s/ykUxmYW7W8Qyn5g8/7axYSVF2SBQnno/xElZRCTar04q3 kg7OnJ1WhVmSV4jb2cBPQEMThQAZEiDaWXfuqzMS1HK01Q4CdrFDtcPAsoAV0PPFbR YnhksyC/Pocog== Received: from customer (localhost [127.0.0.1]) by submission (posteo.de) with ESMTPSA id 42QKVK2p98z9rxT for ; Wed, 3 Oct 2018 17:21:13 +0200 (CEST) Message-ID: <5BB4DE69.3020206@posteo.de> Date: Wed, 03 Oct 2018 17:21:13 +0200 From: DK7FC User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; de; rv:1.9.1.8) Gecko/20100227 Thunderbird/3.0.3 MIME-Version: 1.0 To: rsgb_lf_group@blacksheep.org References: <5BB36E63.4070201@posteo.de> In-Reply-To: <5BB36E63.4070201@posteo.de> X-Spam-Score: -2.3 (--) X-Spam-Report: Spam detection software, running on the system "relay1.thorcom.net", has NOT identified this incoming email as spam. The original message has been attached to this so you can view it or label similar future email. If you have any questions, see @@CONTACT_ADDRESS@@ for details. Content preview: Here is a plot showing how the SNR developed with the number of stacked days. See attachment. 73, Stefan Am 02.10.2018 15:10, schrieb DK7FC: > Hi Edgar, VLF, > > Once again we made it! And again i thank you for the patience and the > RX and notebook our experiment occupied. Also thanks for providing the > files each day. > > Well, your result is based on the stack of the 21...26th September. > After these 6 days, the message was decodable with the Windows decoder > for the first time. > Actually we transmitted 2 days longer. These did even improve the > stack. With 8 days stacked the decoder does only show two decodes, > both of them show the correct message. Captures attached. > > We decided to try a last experiment in this season: 5 characters! An > announcement will follow. > > 73, Stefan > > > Am 02.10.2018 04:10, schrieb Edgar: >> >> A three character message "UFB", transmitted by Stefan Schaefer >> (DK7FC) at JN48ik, has been received at QE37pd a distance of 16778 km. >> >> The message was encoded and decoded using the EbNaut software by Paul >> Nicholson. http://www.abelian.org/ >> >> Spectrum Lab software by Wolfgang "Wolf" Buescher (DL4YHF) was used >> to capture the data. https://www.qsl.net/dl4yhf/spectra1.html >> >> Software provided by Markus Vester (DF6NM) was used to normalise and >> stack the data to be decoded. http://www.df6nm.de/ >> >> The result was obtained by stacking the data files received during >> the 21 st and 26 th of September. >> >> The receiving set-up used a 1m x 28 mm diameter aluminium whip at 9m >> with a FET buffer. >> >> A Steinberg UR242 Audio Interface and ASUS note book were used to >> capture the data files. >> >> Thank you to Stefan, who made this result possible. >> >> Regards, Edgar >> Moonah, Tasmania. >> [...] Content analysis details: (-2.3 points, 5.0 required) pts rule name description ---- ---------------------- -------------------------------------------------- -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, medium trust [185.67.36.66 listed in list.dnswl.org] -0.0 SPF_PASS SPF: sender matches SPF record -0.0 T_RP_MATCHES_RCVD Envelope sender domain matches handover relay domain 0.0 HTML_MESSAGE BODY: HTML included in message 0.0 T_DKIM_INVALID DKIM-Signature header exists but is not valid X-Scan-Signature: b6451ee7f2b576a2ba2fb8334c73aa80 Subject: Re: VLF: EbNaut - message received Content-Type: multipart/mixed; boundary="------------010004010905020906010109" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.5 required=5.0 tests=HTML_20_30,HTML_MESSAGE autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false This is a multi-part message in MIME format. --------------010004010905020906010109 Content-Type: multipart/alternative; boundary="------------080009050305000808070502" --------------080009050305000808070502 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Here is a plot showing how the SNR developed with the number of stacked days. See attachment. 73, Stefan Am 02.10.2018 15:10, schrieb DK7FC: > Hi Edgar, VLF, > > Once again we made it! And again i thank you for the patience and the > RX and notebook our experiment occupied. Also thanks for providing the > files each day. > > Well, your result is based on the stack of the 21...26th September. > After these 6 days, the message was decodable with the Windows decoder > for the first time. > Actually we transmitted 2 days longer. These did even improve the > stack. With 8 days stacked the decoder does only show two decodes, > both of them show the correct message. Captures attached. > > We decided to try a last experiment in this season: 5 characters! An > announcement will follow. > > 73, Stefan > > > Am 02.10.2018 04:10, schrieb Edgar: >> >> A three character message "UFB", transmitted by Stefan Schaefer >> (DK7FC) at JN48ik, has been received at QE37pd a distance of 16778 km. >> >> The message was encoded and decoded using the EbNaut software by Paul >> Nicholson. http://www.abelian.org/ >> >> Spectrum Lab software by Wolfgang "Wolf" Buescher (DL4YHF) was used >> to capture the data. https://www.qsl.net/dl4yhf/spectra1.html >> >> Software provided by Markus Vester (DF6NM) was used to normalise and >> stack the data to be decoded. http://www.df6nm.de/ >> >> The result was obtained by stacking the data files received during >> the 21 st and 26 th of September. >> >> The receiving set-up used a 1m x 28 mm diameter aluminium whip at 9m >> with a FET buffer. >> >> A Steinberg UR242 Audio Interface and ASUS note book were used to >> capture the data files. >> >> Thank you to Stefan, who made this result possible. >> >> Regards, Edgar >> Moonah, Tasmania. >> --------------080009050305000808070502 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: 7bit Here is a plot showing how the SNR developed with the number of stacked days. See attachment.

73, Stefan

Am 02.10.2018 15:10, schrieb DK7FC:
Hi Edgar, VLF,

Once again we made it! And again i thank you for the patience and the RX and notebook our experiment occupied. Also thanks for providing the files each day.

Well, your result is based on the stack of the 21...26th September. After these 6 days, the message was decodable with the Windows decoder for the first time.
Actually we transmitted 2 days longer. These did even improve the stack. With 8 days stacked the decoder does only show two decodes, both of them show the correct message. Captures attached.

We decided to try a last experiment in this season: 5 characters! An announcement will follow.

73, Stefan


Am 02.10.2018 04:10, schrieb Edgar:

A three character message "UFB", transmitted by Stefan Schaefer (DK7FC) at JN48ik, has been received at QE37pd a distance of 16778 km.

The message was encoded and decoded using the EbNaut software by Paul Nicholson. http://www.abelian.org/

Spectrum Lab software by Wolfgang "Wolf" Buescher (DL4YHF) was used to capture the data. https://www.qsl.net/dl4yhf/spectra1.html

Software provided by Markus Vester (DF6NM) was used to normalise and stack the data to be decoded. http://www.df6nm.de/

The result was obtained by stacking the data files received during the 21 st and 26 th of September.

The receiving set-up used a 1m x 28 mm diameter aluminium whip at 9m with a FET buffer.

A Steinberg UR242 Audio Interface and ASUS note book were used to capture the data files.

Thank you to Stefan, who made this result possible.

Regards, Edgar
Moonah, Tasmania.

--------------080009050305000808070502-- --------------010004010905020906010109 Content-Type: image/png; name="SNRdel.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="SNRdel.png" iVBORw0KGgoAAAANSUhEUgAABSIAAAJ+CAIAAAFfptnkAAAAB3RJTUUH4goDDxEKdw0qVQAA IABJREFUeJzs3T3So0bXgOFzvvJSpAlcswJYgfQmjpw6E6GUOHOVn6lyNokIpcypIycWK5BW MDXBwF76C1ogxI+EEP/cV7nGeiQEDag5nKah1RgjmI3/67sA6BT7e1663t+qav9V9bzg9qfr R6rq6dVt4iB57/p5/HXNz9mNp/MjUdUofj/95vWLgWf/tTNNXidFSObpBXcl910NPPXi99Of qnrJZJYXRMk0UW4j9KKH+h2IlJ00HIwJH51PHO3/jDHGnEQCEbE7MrEREZHvoRhjFrnvp5eb 3ui+q+76mF6EnWBzMsf1dffb727PZv1tLyKHVSAih5WISOS7ImLMIf5qJCJ+dP3U/jsQyvla I1THsSXHUUo0hfO1eXm4v+1JDcZM9cvdnw+O52OJScjI7GNj/rx9xB4du2Tvpvdr6cTs74FT /ZLsyHTFrbJ3834qeT8SyaevqCNzdE0U7sXCCR6883JhqN/tsVUzXUF7x/5u3qB2cAb7uzH2 sDzYPW2V7e9IZEE+VtGQK3QG+fdbRrSnLfZoTaPb0xb7+zWjCNIPsL8rGftuTpS1t8zdgybo UZt+/U4aPfIfTWYvVjfl+v1+a/P0TK1+TybQtmQi+5vdXNG49/dIk+AejXJ/U5tre7y/h3UV nN38vhHUb3ZzgwbdH/mlnlmoYnD1m9rcqqFcD2U3d+PRHg1E2r7VjYSqY+n93cH+jZdKbe7J Xfu5qp6MoU5PWKfxmz3du7t8LPPcAXb29KT39/VxCY0vg2g9HOn4vWoj+yq7WQa9SO/vQHWd ecLJm78AjuFDk21PDVKv2dnTM7j2VLTq0fk5puduf2fret3nt3CONliProdGP77VmCNhe8ho QZsXztfmpcn+LYTtETDl5LUU/KO1MuIt6X3K8XxemjmecyQfiwb2N+fkI8LxfF4e1e8qzasc ycflrfrNkXx0OJ7PS/3jOUfyMap5fs6RfKQ4ns9LnfrNkXy8Xt7fHMlHbSj3h6Ibj+p3fmdz JB+7F47nHMkngOP5vFSt3xzJp6FSDeZIPhnP6zc1e0qI0PMy6OevWTO/y6nZ1ad+z0sX9Vtd /62v912/veD5NA/0u/qBd/f1To7nnz+98+03j0B+9M63RUSO67fGvTfnt1b/TWs5pf/keD4v IzhfQ4PY3/Myr/2tqvb0x3c1EFFV149EIvf+nEhV34/6w0T8npd51W9Qv2eEyj0j7OwZ6XRn e6rJv6knOAZ65dq/NeEFqtfzZ1WVwEs+SBoX7YtkYhGJfDc9sYjYj1TVd6/vBPF345l7yWl4 MsP7Qt43pl4fUBaIiES+nY/ETXjxCorrR3YaW6TEu9uxrk539s+OJClQ4QRlGyJ5poiIiGxE jpJvHP32w07zdXcREXd9tG9HIvLth339/XKddp3a6PZbi7gAxpzShUkmO6xSJVwdVFV1LSLe cmdnKCLbhYjIt32Y/ErsNBluTxkeJ2gNGEvPvnGUEo3gBG1Gind25LsdlwMtSXcz/KlsIk/1 YIyMJyAhUTbY5vMdyc4euOrjqLKzRyN9QK7X2794R0a+u9ie7ViC7Ox32NswCvvn2x1W1nU/ /WlTN3KUxmz28ZsqVsTHO7LZ+3U4jDdsyEOosbMbM/wb50rz7LLma+QNuTanlbagbc/U5idU v4xlN1scxusY1z5OsLNfM/zA/EDxYdx13aQrwczZSjy6I3ah4jz7719leSn8ZBbyDR2j3seJ 6R/Gy9qwprH/XlLagjZ2maPuDHdtXmmtVfWMOcjYavaoT6DaVt5Txfm5w2K8JTl7EmrwQyOO 2RM4Pe7YKHc2x+p6Sg/jvT/hJI9j9ZvKY/bmNISblW085ojdiOEextnBjRvczmYft+dBnq0n Y7rpg8YO7kafNZt93LHsjrQ9Su+maGFnkzv1ouuazW7uUWnqlXkW5vs4aPfubmenG1LWcnrv ua13qNBDcDtE2z1tz8DvpnjvME6FHo7b9ez28iv29ECUxuxGbtHm6D0o2cN4un6/eWMfe3po 7nZ24U6tt7PZ0wNUejb+Dvb0MGUO444x5+wUw+u8gHpuNdsYk97T3CQwPaVn4/kqXgVDAA5Z k89BI1QP3OA6L6A9le4IGWDnQ1SUrqiVdnaF2s8BfAQaiNns6bEgZs/IuzWbXGtEBtG7FN14 0KiS7cWQR7Uel/qHcc7LRocTtBmpWbM5gI9RnZ3NAXykOIzPSPnN+F5QeH82B/DxKq21vqv2 WbXpms0BfNQ4jM/ICydoHMDHrurO5gA+ARzGZ6RSzeYAPg1VdvYHB/BpeLSzG7w/G0Pw6Hq2 YeDVaa3+dNYET1WJ2W8dzr2+uyG/2Q/6za+/eZu7p6rqvTMH9VK7zzwT7p2n07RKNqe3vl5h HdvzVtEbKcDmtvocxmekyXu9MHDs7BmZ0c5OTrXsC/uv72oQv6muL5Fv/+2tlG0iZudEviy2 fReiFezsGWFnA9M0o1M0YFamXLc9vbq+dn0RUfVEAk19lBK5z4a4evupI4F3f7nBFiO/VPfF BVUqWODdVjxVkPuNU/LNeOpkDl4g+dUpK5WqZ6+UuKp+dLdrLFdv8nPIf+Spun6UmU/ku1Hu iw+3yJRNuW4f4gsC9mdoztvkeX6b0/Uyif0zfYEu/TNS17fVwL4TV/zrDzpdQ1S99I8p9UO1 f7pS8juzZVy6frL09Kdeam5ekHwaxXMuPlKoutcpIz9TJZLLMyKyjEt+v3Gip8W2cziui6tN XO2vU9otY8dtdv3oIrJdyMHcbX9X9VdHkos3+UOMuZ9eVQ8mFMnOR0SWqkWHm+DpUXt6yLff E3jB6vD06QUF38uNtjRzqm7ycM30a9RG3Qamacrn5MCcvVa3fTdul5pxEwUwCq+dk0e+u9he E6F0xqgTuo0CGIv0Hbj5GzSbqZPUbaBB+dvma9xbTd0GOlL2oIuWnonwap20Z+KB6jr9Reo2 RiRTx16tWlWeRTOER5jUzLczlZm6jV68WUubKsMQanIe5+QYjaQmD7MuDQ11GwNFTX5TvXxb PNUD5+Romq3PVOZGkG+jZ9TnlnBOjq5xst0N6jZaR2XuBXUbzaMyD8JLzz22j622z47eh7e7 /DFjH6n/0IOy2krcnqPao3wVxuHBdt6YOer2uDVyUwEmibo9Do/v5gPy6tRJVTUm9KPFdnH9 s/lyzd1H7gVQrKwKE7d7RkBGS6jbnaImozPU7XZxpRd9qVUnA0/XR/qTJ9IXgajMGIh6dTJS XVK3hXNsDBjn5C8gJmNEqNsFiMaYgJp1ckr3bxONMUmFdTJQXSd/nIzJjUoXiSzu5jKeuk1N xkwU10lVDffOcnepWGMHXrd5sgdm6EncLgraRXMZZN2mSmPOCsf6WxljTsaYcF9YsV0/GnIf ctUvSa2mYmO26sRb39XdRQbYlsaNxEBi9NfAuF4FFPqp8F1Vlc1JjuuK+XZfyKiBMoV1OxAR Oa6LPhIRcVXPfZ+BU6uBx0rPpSPfLbsGlj8D7/icnLwaeGpk+Ta1Gqio8BpYIPGTkoJuS/OA vbJFxQYqqhlvk4HBrnNpOW5Tq4FXFbeTDwdtZkA9g863CddAbQON24Rr4E116raqZ8yh8aKk 5k+4Bt5V2E7+jPOztNaETsUGGjGgfJtaDTSoVtxuARUbaFa9fFuNCTOPVaqNZjOgDXXqdoOX uwjXQEv6PCenYgPt6a1uU7GBVtXsu/JOwzgJNtCBrvulEa6BbtQ8J687GgkVG+hIR3Gb83Cg Y3XiduDpS88nt+Gaig10qU7dXsvJGONHlSbmPBzoRYv9yTkPB3rUVr5NuAb6VbOd/HG+TcUG evda3LZV+sFpPOfhwEC8VreTWl0yJgHhGhiKptrSCNfAsNTLt4N0vp0eSRPAQNSM25mLXgMZ f7svrD6r33cpCgy0WADeNJTnpQFoViN1O4p8t4n5vFWGfhfv9TkqYvBS9/6GRX5vix6KPn97 XlC6Cxqp2808FLE2L+izDIGnInL8t8fKvepv0RJ83YmIW/Hughao6/cbWvyoz9//8d/A7oI8 8m1gmsi3gWmibk9S5PqRpyolPf8L3/Tu31SXRHrcqNuTFIrI4bS5tgEEnoioqu+qiNjU2L7W axtgFIh8i7+c1HxVTb6r6mU+xcCRbwPTRNwGpom4DUwQQRuYICo2MEFUbGCCqNjABE25YmtM 4suwyb9WkJv+2SyDNztKZxcR+UkJc1O+1Ck6qHJ3Sn6DpEv1YPUzExfORES8TJkj33YsL90F qf4wyWw1tSbxX4H9JL3tC+eTlMe7XZP3Hm6S6TLTJSIiTur1RuLnuhlj9o7sw/SUIrnHvxlj xNnHHzrGnPahOW2yE0vucXHJn/vQOJk3N6d0IcO9kxTSmFNubhtz2oRJYURkcxKRcO/sQxMX JJ5/XLL0lLYMyWreb5z0sm4bx87cETHGbHLFFtnYrRfezzA92/Sf6X/zHyWvb1vptEm2hjGn ZGvlC1/4/iZVbFvaZCuZOZn+2ia/Kif1OzYmLP79xXVjHxoR2TuZ2nuy7xtz/cnd/XA3J/vm 5q5mOpkaUlZCk/o5GmNsbU+KKvFRJpnz5pSe28n+WTjlKbcgk6ty6Y1jZ15W7Ncr9skeWUTE hHtbMGNCJzneGJPako4J96n5XSu23RFX4T5VpLv5JEtPV2xTstmnbcornAlKmX/3jqSjQXrK 5Ecj91XU/kb3TnbiBxW7IPQ5+9vvLNzf14R0xL5WbOf+9MHEcWlzMqlYdJJMxE5V7OSnn5Q2 fLhxcjO/FrtsWyXl39xOPRInudWxu42fnsgeLmOb9NftPsrMpGw+ImKrOhGbDipvqfdArMDT 1YHNfpPejIN9xti4sBExFE/HrkB1VGxggqZ8uQuYLSo2MEFUbGCCXqvYtlOQqvb4qEoAT9WJ 2MaYyz//NV4UAK8qG12v5qn4XoqfbwygM7ZWF9bt10bSjmen4uy375YKQCU1Br3lOjYwLIXV uGyMetUvhR/VidgAmpKvxmV1uNDHR/H7VGygIy+F4jdRsYH6bF3NVM6ylLilOlzotYrtBXJY iaqGxvQ87iZQy5unvoVzyLzTZQUu80LFVvU2p4OIGGN8V7dnWt3Qv6T1qHrTccUAW+XrhRF7 CF6o2MYcksdRUasxBOkLubVr1zvVcoBV2iLHxsikA6wxf5Zd75m51yr2YdVSMYAnkvqcqcbU 6kJEbAxaWX3GY1RsDBRV+h1UbAwL9bkRda5jA22gSjfohds2k9FSKgwmA7xA9UtyyYpa3Yg6 17GJ2WjKYDt4jB05NvpBlW4V17HRNap0B4jY6AhtY12iYqN1VOnuUbHRFupzj6jYaB5Vuncv 3Y+tm5Ox7Weu6pmnICLVEpa56aq/EkHkxevYxgtEIl8W2z/i0cTt0KeYqw/7v7hWJ39+9FGY OfooeZrh66fii62I/HWU1UGE0Yzn5MGTRuIQTaDu2pcvxTul5nVszsPHq8bT5y1OsEeExrPR Sz9CpGKlpYpOHhV7xJJqTCs0MqjYI5N/0i0P/UIeFXscHsRkajXyalTsQGTFdewOcGUYtdWo 2KtI5BL/wXXsFnzkX3NlGIWau44t0UJuw/twHbspJSfbBGo80sx1bBERWQj1uTk0aKMNNJ71 g/qMVlGxO0V9Rjeo2F2gPqNjVOwWUZ/RlzoVOxBZq9J+9gBVGv2qU7HXqpsTtboA9RkD8XrF jnxjTOS7sjq3UJ7xoX8YBqjOgxZUNeQ8XESo1RiqOqfiZNfpU24ef48BolW8qrLgTJXGAFGx n6A9DGNExS5A5oyxq3M/tupaJpdpU5kxJXXux55SlaY+Y5LqnIp7qofx122SZ0xYQcXOPBQl H5+Psjm0WKR2UZ8xB4UR2zHm2qvMLXrykTGjrNdccMZ8FFRsE/6qXiDHtchmGuk0VRpzU3Qq vtyZcC8Ho6oiowzOCao05qm48UyXO5Fdx0VpHE/Sx2wVnYo/O/1WVZHNkDNtAjVm7v8K3/VU RUTVK/gs8h2RcNi12pg/qdWYs+KKfbyG5WPBZ+H3szGhN8RxAlS/cPoNSFmO/ehsfHVQVXH2 Q2su5/QbSNTpoDK0a2D0OQEy6jSeDQq1GsgrzrFHh1oNpBVEbFf1ImKM0cE/Y5imMqBQQcS2 tdr1o7JarapDGD2XWg2UKel5Zq9j74rz7SGEcWo18EDNHNt3+4zY1GrgsYKKbYyxMfnBw8N3 lxbL9Fj6mScACpVdx35yw2ZfZ+P0QgGqGNN1bGo1UFHBqfi15WwYTd8JajVQXXHjme8O8Qo2 tRqoqLDxLNxdNiKl17FFxAvaLFQOzeDASwoj9sKYg8ii7Dtet6foNIMDr6pzHbv7h4oTroGX DP0mEE7CgRpqVuzDqtliFKNWA/UMN2KTWgO1DbRic9UaeMdAK7ZQq4E3DLFik1oDb6pRsSPJ PfCwQaTWQAPM68K9I84+ubuzaR8tzBOYpo+Pj8JKWmPg+2CxPW92KrKVpm8Fi0/COQ8HKvny pfgMt8ap+Era6XzGSTjQlGE1ntFmBjRiKBWblnCgQYOo2JyEA80aRMUWTsKBRvV/HZuTcKBx NSp26QMYauAkHGhDnVPxZsf0IlwDjXu9YgeeNHQqzkk40JLXK/bq0EhnUk7Cgfb02SpOuAZa 0k/F5iQcaNVQrmMDaFCdiv3mGLqEa6BtdSr29ly/5YxaDXSAU3Fggjqt2IRroBvdVWxqNdAZ TsWBCeqoYhOugS51UbGp1UDHat7dpR2PfA/gFa9X7Mg3xpxkXXFywjXQvXZPxanVQC9er9iL raqu5dRCYQA0o8ZIIFVH/yBcA31p61Sc5ygAPWoxxyZcA31ppWJzEg70q17Fjh58xkk40Lt6 FfvJo8UJ10C/XqvYT586zEk4MASvVezHF7o4CQcGouHGM8I1MASNVWxOwoHhqNPzLMOegVOr geF4N2IneTUJNjAcNe/HTi5kJ4GaiA0MR52KbYz5LzVmgDF/UquBQWlypOu+NDte9+iw+qx+ /n2eUgpM0KyPdsBUEbGBCaJiAxPUTMXu92HET29NaZXvzvpZzKra7/bvfem9F6Dw/QYqtqr3 /kzeYYzpsQzbs/n9h9vX0kWk3+OKsw97bKbx+m4SN8aIOH0tPfJdY0zhD6CBim3M4f2ZvCPy 3d7L0JfId81h1WMBztvF4wdvtOooIn2HFmPOfS06/H4p+2j0OXbku4ttb1tWRFy/t5+1iPS7 7iLiBRL5v/W19HDviIiz/72vAgRen+fhP76JiMi3H/mPuNwFTNDoIzaAPCo2MEFUbGCCqNjA BFGxJ8h2WlBVifzCCQob8tW9Tez12ukC76NiT5AJ96oqm9SIqJEvIqpe5Nu+NIGIuLb+u/59 76UoEPkW/6Gqvqsi4vpRv12s8BIq9gTpcmeMkeP6+qeqhN/t68WnzyIisko6dZjztnguwXWC 7dl4nnveLk4bsdUew8d1bDw384cZjBE7DJggTsWBCaJiAxPEqTgAAOPAyTgAAONAzAYAYByI 2QAAjAMxe6wi39Wr27M6vfvHXac+DfTes3s6IlV9+3mNgar2+sxHkecPv79umYrFdFVV233q dDOPlQ48zUnezy+h/JfzmnzhC8oQF1G1/jO07c8/yr0jxeuifiTZLeIW39ws172crVyFUquQ rWJlv6ikZj0uj63gmZk0tZswXsTsUVLV5T+/GuskmdBYdrzYnK7fMOF+XRySo9yBVSQ5uMTH FE0fqLzb9F7RoSc1bz85ekrqy1F8VE3etrO3cwuSJeYO9+mvuHa5caCS1LeO69LI4LuqurYb cVl8ehHF65T5LMgUKTmFShZlv2W/XThBXIAHBc6uZmaeydfLToySHW6lP9LU5k2/WfCbyJXc TYWKJIo83NqbpAyFP7BCSUgrXLnt2YjIMjl/ivzdRTanu3W0Pwf7s98u5BCXYe+IFN26nKyL vcv5ZIzI0fW8oi2c/QGIrJLaJSKyOS3yhQ689FeelieR7PEymfDPXdZTZjBOe6dgP27s63Av 1yOOxIfLU3bHO/vCGV7/CPdih/IJ9yKyD+08NiISxp+eci+yk5lT8mZ6ibcFnTaSOpNIpkle 2LEB7AROvJqOiIiT+Ury6f3rU3r+T7dkWL5BnIKZ372O3ZYoqXIWTRBKPFiSCfdOvO3u1ze7 mul5bq67Mcwtws5pU7zHT5vbnkrNufyXU7BqTurTzbOtnZmVLdepfPoHa5N9N9zfb+27IiUy X9oUvWmM2Tvi7EO7pNN19k48ZVi0KwtXoXSlNtcSpvb7w/LYpZ9uZShYtcy2vX6lqKCYDPLs MYpUdSe3oCv3DyaUxdaY0zqXzWziQ5GIyOV75tPrI5SKfA9FRGR1MMYsRGSxPW1krarLnWxO q7LJ3vH5k8SPdfplJRKnPrHrCFbGmFR2cj2gla9Hls1OtufrNlyWN5Z+vhuuzMksyC3LHZ1f n0xgLT5d/vmv6IOi1YznabO083ZxbVwoKvzd4TuVxl33VEFJsr+c8pJfn5J3LF2rYuujiEiV weeS3FGuv6ncXamL7d6R41rtc/0yw/nZld7IfStU4B1vJyV3dhf5e7vw/zqKOLZ4y91FnL2I qC43p0oja6muRTb5sfUi3z2KiBxVlyJy2S2vLTfl5bF+/O+8yY2wmq74qUXrcvfZGNPnwH7o QCtnAuhAKpFK3rs/Z7cH5luenT79L9n712N5aIyksoE4Eb1LvNKJYMlktzzbmPhcIf1OnNMk C72VzZY1lfTcrVo8q2SFSjK/OId29tnCpLZjZumFGyTZdum1Ti8oKU+8uLumhcIJTCrFTyZL FbhgNTPzTH4CBYldPs+263jayHU04Lu1Lv/lFJc8LmaYbo24K/z9iifyW77k06rsF9N7NpO5 Xku1OeU/Sgv3jt2zdsvtw+sXH7YEZKpVcdp9/6u7y7OflUdSTVeSnz7ZTZnNWNr6gvHjmSro T+Dp+njqKDMIvGDV6+DiGIGy5hCOkxgIYjYAAOPA9WwAAMaBmA0AwDgQswEAGAdiNgAA49BW zFZV13XjByJFyVOTKj4CCQCAyVP98tL0P7VUDmNM5Ltfr38tjDlEvps8oyAtHcU/Pj5aKg8A AMORhDsbto35s8q3WrzXK/Ldr5/Oh5WIBOr+sI9h8lR/KbkfV5UbzwAA0/FSGl0lbA8oTBKz AQCjUD0YP4jEyUwqJtlCzAYAIK1KPK4eZR/78uXLn3++MKu2rmcDADAoFZPjpuJxG4jZAIDe qH55J0Y2fsF44IjZAIAeJOE26Tj96o1P1gQicXXtxexIdbk5mcPq+toYk3oBABCpkGjWi2Sj 89ItT7PVXsxehHsndX+2jdOL1hYHACOTSTTLTDiM1eg4PXPdtY3bbuEk2QBma7axucwMV/lN ncTswNP1UeJHnp1KnqkCAFNSGKHzUerNTliYlRZj9mJ7PthXq4Mxh/YWBAC9y0foipGYgI3q 6DcOAHVkgjShFx0gZgNAJQRp9I6YDQDFCNIYmm7uzxYR8V3dXYR+4wCGjDiNIevm/mwRke3Z 7FJDZQPAQKTjNEEaQ0bbOIA5Ik5jjIjZAGaBRm9MQCf3Z8e4mA2gS8RpTAx5NoDpIEhj2ojZ AEaMII1ZIWYDGBOCNOasxZjtu/r9j+v92fEoISLpW7YB4OEgGbUf4g1MUosx+3+/Ot/tq8hf x6N5BZ76kdkyjjaACgNIE6GBNNrGAXTk8ejRFkEaeKCTmL3Y7r/p9Rlom5MhyQZGrkr0LVQ4 enTZRwAyOro/e3s22/aWBIzcgwu6ZdO3V5gqGoyvhGqgOtrGgT49vaBbiDgHzBMxG+jO08BM MAbwADEbaN6rvaBfbRsHME8dxWxP1d6ezf3ZmJ7CCP1SDCZgA6iik5gd+cc4VPuuBmII2hip 98MzANTW0b1e5hCoqmxOp89dLBB4H+EZwNB01Dbu6lpE5Lj+ax+eu1kk8AoiNIDh6yhmnxk5 G0PCU6wBjBH9xjF95NAApoGYjQkijQYwScRsjB4RGsBMdBez7SAhhgvbeFsmSBOhAcxERzFb VW20dlXpj4aXkEYDgNV12/il4+VhDDKjMRKkAaBQNzE7yvzBCNqwMuGZoZQB4IFuYvYiuYzN 9Ww8HtuKaA0AZeg3jhZVvzGaga0A4CliNprx6uiT9SYDgDkjZuNlb4ZnAEA9xGw8wlM/AWA4 uo3Zka+/iTlvO10oqiE8A8DAdRizA0///cWcV5m37fPR8q/Rso8K74hqwZsAgEZ8fHy8NL12 dvNV8ii02hPgHTyoBACG5suXL3/++cKhuGKeHaiuyz47GZPNnYsQjztGkAaAiakYs1dE3FFI x2kiNABMTNXr2ekrzSdjVhKorkNjeApp7xjkCgBmomrbuFwbtwPV9UpEZCUiIU8O7w8pNQDM zQv9xpNUm97dPSJUA8BsdTSul+pXYw4i4qr+TYv66wjVAAAxLziJOMkfInKq+r2NiITxtzIf 9rz+Q/eR+g8AMCkfHx+vRGHzUp69MmaVNIy/EG5Xv4h8s7n1Jjd+djIf7s9OKxpJmvQaACbl y5dHYxPnVb8/+y9jzpIL1a7qH8/vz14lkxyIyiXsYJS0gQMAylS/P7s4Lp+JwW9L4rR9QagG ABT6v74LAAAAKnknZgdBY8WYKdUv6dzamD9JsgEAZSq2jUeqy9CYRerB4/vQbLlnq658FzOi NQDgsYoxO5RrZ++ViNR4ZKnv6v/O3JYtUtwhHACA514eI6Te7Vi7i+yuN4lt7MNVZohoDQB4 R8Xr2YEWqX49O7kffO8c53kVPLluTcAGANTzUp59vZi9OZlDlRGz70SqS5nlKNqk1wCARlR/ pso6+eO41qOIXAflrGhBtAYA4B0v5NnJs0Xt40tnGIOrI1oDABr3wvVsY4xEvqraoUFeup49 K1y6BgC0oWqeLcmw2c5+FTeVv3xRe+pIrwEA7ak6rlemJbxew7iq1uq/Ng7kdWfoAAAgAElE QVQ8LRwA0Kqunjce+V4g4d7paHHdyjyCFACANrw0fnZNke8udxeR3VFERH95obf5CBCtAQDd 6CLPXmzP9oEq4d7ZnKYTsEmvAQBd6iLPTiy258k8tpRoDQDoWKcxexroHA4A6AUx+zWk1wCA vhCzqyK9BgD0q6N7vbx4KDDXj7pZYrN4tBkAoHcdxeyD7Th+2lz++a+bJTaI9nAAwBB09UwV a3XYy25ETynnbi4AwHB0dD3b0+vwneLsxzIcGNEaADAoHcXsgzEjujOb7mYAgAHqtm18DAjY AIBh4l6vO7SHAwAGi5h9RXoNABi4ztrGA3t/9jDvziZgAwCGr7OYvbJ3aP/n6tDu9eJ5KQCA Uei0bVxVjRnWrV5cwAYAjEVHMdtG60EFbNrDAQDj0lHMHlS0FtJrAMAIzfH+bAI2AGCM5nWv F+3hAIDxmlGeTcAGAIxap3m2p3ro6cI27eEAgLHrKM/2XQ1Ejt0sLIeADQCYgI7y7O25z/Ra CNgAgPGbch800msAwJR02gety7u0CdgAgImZYJ5NezgAYJKmFrNJrwEAUzWp+7MJ2ACACZtI nk17OABg8job18s15iwiruq56Z5opNcAgFkwHQj3sjnZl6eN7MO7D99egw+Rj7dnAgBA1z4+ Pl4Kp9pE1HyuSp5tx9h+ZZ60hwMARuzLly9//vlCCOts/OyzfdFUwzjt4QCAuRllv3ECNgBg hkbWb5z2cADAbI0pzyZgAwDmbDR5Nu3hAICZ6yrPDjxVVdUaX1X9QsAGAKCT+7NjhYt7VsAP 7sAGAEzSq/dn9982noTt/P3Z9+k1STYAYFK+fPny0vSdxuwKWfUV3c0AAMjoP8/O4+o1AAB5 g7rX60MI2AAAlBhEnp20hBOwAQAo03+enQTsB+8AAIBu8uxIdWmMSb24sVk1nc4AAHism5i9 iOP0omwKY/58dSxOAABmpcUwmTz1zC7iaUieecxm9Vn9vkvRG1af1e+7FL15dfVbvJ59e9JZ 4Nn4bR9fGpRP315hho/V77sIfWL1+y5Cn1j9vovQp1dXf9YnOAAAjEj//cYBAEAVxGwAAMZh ODE7UlWv7Fr3pPmuun5kX8xwE0S+a9faVfWjvkvTEztWbd+l6EWkrt93GfoTePbHnxwE5iny 3fkd+Wy19+TFvT+g69mR7379dD6s+i5Hf+a8BVRVnL05b/suSA9c1bMx8+w9G/nucnexr0/G zO23nz5Rm+HqW76r8rfZlt4IPGWZu6uqGE6ePWv2bHuxnWnAFnuXwXlrzzpnRVUvcdWd4eov tuf4/pJwPb/Vd27318xx9UVEIn/3+TTPgO2qJndXqboVv0XM7p+qro9yXNtb4eZYb33Xrnpg zKHvsnTtdkukyAxXX+K97/pzXP2zMZFdfy+c4eqLiP/b7jTXTOVszPXQ5/rGnCt+a47NcQAA jBF5NgAA40DMBgBgHIjZAACMAzEbGIdrd5Vrd73rm9Xv6tbKt797tkvYix8B6AAxGxiH3UVE NraTue1pmwy9I/EAPLYTqojYhxRlI3z64S2Rn3xuQ7kX/3nMLTr/UWZxyQlB4N3eSRbfyuYA ZomYDYyDDdZinxynGoiYcC/x0xic24QXEfF0Kc7epCO8yG6p66OEdmzc5S75wlI9keAoEhpj jNlkl1zwUWZxJtzvlioSrI9i71pJTZA/BwBQEzEbGIekbXy5u4hsViKy+CTXPDu43E98MKFc dnEmfG3N3ofGmHCZivfWyRxEVntHlsV5dv6j7OJksT1tRHW9OV3vHc1OAKAJ3J8N4F2eDeeb k5nr8zGAbhCzAQAYB9rGAQAYB/JsAADGgTwbAIBxIGYDADAOxGwAAMaBmA0AwDgQswEAGAdi NgAA40DMBgBgHIjZAACMAzF7rJKRDm/jLEpwN/Bi4CWfJmMpVhwe0Q5H8WYJvdu4kL2J/CcF 8O5H0Xg6u+qjUNfztMAVZXe4qutH8fv5vV/6y3lJQeGD+59ealRQ+8HrC7kuKrfXonj+QXo5 0XVkFfe6jimluzE1SunjjWBnnl6d9OYu/MptLNRn5Smayd2q1d5NGDVi9hgF6YPdOj4cXx3X FWLKcQ6jGnvXIbBKuclAVZdd1bDdpqcFblelX06pSoU/rivH6eDhudHCEZHLbTjRyP9NRE6Z EUoif7m7iDh2eNDnbLROjVK6fnBiEXiv76xgzcCkeA8xe3wi/y+JxzO2j5697H5LT7AsCT/x N4wjUjiqsc1J3OzBMkjnAalEQUQkNX1QmC4k4pEk3fR31fWvmVhc5nj+QZIR2mwmXapschz5 drnpXC7wrvG4PEhEF5HNKR4W+vJP2QbJz8HLJo23vDYukauq9l9b8MwEdqp4PaLCAmdWMzfP KMnpSlZwY1LO28VtwdcVy563Ff5ysiWP/FR6d838Hm/tU1yGcO+IiFctN9wtHyWsf+8dEUl+ FL/tLiKSGVPMRt84YK+SUoiIbE4LyQh0uZPNyZiTiIhsbGkdkfwW9lT1Pvwe4rnvHRERc97m y6y6Tv31tDxxsTzVJ607mZR9+qfjs2YwPqdk9+3D7PubzUbsUfIUv7Ax6bavQxERcTIz3RT+ Nk53b+/DeCknY+JDcFg8mZ3hdSmFv7rcAje5Od05FXzLseXIT5mez+OtmS7zgw1StqDrHJx9 PCsn2TLJF/MTpHeiiMjmlClwfjXv5xkWbIfsSm1MjmRtksIU/nIKSh7u5RaGrz+G0q2dmpUx 5lpsZ2+yv8kSqfnmPruGutt6XV9fi1TyrdLlOvZr2V28sTM/ZWfilMzqlCpUwapcI3qF8sQb 6iQizvXXeT/z27a9+y05+Z8yJoSYPVJhUS29VmnHHmtyMTstV63vjoBOfBxxkiN16vDtxMey +xfZyZKYbY9WYW5B6aNqMk164tsE4f76pXAvSXw9ba5TJp/ev64UFZIt6ezz7183bLhPXqTf zB+dkyXa+Fp2HmCSbCze2plPC1fzfp4nebh2uR2e3qTXPZXa1KW/nHzJC2O2KdvauVlJ/Jup tndS38pFwuRXer+UxwGsLKaGcjtV2mQWuncKdmXhKpSv1MmWMBezS2O8Lf39it+f54mUbVtM GG3jI7VIdqGIXHbL9GfncC9y9H9kv2PiQ4azD3MNcaGIbH65Ni7+Gmd0FxGRy61p9PKPXJsl j9G1bflQNlni36OISLzEhYjI8d/4w+vpxOqXzbUQkp44nmDxKS7md0laTddHEfkvbjP82W6D ZMqqFsaGw8vuvvUxFJHPnxYiIottumH51/8tMgtKmtAz1xv+tyid4HvqSug5H2LLVzOe58ru oofNoXeH79sKOL9eZ3G/zaXol1O2aj9qXvqOREScn6tOHS9eREzmWnXcPB6IeOujiJP52Bjj iFx2y3RJfXctIrk5iUT/iWxs8exP2tr/vhKRfy7yqazl+n4uRxFnH+Y/cHUtm1N+saXlsewF +2O6RT2bZyc8u5XMQTBpxOzxscex5Ehka+7dIXSx3YjsdgVXrLfn64Esd0lxJSLHf69v/xNH lFsqc3UWkcX2LCK/ub9JfLgpnCzxy10JIxGRzS/xh9dCBv8eReTu1KPQ8me5z0uSYFrtqJoW aMHF+9uSROTbj/hS/YMeapG/u9zlmlUm+PnWzi1evhNA+WomzqmTNpHjCzE07rpVsM0zv5yn qxb8W/h2qeCriGz+KLjWm59Ubae2dOv3vcX2bxH5y7eR8u/0R7Zt/GxOIrJMXY3eXSQ5TbwT fk/OJK4nf4En9gwp8C65K+UlRf4qIn/kd5U9qT2uVdX2Wkuu+peW58qxuXX5r/Qq8t2jyImB leegXnqOXuVP5FNXJU9305Rfz87u+srXs42J8/Vbe/KT69nZAtsvFa6FnVNqguyq3X+l9Apr eo3C+4vrCSc/q/INkjTCp1unk+Z6Zx+m26tvV/pN8QTZds7UJV77xfxq3s0z10yaKXxu26Yv S6c9/OVUKXnR1r4p6p5Q9nu7byI+VbksW7TQu9bmzd2cU9c7sk52Ixdst9xlgszSkz9LrlXf /a7up3lQnts1ptRXKl3PFo7qk0aePUYLkzq4bE6mqEFssXdy78Uf2QNp5uT9kIrEtyPt6pD0 yjmlsr3t33sR2f+9fTxZusBxcTJHxuvVU3H2FZv1UrPaPL6H51BwcnPnnBz0nX1+VrcNImLS bcsZi224dy67peq/dl2yOVHxBKvbqczmZLsZpwv8bDVX6c1oXkqwkv5uxds89cspK3m8r9Nn Y0+3tl105aKuivLVrEO8JmXT2lId1zavTV3vyC1O5OJHyZZ00qe2lZLs++sd1Twoz832bERE y3vb2xtJMBP6Wm0HmqOqIpvOrsCpelztQ5nId5e7yz7MnXEGnq6PBe8Dffip7wIAXfCU01M8 stieT991vdRd7iNnHxKwMRAcyADgxibc1z82p3x/daBHxGwAAMaBPmgAAIwDMRsAgHEgZgMA MA7EbAAAxoGYDQDAOBCzAQAYB2I2AADjQMwGAGAc2ovZUTLenB1W7za4MgAAeF07MTvwVG/D 8vru2g4fF+6d8sFpAADAIy0+u1RzozKoavhgTEMAAGZD9YuIGPPnC1/pLGbbhvF8zE4azD8+ PloqCQAAg5KOeNXDdqd5tkik+pUxjAEAs2XT64yKYbuL8bM91d+v6XXYweIAABiCwvD8ji5i 9sGckgbwkKE/AQCT81J4NubP9PSDaBsHAGB6qofnx8F4WH3QAAAYu4oR+qXQW1sXbeMAAIzC oCJ0HjEbADBTA4/QecRsAMD0NXURul/EbADApLzahbu9kjSOmA0AGKsJh+dCxGwAQD8q3uz0 6pNJJhCby3CvFwCgB/mHitR4atiEw3OhFmO2p3qIZ+6pHkXE2ZvztqXFAQDyngbCVsNeUw/v nFtsLtNW27jv6lHkEL/+tg/NduG7qt4nc1i1tFAAGJenjcONP7C6l0VURGB+qpU823f109ms GdcLAMoVPnG68Qha5fGZrSorQL0Hbs9cp2NxRr779dOZNBsApnG78JtqPHB75rqL2ZHvLr// QcM4ADwI2AQwPNDRvV6Bp//+Ygz9zwDM2OPcmmiNp7qI2ZHv/vsLCTaAOSqL07VHUMacddE2 rqqptzf0QQMweYWhOh+YuaCLl/BMFQBoTMVQDdTDs0sB4F2EanSDmA0A9eWjNaEa7SFmA8DL CNXoBTEbAF6QidaEanSJmA0Az5FYYwiI2QDwCIk1hoOYDQDFiNYYmhZjdnr8bBERCbxgxdPQ AAwfTyjDMHUxfraIiESq682J57cAGC4SawxcKzHbjp8tt0eWRqpfw73ztY2FAcDbiNYYhVZi 9vacyacXxhwi321jWQDwDqI1RoQ+aABmimiN0SFmA5gdojVGipgNYEaI1hg1YjaAWSBaYwIY PxvAxHGzNSaDPBvANJFYY3qI2QCmhmiNqSJmA5gIht7C5BGzAYweiTVmgpgNYKxIrDE3xGwA 40NijXkiZgMYDRJrzBwxG8AIkFgD0mbMjlSXyQNbNB6Xk0e4AKgon1UL0Rrz1s5z0AJP10eJ I3Tg6Y/fzXYhEvn69ZM5rJpfIoBxsoE5HYkJ1UCZFp9dqnqduat6viXcrjHnlpYIYFwKw3Ma oRpI6/96dtJsDmBmPp6+r1o2DTAFr6bN/cdsrnADM1E5qya3Bop1EbP/2Igfib2eLZs/Olgi gB49jc2FaAYHnurierbtQ27fJKsGxq5eSJaSqJzvgwagDONnA9NXO8rWQwAGWtL/9Wxg5l5N NDsOwIWIykAvyLOBPqUDcCYQNhibCbHANBCzgd40e2EYwOTRNg70g8eJAHgVMRvoSJWsmjgN 4AFiNtCiB3HahucH17MBIIPr2UDzykI1NygDeAcxG2jGS3EaAGropm08UF3bV5wiYGIYOBJA Z7rIsz3VX4xZCeNnYzoI1QC610XMTo2fHal+NebQ9hKBNtD6DaBfHY3rpa5vzlvfXYo4mU8Z PxuD9/H4TcZ4BlDPq2lzR33QPNWjiDFG1SPPxijQ+g1gaLrIs31Xf7eBOvCc/e8dLBGojVAN YLA6ybMjX5c7+5J+4xgg4jSAUeD+bMwXoRrAuPDsUsxRPloTqgEMHzEbM0KoBjBqxGxMH6Ea wDQQszFZhGoAE0PMxtQQqgFMFTEbE0GoBjB5xGyMG/drAZgPYjbGisQawNx0FLMDT9dHkc2J gTjxJkI1gNnq5DlogadrMebgu/rPr+F5u2h9iZiiTLQmVAOYmy7y7OjHt83pLCLbv/e7r6EI MRsvILEGAKuj540ng2TzeHNURKgGgIwuYnbg6VpO5rBKXrS9RIyLDc9JSKYNHAAKdRGzXdVz vBRV15hz20vEiBTerGURrQEgrYvr2b86ol5g82xx9h0sEWPB3dUAUF0XMXt7NuKqqoizN+dt B0vE8JWl1wRsACjTUR80wHrQEi4EbAB4iOegoQuP28AzfdAAAIXIs9EiLlcDQIPIs9EwLlQD QEuI2WgGKTUAtI2YjfpIqQGgS8RsvIY4DQB9IWajEkI1APSOmI1SxGkAGJQuYranerz9tTHm 0MFCURu9yQBgmDq9P9tV/dsYRs8eIFJqABi+DtvGA++yORGwh4ZhqgFgLLrLs1WLl6Wq3RQA 9z4qvAMAaNGrIbizmB2o/suV7N6RVQPAeHXUNh75f21O526WhUKZaE2oBoDRqZRn33f8zqjU D9x39dPZrF4qGppAYg0Ak9FRnr09M3pYpwjVADA9VWP2PjTbfJ/vyNfl92YLhDfRBg4AU8X4 2ZOSDthEawCYmKp5tqt6ETHGJLdmnQzXpweEaA0Ak/d/VSYKPL2IyPVe6o0xZiOydv1WS4aK VL8kAduYPwnYADBVVfuNy8kcVuKqfj6Zw0oi313uPnO/db/IrQFgVirl2YnPLZUCryNgA8Dc vHN/NiN09YNoDQDzxPjZY0K0BoA56+heL3qbv4+ADQAzV+l6tqeFvIrL8F09GWOMMeGe3uY1 0DMcACAVY/bBRlxzsjd6GWMckVPli9n/XGQV+aqqv4k5b98o7RyRXgMArkxlG5F9GP9x2iTx +ykREWdvjAn3jmxOBZ+i1Ef8HwBgaqqHYOuF69mBp+t09/HNyRwqXZtWvS1F1aO3eUXp9vB+ SwIAGIIX7s9eHUy4d+zrzclUDNgishHxI/syEOfnl8o3T5kL2P0WBgAwEN30G49Ul/ZVaEx+ eDCkcQEbAFCo6jNVfi4fi5O27vfZOG3Mn6TXAIAy7zwHzeJpaO/KjHgtBGwAQBHGz+4ZARsA UNFrY4SgWfmAXfYmAADE7D4VptTk2QCAQsTsPtEwDgCorn7M9io/bxyF8l3ECdgAgAeqxWz7 tHBVOzxX5Lv6qCc5nssEbEb+AAA8VanfuO/qTvbmvPVUvznO5XIRcYw5d1C+SeImbABADZXy 7O8XcX79n4j8vncul4sx5tWAfRu/M6hTyikhYAMA6vnp5W84+9eXEomzZxROIWADAN5QtQ/a ZbdU1eXuIpddkjNXXUj0n03TYRGwAQA1dPEctMh3l7uLfX0ypupwYJNDkg0AeEelPNvTQlXz 7MX2HA/XHa7neocYARsA8CaeqdIFAjYA4H2VYvbB3FzfcvbVh/MKvGt38cj/zdn/XqeYY0bA BgA04oXr2cmInDUugfuu7i7i7MNzwSjcU0bABgA0pVrMDjxdH2XePchqIGADABpUKWZ7xU8q 3VRvHp8hAjYAoFld3Os1QwRsAEDjqvYbT/qRBR7PIK2KgA0AaFClmB357voo335E9oWIyHHt +lGrJRuv/KjYAAC8r+r17G/78LxduKoX2RhziHx3ufvM9ew8WsUBAC156Zkq0UXE3mAdfr+0 VKBpIGADABpXKc9OPzA8NOar6lFkczIHbvy6Z5NsAjYAoA2V8uzF9rx3REROxixEfnZkH9YJ 2Kr68nfGg8vYAIBWdXevl30uy1RvLeMyNgCgbZ2NERKs5dTVsnpDwAYAtOenbhbj6toYU/g0 tQmgVRwA0IEu8uzId38Np9kkLrSKAwC60sX17PuuZ5N6SjkBGwDQmS7axpPTAlWdUsBOELAB AB3orA/aBHE3NgCgS53G7Cnd6EW/MwBAx8iz6+AyNgCge8TslxGwAQC9IGbXRMAGAHSMmP0a LmMDAPpCzH4BreIAgB4Rs19GwAYA9IKYXRV3YwMA+kXMroTL2ACA3nUTswONdbK4hnEZGwAw BF3EbN9dn4wxxoR7xws6WGArCNgAgH51Ma7XbWGqoTGLzpbXBJJsAMBAdBezbcN4PmYPu8H8 I/cCAIBmvBqCO82zRSLVryMajpO+4gCA4ejieranGl1fhh0srin0FQcADMpPHSzjYE5JA3g4 kuE4uYwNABiaLmK2yGqkI2cTsAEAw8EzVQpwGRsAMEDE7CwuYwMAhomYXYwkGwAwNMTsO7SK AwAGi5h9Q6s4AGDIiNlZJNkAgGEiZl/RKg4AGDhitgit4gCAMegoZnt29GzX72Zx9ZBkAwCG rJvxs/XbPjTG7GWnwxtAm1ZxAMAozH1cL54rDgAYi26eN34V+b9tTucul1gRARsAMHzdxezI d5ff/zDbzhb4HF3PAAAj0lHMDjz99xczzIBNkg0AGIUu+qBFvvvvL+aw6mBRLyNgAwDGoos+ aKqa+mszhD5oJNkAgNHpom28267pLyBgAwBGZI7PQeOGbADAGM0uZtNXHAAwUrOL2RZJNgBg dOYVs2kVBwCM14xiNq3iAIBRm1HMtkiyAQAjNZeYTZINABi7LmN20Nc4nDxBBQAwAZ3F7Eh1 3dWyihGwAQCj1k3MjlS/hnunk2Vl0SoOAJiGbmL2oq9njNMqDgCYjFn0QSNgAwAmYMoxm1Zx AMCUTDZm0yoOAJiYycZsi4ANAJgMHezg1u8gyQYATM8E82wCNgBgkiYYsy0CNgBgYqYWs+kr DgCYqknFbFrFAQATNqmYbRGwAQCTNJ2YTas4AGDaJhKzaRUHAEzeRGK2RcAGAEzYT90sRlXt izYe4UKrOABgDrrIswNP96Exxphwr17Q7MxpFQcAzEQXzy51Vc/xUlRdY84NztzGbAI2AGDy OmobfyBpNq/lo4mZAADQg1fT5v5jdu1E/75VnDwbADBxXVzP/mMjfiQiIpEvmz+anTmt4gCA mehmLM5IdWlfNbU4up4BAOamm7bxRUtnBgRsAMB8jPKZKvQVBwDM0PhiNk9QAQDM0/hitkWS DQCYm5HFbFrFAQCzNaaYTas4AGDOxhSzLZJsAMA8jSZm0yoOAJi5ccRsWsUBAOguZvvuu+Nw kmQDAOaso5itqv+IU/e7tIoDANBVzDbG/P1rnS/SKg4AgNX/WJzPhr7+sP+qfrRfFgAAujOY 8bMDT9dHEXH24Xm7eDDhgxKnWsVpGAcAzF1rMXt1MObwzgxoFQcAIG2g93oxPDYAABna0sjW b6KvOAAAGUPMs2kVBwAgb3Axm1ZxAAAKDS5mWwRsAAAyhhWzaRUHAKBM/89UsdLRmiQbAIC8 QeTZBGwAAJ7qP2Zn2sNpHgcAoFD/MRsAAFTRUcz2VFVVXT//UaYxnLZxAAAKdRGzfVe/7UNj zF526gX5CZI4TcAGAKBMx88ujVS/vjl2CAAA89TpvV6R/9vmdO5yiQAATEZ3MTvy3eX3P8y2 swUCADAprV3PDpJuZ5H96+unszms2locAABT18X17Mh3v346E68BAHhHFzFbVVN/beiDBgBA DR33GwcAADXxHDQAAMaBmA0AwDgQswEAGAdiNgAA40DMBgBgHAYUs727W8JmJbDPn4n6LkdP Irv6fRejV4FXNHrO9EW+q7G+y9KPGdf9QFNm+fOXGr/8ocRs39Vj32XoSaS6NsYYEy5nedhS XRpjTLhXdfsuS290PdOf/3//XEJz1XdZeqCqM677K5Pa9TN85paqnowxJnwpbA8iZvuufjrP scaKiMgiPlot9o7M8GTzuvqLrcil77L0w1MN907fpejHPxdZ9F2G/gSyOYlI6iAwR76r+3Cm q78SEVm8VPkHEbO3ZzPDk6y83WWOJ5sSN5CG8zxsRb6cZrniIiJyiZsHVb2+y9K54F/n21/z Xf2raHdxtrM8cTOnjd33n185AgwiZkPiVrK+S9GPxfZsjJll86Do8p85P4o/aR3dO8cZNjJd Lp/t6m9kjqsvIoG3nO0Azbo+2r1/XL9w6Ot0/GyUmXPATpw2EszsslbkuyKX+GqW/mJocJqT 5c+y+WRf/jzTayPy11HO8xyAIvLjKyMS7h0/koqNDQMKFbONW7NdcStZ/Tlvh9mOfTfzvW8v CS3muvoiouoaM888O7LdbyX1M6iCtvG+BZ7cLunN8YYH221ytsesmZv53reXhGa7+iKRyOe+ y9CXRfLjrx6wZVB5NgAAeIA8GwCAcSBmAwAwDsRsAADGgZgNAMA4ELMBABgHYjYAAONAzAYA YByI2QAAjAMxGxiFSFOub/muepUenRd4Wnl48kBVo5c/AtAFYjYwAr67lOsoWCcRsZH6t91M RxwHZouYDYzAp88iIoGIyMoYc1hJ4OlFRI5r9QKbR1t+JCLiu9mk3FK9Zua3z11fRGwOraqq 69zCcx/dLy6dxKfeme8j9IEWGQBj4OSqrSMim1N2ms3JmFBE7AciG2PMaSMiziaZPtzHMwlF JDRm74id0n4Upub54KP04sJ4MXFRnRa2ATB35NnAOJzjSisiqt7dZ5Fvk9q4rTwUkaWIiBiT jE58OYrItx8iIuF3uY4mt7RTf7+IOD+LiCw+ZZZb8FF2cQtH5Dc/8tZHOyTwOdzbccGTtB5A I4jZwAh4uVbuNF3unH1obmP0XSOxiKS6njnGhHLZBSKy/FlSbWwrkZ8dkct3EZHoR2bm+Y9y i5PzaXPZ/XYUOdkxwBdbm8/vHTmuPQHQlM4zewA1hOlqa9u9N/aPzW+gzwQAACAASURBVGmT /mxzMtcG7aswbhs3qYbu1Oeb/PzD8kWHyXJTizNx/Lav0wW6b7wH8BbGzwbQAFdV9uF5u+i7 IMCUEbMBvCmwXco5mABtI2YDADAO9EEDAGAciNkAAIwDMRsAgHEgZgMAMA70QQMAAAAAoDE0 jQMAAAAA0BjSbAAAAAAAGkOaDQAAAABAY0izAQAAAABoDGk2AAAAAACNIc0GAAAAAKAxpNkA AAAAADSGNBsAAAAAgMaQZgNdiXxXy3nB/dSBd/vM9aOyD9NfS3+l8nJqrUCuQB1L1rTvgvQo 3hu1d2jJ77G5TTqc30s9b2/h5lWq4qnNXXygqDL3isecdlTf8hU2SG4mXa5JVqrSlVSK1BRx 8coLfLf6yQyfbZRXqmOVX1ydzViwms0XPj2z1PfeWkTlo9rDn1mfv0EA3SHNBjoReLrcXURE ZHMyKaeNneC4Lo+4l93ytWh8v4j0YuS4JrBPQODFP6d6It/N/h6vP5HLbjnOrLhh727hluWr +M15u3h7/i8fc5pTb8tnN0j6iNdoMnPLkGrUk8X2771jX152v+W/H/m/xeu+OR1Wz4qxPsbT pnf76pD/TYTxYkWcX//3/PcRZ5PXJTj7sOCHdt3Gx3X1rRHPt3QXN1F4EbEbKN4+LS0CAB4j zQa6dvw3fcqXDvmPTquO67euCa5+v51GfPvxbD7Fzf2//VM0bdlF+tuJbVnLfdF1gedze6S8 w0Bm290uh7uF3yjsJOB5+c3iBUULzSyt0kolE7meVzT5/bWq2/mjPcd9NY9YbM+ZX13wbzLL z5+enmaWXRAq+43+VzB92T55sJluG+luv12nqDKHKoV/vIWr7M1H5az8I23Ut7+Klvr4V1Pl mFNpm99WuXRP2A8a+W1bq8N9rt1Yor06xDnZZbesvC0TjxLtikl25LvJVrKtCw8Tcol8N05r N6cKrTCBd02Dr8n1aZNZVXV9P95Tm9N1O1domIkbm519eNs1T7xa+GQN1kcRZ7Nxnk9daxGZ pb32I3gyl5drKoChKm8QB9CoR+cV+YsFt6k3p1tL++28J/mw2gJuHl0GM+auWT898d3M4+Km LwEka5CaMv76bbrbDHMrVXluqTdT2y1dwJK3n6zN/bon7xbN+G4jJTMuWoHKK3U3y8JJ07uu +BdQz21exdessp6sZsFeL1ujgjeLfiAlG6m4W0j1OTwsfPEWfv0Hny1nQTGLt0ihKlU8PYtX fuc1jjkVt3lh/S/fyK/8tp9NW1TTmqw72YVUm2/hRiovWOr9/f2Bp8Ia5I+z1aa3c35Wr7O1 oNoyHq3sW4W/m/HmVGUGdbfPdfqiUJRdwYdK1/7VwzKAASLNBvpRGIQfnGve/f16ml35hPLB WceDM++ni82eaBeceL8wt/y5zaOTpYLPHpzj5T56trEfvlt9pUrX4O1UpKLCFLJA5UW/tkZF 5chNVu2c+MEcqm+3h2nls71ZXs6Csr2wH+un2dnZF2V6NY45VbY5aXZeweavnrA5+1NxO8mD xVRN1e6y5bIiJbPNtdE0mWbXyLGTrzw9qr6/iMwuyX39jTS7sG0ZwAjRaRzoQEG36XRn8SRy H/8q7aN566p4XJfccnaTv/5mu1+21vOs7GQg6cy42J6TG/m84NY5srBv5NO5jVH1larQZ/tN hc8fuu0iuey+dttHMd2Rerm72K1VtVtpQ3N4Se2f6LW3fv5k/cUO0uWn39X6vC4+fb6+cn5e lkzz7JhTY5vf37AS/fhWoahvSN0JsfmluaNHpt+/3TSpPfL8QJXqOm4P+oGX3AX9d/kOtNnc ebvans2tsi5L+vbfDrMPZ5pmN9j17uRk92TuVo7+++d69P4jnuu1+A3e1vx64VPPm4hrU+oW cNvt/W5D1dg+WXH3godPtCioq6W1JHVDgLMPRx7zAJBmAx243Rl9XGdvwUw9HO3JWcpiey69 FvboS6k0/sFz1uLp//drcufg8v4G69xTa+5WK5m07Bmyq0OSaF/n5OzD1FnEa3PLreYfxWed 6XLfzgpv7jZJ5LtJOuHsf2/gDOetlWrNbWvJcR1vrMh3k1TqUU5SvErpOwtfXqfg6+2W1CRR eSkHqzqH9wr//t6Ml7TcXdIXwG71+vmDE+q5u8/67nde+5hTZ6+lGnDSWVEb7h6B9eR5Yi/O 93b8qt8IeEu0L7vfPO+vCkn2fQvcrRGk5L7o1P4pOPAVW/7siMjle3j3buom8uS+bbkeJewv en0UcfZhEw/fq1/4jhfh7ENz2CYNHu8/NPC2bZ192MyTDAH0rKxBHEDTHl/nqdyx9m42VW7t M8Y8vKs1r6RjnFPUw67sLPxJJ70KE5TP7Wlnxhe27qZgr9xN/Van8eor9VrH2oKOpA+7eRYp +T2+13s5tdxXOo1XrBsPOnm+ULuqFL50C1fam9XuYXi8/Jc2e8l8bvepFv3M3z7mvL3Nb4eU Cr/tmhvkwW0hr3yrFZmilKzowwN7aTgoPaA8dP3Wgx/7bZ+9tbWq3jlSPusqx7pK90C9VPri OT48pD3ca/nnehTjBm1gjNQY87huA8DUBF7qSb1T65cX+e5yJ01eWgIwF8nB8aVjY/ytCR5Q AaAmOo0DwHTYrri17zUEMG+rw/Vqa3yDc/ndEKn7Ja7dxsmxASDB1WwA8zPpq9kA0ICq989z FAWAAqTZAAAAAAA0hk7jAAAAAAA0hjQbAAAAAIDGkGYDAAAAANAY0mwAAAAAABpDmg0AAAAA QGNIswEAAAAAaAxpNgAAAAAAjSHNBgAAAACgMSNNswNP1Qvy70e+q4miCQAAAAAAaNHo0myb SK+PxR8sd59Pxgr339aq6vpRD6UEAAAAAMzTiNJsm2B//XQ24d7Jf7zYno0x5rBK/v5774hc voedlhIAAAAAMFiqX+x/7S3ip/Zm3bTF9my2IiLy+Pp05LvL3UVExNmH5rxov2QAAAAAgIHL pNb2T2P+bHxBI7qaXdX1srYx4a//LGvdoq2qbRQMAAAAANC9B5ev27iyPaKr2S9bbM+n77o+ /hscVqvnkwMAAAAAxuqdbLnZK9vTSbMDT9dHcfbheXvtJx757voosvmFHBsAAAAARqfVO6jT mu06Pp00e3Uw5hD57lJ38VubkzGk2AAAAAAwIO0lz4+z5cLltnFvthpjGp/p2KmyWQAAAADg ZY2n0I2nwUkJ20iwr4sgn8wjzQYAAACAjAZT6PZS3Cq+fPny558tFmA6ncYBAAAAAPVMJoUe AtJsAAAAAJisZntxk0JXQZoNAAAAAGPS0iPESKGbQpoNAAAAAP3r6/nbaBxpNgAAAIB56eBZ 05kFNY7MechIswEAAADMRSbvtX9WTFnby5kTJM/TQJoNAAAAYPoeJMmt5s9kzjM0xjQ78t3l 7iKbkzms8m9nZKcCAAAALNUvPaZAHVwaRePImVHFqNLswNP1UUQcxxG5ZD9b7i7OPjxvF/df WKuQaQMAACAtSXGH1mcYPSKFRlNGlWavDsYcxF63zl62jj/L2/xCjg0AAACrMFXuK38mr+te 4b5mR6BZo0qzXxJ4uj46+9CkL28XUdWKbwIAAGDMPgYzkyvVJueGV3ykX7Aj5ubj46PV+U8w zbb3aDv7sOzydoYxJvOOqubfBAAAwLjUu0b97MImlz0nhh06R1++tNuBZVJptr13e3MiRwYA AJiXRnp903MYQCMmk2bHj0cTOa71ePcRDxsHAACYlOpJdVnmnJkDCTaABo0yzV5sz2abea/8 EWgAAAAYs4pJ9Uupsp243wG9AEzVKNNsAAAATFUbSXWrMwGADNJsAAAA9KbLpBoAukGaDQAA gO5UyatJqgGMGmk2AAAAWvQ0ryapBjAxpNkAAABoEnk1gJkjzQYAAMBbyKsBII00GwAAAC97 nFqTVwOYM9JsAAAAVPIgtSavBoDEGNPsyHeXu4tsTuawqjcBAAAAnuOSNQDUMKo0O/B0fRQR x3FELnUmAAAAwEOk1gDwplGl2auDMQexV6sLk+inEwAAACCH3uAA0KBRpdntUNWKbwIAAEzI R5WPVB9MBgCj9PHx0er8SbPFGJN5R1XzbwIAAIxd5avWXMEGMGVfvjwZhvBNpNkAAACTxY3W ANA90mwAAIBJIbUGgH6NMs1ebM9m+9YEAAAAU8IzzABgOEaZZgMAAIDUGgCGiTQbAABgHOgN DgCjQJoNAAAwUI/zaiG1BoBBIs0GAAAYCvJqAJgA0mwAAIDekFcDwPSQZgMAAHSHvBoAJo80 GwAAoC1Pk2ohrwaAySHNBgAAaAx5NQBgpGl24OlaTuawyn4Q+e5yd7n+sSmaAgAAoDl0AgcA ZIwuzb7l0ZvMJ4Gn66PI5mTOq/hvPZJrAwCAUkmSXCUZrnKluuKsAAATNqI02ybYm5MxYfqS 9VXgrY/i7MPzdnF9Z3Uw4c/ucrf2fiHRBgAA9zI5s/0zyZArZtQWeTUAIG1EafZiezZbERGJ 8h9GP76JyOdPi/uvfPoscvn2I5LVIv8dAAAwRw9SaHqAAwDeN6I0GwAA4GUvXZdOI6MGANQz lTS7+Lp18TVuAAAwJbUT6TIk2ACAd0wlzZbV4bQ5rndL/R4/8ix5JBo3ZgMAMGiN58kZhWlz 4UJJsAEA75tMmi2yOhhzuD5eXEREnH1otlzIBgDgibaz3A7USI/tV1560jgAAFWMMs2+PQwt Z3Uw5tBtaQAA46f6pccsawJZ7vv62v5k1wCAxo0yzQYAoClJipsZz6neTMaLbBMAgKaQZgMA ZqowN04n210mz2S5AABMBmk2AGB2nubPNRJs8mQAAGCRZgMApuzNK9IkzwAA4FWk2QCAKWi2 gzfZNQAAqI00GwAwMq9m1I9z5szcSLABAMCbSLMBAMP1UkZdL0NOnnZGgg0AABoxsTQ78t3l 7nL9Y3Myh1WvxQEAVNZBRt3lDAEAwGxNJ80OPF0fJZVcB56qkmwDwPD0m1EDAAC0aippduT/ dcyk1KuDCX92l7u19wuJNgD0p3pSTUYNAAAmYCpp9uLTZ5HLtx+RrBbJm9F//1xEJPMuAKAt ZNQAAABTSbNldQj335a7pe5u7zn7/UYux/4KBQCTRlINAACQN5k0W2SxPZvt/VuBpyLOr//j UjYAvIeMGgAAoKLppNn2EWjOPjxvF7e/xdn/vSXLBoDqeD4ZAADAO6aTZq8OxhwCT5Nu484+ NGTYAPAYl6kBAACaNZ00W0SuuXbfhQCAwaqYVJNRAwAA1DaxNBsAcKdKXk1SDQAA0CDSbACY DpJqAACA3pFmA8BY0QMcAABggEizAWAcSKoBAABGgTQbAAaKHuAAAABjRJoNAINAUg0AADAN pNkA0A/yagAAgEkizQaALpBUAwAAzMSU0uzId5e7y/17zj48bxf9lAfArJFXAwAAzNN00uzA W+4u91l15LvL3dL7ZA6rPksGYB6e5tUk1QAAAHMwnTR79fveOe5SWXXk/7a7iGx+IccG0Ary agAAAOSpMabvMjQm8HR9vH9rc3p6KVtV2ysSgPH4yL0om6DKTAAAAP6/vXtHTmN5+wDc/dV/ KeDglFcAK4DIkdOTQQiJs1NlqcrZSSBkMqeOnBxYAaxA5cCwl/4CkMRVQvJw63mecqLmMi2N kPnxvtPNlbq7u/v69YTlkGyq2ZNubBeNwTytX4m9GDbrMb5yffbuBw0xZvXpA/CynaL0XQgh pa/vurha+RoA4Nrd37/+Nu9P5BKzF78fLj0F4Oa8EKT33qQJHACAV+USs2u96Tw06/167G/e YKlxYI9jKtVPpGsAAI6XS8wOIdR609S79CSAK/WmXP1EwAYA4K0yitkAj44M1csUrT8cAIAS idnAbTu+TH0oOW+FbQEbAIA/IWYDN+OkF1RL1wAAlELMBq6RJcoAALhRYjZwYRI1AAA5EbOB 85GoAQDInpgNnIREDQBANYnZwB95637UEjUAAHnLJmZPurFd7L+pM06j1nlnA1mSqAEA4FXZ xOzWKKXR5tBi2Kz3Z52xjA1vpuUbAADeJ5uYvWUZsRuDeerVLj0XuHrHh2qJGgAAXpZlzH7K 2FMZG/Y6JldL1AAA8A4ZxuxJt96fhc5YxoZnr+ZqoRoAAEqRXcxeDL8VIbggm8qTqwEA4CJy i9mTf/uz0Bh8EbKpFk3gAABwJUqM2S9sqfWyEjfcWvx+CCF8/KBdnNzJ1QAAcJ1Kr2a/ZeGx 5VJlZR691pumXplPCNdCEzgAANyEEmP2np2rXyEUw4tejtZyNQAAXKGzXJu93k5eYoc4ZOpQ uparAQDg+pUas3ebwBuNxmy2MVK0YyFsw7YXCtfSNQAA3JD/K++plvtVh9AYzFNKKc0HjTCb zZ4HHgdDCMXPSXkHhtsV4/3y39Z4Sl+f/l1kYgAAwPuU3zTe+We1Alqt90+n3y4s/A2b9IQD AEDGcts3G66WdA0AAFVQfsxeXnz98ghUh3QNAACVctENvU5gYxW2t+zhDeWSrgEAoJpKXQIt Hq9b/hJok26Msf7rn+fV1kK/HmNzuCj9UHDI3iXNrGcGAADVkc212ZNuu9jcJ6zWm6beJadE heytXQvVAABQQSVWs1uj9GzcCZs7eW3cEDqfSt41e/KzCKHx8O0cZXNY80Lt+lJTAgAALqjE mL1u8rMIIcz69c2Uuxg220UIp9o3ezb7ON7O9EVb0uYEXmgOv9SUAACAa3CipvHWKI1DbBd7 Vxk/xcpk9b8aIcy2i+TL0XKPRNXt9oeL1gAAwJPTXZt93oXHa73vgx/1fjs+PGf4xfDv/iw0 Bl9KblCnklx9DQAAHKP0lcbfsrD3Ytgs7/LpWm+aUpp//lF/vCx7ueq4Lb14k9047eprAADg eKVXs2f9euyX/aTHs7w47/aUpQ9teR2UrwEAgNdks6EXvN8LuXpJugYAAI5UYsw+78XYUIZX AzYAAMCbnGhDLwAAAKgiTePwEu3iAADAm4jZVJTrsQEAgFMovWl8ua3Xys7uXqstvMraxAve 4YUNupbR2mZdAADAu5VZzZ50Y7vYGJn167HfGMynH/7dvKnxV73EA8NxdivYu3FawAYAAP5E iTF78rMIIYTGYD7t1VZD3dguZv16XH7ZGadRq7wDwtGOCdgAAAB/7rQrjdf/aoQQQmMwTyml k2fsjYb1R9rTK+5Qi/il5gMAAOSt/Jg969efIm69P9seOmH4nfwsQuiM0yb18yoTsAEAgDPL aN/sZcr+FJ5L2jsrsFEdW0VsARsAADiPEq/Nbo1SGpX3dG+0GH4rQggPv+vTp2lMujHGV68I jzEeOciNuNsdiXF3EAAAqKK7u7uTPn9MKZX0VLsLjb/gTKuhTbqxXbz5WDGW+GPhrHa7xC81 EwAA4Drd399//XrCpFBi03hrlA6ZDxobd20MvpSdsSfdPV3ik5+FzcOqQpc4AABwDcrcN3vb YthcrYG2dNIKdms0HzzU+/XY3xhe316MTNmsCwAAuB7lx+zt3vGzbZZd601T7xwH4moI2AAA wLUpMWYfuDa7aMc9o2cL3+RJwAYAAK7TKZvG4QQEbAAA4Jpls6EXlWAhcQAA4MqVuNJ4CGEx bMal7mR75Nn2euDwOguJAwAAN6HEmP20sHhjMF9eeP281HhjMH/e2GvWr0vavIUiNgAAcCtK jNnzX7MQQuiMVztoLYZ/r7bzagy+L4dqve/LHbRnv+blHZiMKWIDAAC3pcSYXf+rEUIIxbfh IoQw6da3Q/ZadbvzyTLjvEoRGwAAuDklLoFW603Hv2K7mPXrsf842BjMl8Xtte2+bObFaywn DgAA3Khyl0BrjdKWVQP5xk3nyNiT7sZKbNyS3SK2jA0AANyKcmP2dZh0Y2w/NBqXngfvoVEc AAC4abnF7Ek3xnYYp/T986WnwhtZ7QwAAMhAiddmX9xi2Kz3w2CeerUQjt8wLMZ45CAnc7c7 EuPuIAAAwJ+6u7s76fPnErM3IvbbpJS2RmKMu4OcyIEucXVsAADgJO7vt1dcLlcmMXvx349Z CGF9jfMQQghFOxZWNr9WlhMHAADyk8m12bXedGuJ8/mgEULojM+0sjlvZTlxAAAgS5lUs3fV etPUu/Qk2EcRGwAAyFi2MZvrZL8uAAAgb2I2ZyJgAwAAVZDJtdlcORkbAACoCNVsTkvABgAA KkU1mxOSsQEAgKpRzeYkBGwAAKCaVLMpn4wNAABUlmo2ZbInNgAAUHGZVbMXw2Z80p1cejoV s1vElrEBAICqySdmL4bNGOv9j+O0NB88tGOMzeHi0jOrBo3iAAAAIaem8VpvmnobX38f/Kj3 Z7/mIdQuNqsqELABAACe5FPNfvLUOF7/8Xme0qh16QllTcYGAABYl2HMrvWmq7bxzz/qLtE+ JRkbAABgS4Yx+0mtNx13Qih+ytmli/F+PWNb7QwAAGApn5g96catFc8Ww2a7CKHzSdt4uRSx AQAADslnCbTWKKXRYtisx/7jUGeckohdJttiAwAAvCyfmB1C2F1unBIpYgMAALwqn6ZxTkrG BgAAOEZm1WzKJ2ADAAAcTzWbl8jYAAAAbyJmc5CMDQAA8FaaxtlDwAYAAHgf1Wy2ydgAAADv JmazQcYGAAD4E5rGWRGwAQAA/lxG1ezFsBl3dSeXntdNkLEBAABKkU3MnnTr/VljME/rxp1Q tCXt18jYAAAAZcmmabw1Smm095bOp9aZ53JT1jO2gA0AAPCHsonZOybd2C4ag3nq1V6+Y4zx yMHs3G19GePdvrsBAADk4+7u7qTPn2HMXgybj/3j+8vbW1JKWyMxxt3BzOxrFFfKBgAA8nd/ f//6nf5AVjF70o3tInTG2WfkP+VibAAAgBPJaAm0GNtFCCEUbYuNHxTj/dbF2DI2AABAibKp Zh9eAo1HitgAAACnlk01m1fI2AAAAGcgZleCjA0AAHAe2TSNs5+ADQAAcE6q2TmTsQEAAM5M zM6WjA0AAHB+msbztLVr1wVnAgAAUClidm4UsQEAAC5I03hWZGwAAIDLyjJmL4bNGGPsTi49 kfOSsQEAAC4ur6bxSTe2ixBCo9EIYXbp2ZyPgA0AAHAl8qpmt0YppZTS98+XnskZydgAAADX I69q9rvEGI8cvEp3W1/GeLfvbgAAAIQQwt3d3UmfX8wOKaWtkRjj7uC1OVDEVsoGAAB4yf39 /et3+gN5NY1XhkZxAACA6yRm3x4ZGwAA4Grl2TRe601T79KTOAEBGwAA4MqpZt8MGRsAAOD6 idm3QcYGAAC4CXk2jedEwAYAALghqtlXTcYGAAC4LWL29ZKxAQAAbo6m8WskYAMAANwo1eyr I2MDAADcLjH7usjYAAAANy23mL0YNuOT7uTS03mDGO/XM3ZKX2VsAACAm5NRzJ50Y4z1/sdx Whp3ivatZG1FbAAAgDxkE7Mn3XYRGoN5GrVWI61Rmg8aoWhfe9CWsQEAALKRy0rji98PIYSP H2obo7UPH0OYPfxehFZt/+MuS8AGAADITDbV7NsjYwMAAOQnl5hd+/AxhPDwe7Exur/GfQ1k bAAAgCzl0jQeWqNxp2j36/HXeHV59qQb20UInfHT1dpXQcAGAADIWC7V7BBCa/S8vHiMMbYf BvOU0lWFbBkbAAAgb9lUs1dao5RGl57EATI2AABA9jKqZl83GRsAAKAKcqtmXyEBGwAAoDpU s09LxgYAAKgUMfuEZGwAAICq0TR+EgI2AABANalml0/GBgAAqCwxu2QyNgAAQJXl2jQ+6cZ2 GKdR63yHFLABAADIr5q9GDZjjO3ivEeVsQEAAAh5xexlwP73wzTNB41zHljGBgAAYCmnpvFa b5p6IYQQFuc6pIANAADAupyq2ecmYwMAALDlBmP2pBs3NYdnq14/k7EBAADYdYNN461RSqML Hl/ABgAA4JAbrGZflIwNAADAC26wmn2E58XQyiNgAwAA8CrV7KPI2AAAABxDzH6djA0AAMCR 8mwaL4uADQAAwJuI2dtivA/hbitgBxkbAACAI4jZz3aj9RMZGwAAgGOI2SG8GLABAADgeFWP 2UcG7OXd1LQBAAB4WdVj9jI5vxq2BWwAAACOkdGGXothM+7qTo54aEpfDwXpF24CAACALdnE 7Em33p81BvO0btwJRfu4pB12ErWADQAAwFtl0zTeGqU02ntL51PrLU+U0tcYY0qplGkBAABQ KdnE7B2TbmwXjcE89Wov3zHGeOQgAAAAt+7u7u6kz3+DZdtJN7aL9YHGYD5dy9KLYXPZPz59 LWAfoppdZc5+lTn7VebsV5mzX2XOfpU5+1V26rOf1e/WMoB3xmn0pjbxHV5yVebsV5mzX2XO fpU5+1Xm7FeZs19lpz77GS2BFldF7qL9nsXGAQAA4M/5CAcAAABKk001GwAAAC5PzAYAAIDS iNkAAABQGjEbAAAASiNmAwAAQGnEbAAAACiNmL1rMWzabrtiVufcjuvVNOnunPvmcHHpWXF+ q98Er/zq2PPi9wtQGfvOvpNfBXtf934BqmPfm/7TvO0Ts9esXnf1H6Fx6alwTpNuvT9rDOZp 3bgTirY/uPlbDJvtInTGa+d+PmjM+nXnvlom3RjbDw1//Ctl8rMIm6/+lFIatS49L05uMWzG drF57ueDRijaPmTNX2u09ZqfDxohhMZg7tVfAXve9J/sbZ+Yvebxdff986Vnwlm1Rimlaa+2 e0vnkz+4uav1ppvvqyfden8WGoMvzn1lTLoxtsPYH/+qWabsT6F74oIGV2fx34/ln/n1stbf 4fuhNwNkbNKN9f6sM3bqK6L1ZdAI66l6Mfy7PzvNW34xG3Ys61o+1qyY1dutdnHpiXBOi2HT q72aFsNvRQjh4Xf9ubT1z6+6vtEqmP+ahTDr11fRelnQ+vzD2a+cSTcuG9r8D1Adtd4/nRBC 0V59wFbvz0LojE/xKyBmw7Nl0Gr+/uIT7Qpa1rVX/UOhX/duNxA0OAAAA21JREFUK3uLYTPW f3yee7VX0uoVv3HyW6NxJ4Tip9d+JWwWMGu9qbNfMZNuuzhVwOJKPVXSNi8beGifop1JzIYQ Hi/M//fDVMCumEl3T6fo/NfsQtPhjBb//VhVtOL6Z9rLj7h9yJK9va/9yc8ihMZf9QvNiTNp feqEEIpvm6ff2a+WZUOLkF0ti98PZzxaTCmd8XC3YTFsLi/T8MqrhmXP0F5+C6pg3y9AYzD3 cUv1+ONfLcvzvTXotV8V+06/s18h/t5X1d6//Kd58YvZAAAAUBpN4wAAAFAaMRsAAABKI2YD AABAacRsAAAAKI2YDQAAAKURswEAAKA0YjYAAACURswGAACA0ojZAFCmxbAZN3Qnh+534Jb3 mXSXh2sOFxd/1tPMBQBuhJgNAOVYBux6f7Y5XLS3wvaB+wEAeRCzAaAUi/9+LINzZ5zWjDsh hBCKb8NFWNZ5nwL2VgDfroPvqQVv3eXFcvhjSXnjeTaeYF+xef0Ox1fbj3jUwe/uQOl7Z/iI Hw8AXIcEAJRiPmjs/D+7mbk37/Z82+NQYzDfvMvjwO7IKr4/DTx+3RjMt744cNSd+zxPf3WX te9n7YkOftMHH/Xad7d9++7ktue6+/MBgOshZgNA6Z4y8LPnQLgnZh9+7Oo+e3LzgYc1Glux 9+CMto6x9xCvHvetj9r73W0H7cc7PX0Hez7AELABuFqaxgGgDE892t1JCK3R2v+1y9A46/99 uMv56cExNn9/SfsL48eZzWadwaARQijaexq496XTUeudxzrS699drTcdd8Lqh7QYfitCCKEz fppYrTfd+GGGEGb9utZxAK6TmA0AZWiNHq/CbsdN7SKEEELnn17twGMnP5d3CZ1xmvZqYTH8 e2uBtNaXZTKd9eur6Px8qfJmlm4M5qNeb7rMo0X7MYfuPsHG5wKHDrGa+wvf9uuPev27C+Hp 5zfr15fXrq+F7PXLzOujrbgNANfnxNVyAKiYnQD4Suv0VqN0CMtm6Z3G6ZR2ysDrz7ynUful K7QPzWz9Dp3xEc3qxz3qqO9u53rzl3+w+3vuAeDiYkppT/gGADirxbC5LGQ3BvPpwco/AFy9 /116AgBAxU26j531oTM++aXiAHBiqtkAAABQGkugAQAAQGnEbAAAACiNmA0AAAClEbMBAACg NP8Pah36Nvmh3kAAAAAASUVORK5CYII= --------------010004010905020906010109--