Return-Path: Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by klubnl.pl (8.14.4/8.14.4/Debian-8+deb8u2) with ESMTP id vAKDOXIh028368 for ; Mon, 20 Nov 2017 14:24:35 +0100 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1eGlxy-00082a-Mx for rs_out_1@blacksheep.org; Mon, 20 Nov 2017 13:18:26 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1eGlxw-00082N-2A for rsgb_lf_group@blacksheep.org; Mon, 20 Nov 2017 13:18:24 +0000 Received: from mout02.posteo.de ([185.67.36.66]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.89) (envelope-from ) id 1eGlxs-0004Qs-Rm for rsgb_lf_group@blacksheep.org; Mon, 20 Nov 2017 13:18:22 +0000 Received: from submission (posteo.de [89.146.220.130]) by mout02.posteo.de (Postfix) with ESMTPS id 406CA20FC7 for ; Mon, 20 Nov 2017 14:18:18 +0100 (CET) Received: from customer (localhost [127.0.0.1]) by submission (posteo.de) with ESMTPSA id 3ygTmn3wkqz1090; Mon, 20 Nov 2017 14:18:17 +0100 (CET) Message-ID: <5A12D618.7050302@posteo.de> Date: Mon, 20 Nov 2017 14:18:16 +0100 From: DK7FC User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; de; rv:1.9.1.8) Gecko/20100227 Thunderbird/3.0.3 MIME-Version: 1.0 To: rsgb_lf_group@blacksheep.org, =?UTF-8?B?0JDQvdC00YDQtdC5INCa0LvQuNC80L4=?= =?UTF-8?B?0LI=?= References: <15fba82b7f5-c13-22ad6@webjas-vab240.srv.aolmail.net> <14f314e2-c672-fd3a-1212-57253435468a@abelian.org> <5A0B14B5.6030406@posteo.de> In-Reply-To: <5A0B14B5.6030406@posteo.de> X-Spam-Score: -0.0 (/) X-Spam-Report: Spam detection software, running on the system "relay1.thorcom.net", has NOT identified this incoming email as spam. The original message has been attached to this so you can view it or label similar future email. If you have any questions, see the administrator of that system for details. Content preview: VLF, Finally there was a decode from my 3 character message that i transmitted during the last 6 nights! It was a bit strange, the 1 char message and the 2 char message was decoded after one night each. So 3 characters should decode in 2 or maybe 3 nights, but not longer. But there was no decode even after 4 or 5 days. Something must have been wrong. [...] Content analysis details: (-0.0 points, 5.0 required) pts rule name description ---- ---------------------- -------------------------------------------------- -0.0 T_RP_MATCHES_RCVD Envelope sender domain matches handover relay domain 0.0 HTML_MESSAGE BODY: HTML included in message 0.0 DC_PNG_UNO_LARGO Message contains a single large png image X-Scan-Signature: 0a849b464dfacbf477ddebe7f7e2b249 Subject: VLF: 3 characters decoded at RC4HAA Content-Type: multipart/mixed; boundary="------------090309040103020209030907" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.3 required=5.0 tests=HTML_MESSAGE, HTML_TAG_BALANCE_BODY autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false This is a multi-part message in MIME format. --------------090309040103020209030907 Content-Type: multipart/alternative; boundary="------------010202010704060900060007" --------------010202010704060900060007 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit VLF, Finally there was a decode from my 3 character message that i transmitted during the last 6 nights! It was a bit strange, the 1 char message and the 2 char message was decoded after one night each. So 3 characters should decode in 2 or maybe 3 nights, but not longer. But there was no decode even after 4 or 5 days. Something must have been wrong. Background: Spectrum Lab corrects the drifting sample rate using a reference signal, like the PPS pulse from the GPS module. The sample rate is measured and corrected each second when PPS is used. Usually the deviation between 2 measurements is smaller than +-1 ppm. But at RC4HAA it was +-30 ppm. The PPS pulse is usually a rectangular pulse with a width of 200 ms or less. At RC4HAA the pulse is differenciated, probably by the soundcard, i.e. it is a positive and a negative short pulse of a few us length. I concluded that this not proper looking pulse caused the high sample rate jitter. SpecLab calculates the average sample rate out of the last 60 measurements. I took this average value and put it into the 'calib table'. One can define a maximum deviation. It is assumed that the sample rate will not drift more than average +- max. deviation. Each value outside that max. deviation must be a false reference signal that will be ignored then. i.e. the sample rate will not be corrected by this value. I choose a small max. deviation of +-2.5 ppm only and expected that this will lower the jitter! But my assumption was wrong. In fact the PPS seems to work quite well, despite the suboptimal shape of the pulse. The high sample rate jitter seems to come from the PC itselfe so the sample rate correction was working quite well, showing and correcting the high jitter each second. So i made things worse by reducing the max. deviation! After 3 nights of transmission i came to that idea and started a second SpecLab instance to export txt files for EbNaut detections. The settings were equal, just the max. deviation was set to +- 20 ppm now! During these 6 days i worked out how to use the -f16 option in vlfrx tools by Paul. When running the decoder with this fuction, it will tell you how deep the message is buried in each of the files (each night one). On saturday morning i quickly saw that with the 20 ppm deviation produced an Eb/N0 of -4.1 dB from a single (noisy) night. This confirmed the assumption that 20 ppm will do a much better job than 2.5 ppm. It also became obvious that a 3 character message can be decoded after 2 nights, if the noise isn't to high. This was expected from the results of the 1 and 2 character message. The change to the small max. deviation was done after the 1 and 2 character message. Yesterday morning i lost the access to the RC4HAA PC. It took until the late night until i got the information about the new temporary password for Teamviewer. During that time, the 6th (3rd with the 20 ppm setting) transmission was already running. But i already got a decode with just 2 transmissions. The second file (18th Nov) showed 3.95 dB less noise, so the improvement was more than 3 dB. Now this morning i had 3 files to stack and, as expected, the decode is even better. A screenshot of the decoder and the decoder log file is in attachment. *The message is the new longest one on 8270 Hz over the 2877 km land path. 3 characters in 38 hours and 24 minutes.* My next and last goal for this year on that path is a 5 character message. It will start this early evening. A separate announcement will follow. 73, Stefan Am 14.11.2017 17:07, schrieb DK7FC: > VLF, > > Tonite, a new attempt to leave a 3 char message at RC4HAA and an > invitation to newcomers: > > *f = 8270.1000 Hz > Start time: 14.November.2017 16:00:00 UTC (daily) > Symbol period: 60 s > Characters: 3 > CRC bits: 10 > Coding 16K21A > Duration: 12:48 [hh:mm] > Antenna current: 650 mA* > > 73, Stefan > > PS: The sun is back, the grabber is back! :-) --------------010202010704060900060007 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: 8bit VLF,

Finally there was a decode from my 3 character message that i transmitted during the last 6 nights!
It was a bit strange, the 1 char message and the 2 char message was decoded after one night each. So 3 characters should decode in 2 or maybe 3 nights, but not longer. But there was no decode even after 4 or 5 days. Something must have been wrong.

Background: Spectrum Lab corrects the drifting sample rate using a reference signal, like the PPS pulse from the GPS module. The sample rate is measured and corrected each second when PPS is used. Usually the deviation between 2 measurements is smaller than +-1 ppm. But at RC4HAA it was +-30 ppm. The PPS pulse is usually a rectangular pulse with a width of 200 ms or less. At RC4HAA the pulse is differenciated, probably by the soundcard, i.e. it is a positive and a negative short pulse of a few us length. I concluded that this not proper looking pulse caused the high sample rate jitter. SpecLab calculates the average sample rate out of the last 60 measurements. I took this average value and put it into the 'calib table'. One can define a maximum deviation. It is assumed that the sample rate will not drift more than average +- max. deviation. Each value outside that max. deviation must be a false reference signal that will be ignored then. i.e. the sample rate will not be corrected by this value. I choose a small max. deviation of +-2.5 ppm only and expected that this will lower the jitter!
But my assumption was wrong. In fact the PPS seems to work quite well, despite the suboptimal shape of the pulse. The high sample rate jitter seems to come from the PC itselfe so the sample rate correction was working quite well, showing and correcting the high jitter each second. So i made things worse by reducing the max. deviation!
After 3 nights of transmission i came to that idea and started a second SpecLab instance to export txt files for EbNaut detections. The settings were equal, just the max. deviation was set to +- 20 ppm now!
During these 6 days i worked out how to use the -f16 option in vlfrx tools by Paul. When running the decoder with this fuction, it will tell you how deep the message is buried in each of the files (each night one).
On saturday morning i quickly saw that with the 20 ppm deviation produced an Eb/N0 of -4.1 dB from a single (noisy) night. This confirmed the assumption that 20 ppm will do a much better job than 2.5 ppm. It also became obvious that a 3 character message can be decoded after 2 nights, if the noise isn't to high. This was expected from the results of the 1 and 2 character message. The change to the small max. deviation was done after the 1 and 2 character message.

Yesterday morning i lost the access to the RC4HAA PC. It took until the late night until i got the information about the new temporary password for Teamviewer. During that time, the 6th (3rd with the 20 ppm setting) transmission was already running. But i already got a decode with just 2 transmissions. The second file (18th Nov) showed 3.95 dB less noise, so the improvement was more than 3 dB.
Now this morning i had 3 files to stack and, as expected, the decode is even better.

A screenshot of the decoder and the decoder log file is in attachment. The message is the new longest one on 8270 Hz over the 2877 km land path. 3 characters in 38 hours and 24 minutes.

My next and last goal for this year on that path is a 5 character message. It will start this early evening. A separate announcement will follow.

73, Stefan

Am 14.11.2017 17:07, schrieb DK7FC:
VLF,

Tonite, a new attempt to leave a 3 char message at RC4HAA and an invitation to newcomers:

f = 8270.1000 Hz
Start time: 14.November.2017  16:00:00 UTC (daily)
Symbol period: 60 s
Characters: 3
CRC bits: 10
Coding 16K21A
Duration: 12:48 [hh:mm]
Antenna current: 650 mA


73, Stefan

PS: The sun is back, the grabber is back! :-)
--------------010202010704060900060007-- --------------090309040103020209030907 Content-Type: image/png; name="RC4HAA_8270_3characters.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="RC4HAA_8270_3characters.png" iVBORw0KGgoAAAANSUhEUgAAAcUAAAJ+CAIAAAE6QbxuAAAAB3RJTUUH4QsUDQU7fcMdbAAA IABJREFUeJztnXu8JkV5558+50CSzRoJokZNEFHkMgcYvDDjDR0Qgi4moLPBUUAgkV1x1AEV BjCeOahkRC4jTIzxs6uINzCHeHTRnMDCDBcREHGQAwwDA4hKFlw1LiRew7t/9EyfeuvWT1U/ 3W/V+/6+wKHf6uqqp6uffrouT1UVvV6PMmGCiN78oS9fetqf7fg7v3vw3u/e9Ka3T1z52fGJ 8fGJ8Ynx8fGJ8fHxsYmJ8fHx8fGJ8VM++f5PvOfjt8y856C3fqIMqU5NjI+PT4yNj2sh4+MT Y9vTUU+N6SET4+PjYy9/2g+IaNMvX7j4d7eU8k0uXtrr9e6645bv/Xqvotfr/cev//2JX/7m OS85a3x8TMnDIquS61g3shLRov2XLMh61x23DOKRBjM2aAECmCj/NzM7t/zIwycXLy1/zm+6 uTyoQsrAmdm5juUrWX7k4USUkw5MVEcrV63esGED87K77rilVPlF+y9xRVi5avX6dWuDpNFS 0wpR19eiKMq/5UEtWrTqp6o8fPz5Tmi/y0+D/wMxPT1N28tAi1n9XLNmzcaNG0NlLd8Tl07m pK8Z2izXK5II5ZOfUH8kToY6MDM7t2bNmvI11L5V5jXdf71y/m5pdPy2ccprQVaz4mKlKIpe r6f+pe2fq+ZNDFWG8lgVJicdyNAO0PbyNxVgcvFStTpbHpvafNcdt6gxTZgvgOch6++WtX6k BvoFct2wCDnpq9NmaXjqo8xSZNZoPaktvFv+p99z40qh+lkeeFKwpuaT1XpDQZqntSirn1Lq O0T6Whma5vfD/2i78uqzr9WXjaIenKavZmqedp+mqVbLuCBrea6JbpnXapVMVaCqLsFMivLS 15zqA5C1Hfq+W+aHJ66rpyUW3i3T4lDL9aZQRt4OlE+jVCH1mIwKTRCtl6u/bh6ERV/9X1pN g/0/ZRl5fW0JyNoONe2tpLC0C2r7NAdFTnbA0k+ootpa85T/Qgnx+sipXPO0A+kDWdshT1mH 5LuVyJcsJ/ta892i7Z+u6m9XglnwlevAhdPwvVvmF1/t3TAbq+ZPWXLS1z776ioPs6Vf29hv o2jzLFdtcNCveQP5cGReruar7YqjpWWe9au4K8RFtuXqLy0P1rLnX8vU/iTKlfmBTEJWJnnW tdMHsrYDZG0HyNoOOcnqc45Iiunp6Ynf3+OdW6//wO6vnLrzzOedVJx4x8fPHR8ff+vE2AW3 rn3eqz6oTme64+tHEe3xsovuv/zdLzj22E9aZkx5pjypM6b6Ti3MmHrl039IRLf/+x4TE+P7 7bi5dHUuKWsLE0T0zKfvRESLP/bIxPjfjE+ME9HlRDMvO6s8rnjRn3+1zOMt3xrXTrVEOVuo qtYUSfUAeJiZncvp3arvI6pYs2ZNu7K4Kf3gdf+sBKmmCCzIGuFD55ryFV15V2UoCv1d6tNX /rQt11URl/MF6OsrZn4XyodS6pB2VXmsReCjzt8ydTIDm1XO28zTZqU8f6uchEmYv9UWfXbA dC22+jANbP5WRnbA7lve8atWfaL8HVv28QL141H7KSq2Ey/sdmqmjmWkA9naAT7WCe2c6VLq zD8Tv5kP9iOqZjVY86v10/RPK/CTk76mNX/Ln5T+bmkjDdXPiOlWEfO3/Heil6t6Zw3H5MXn b/l0QM3D9Yby5WhelfPJKjh5i2Tnb1U0efR+R0nr/GprImvWrDGbaxZZZadwqfQYC4eQe9Eb nw7INha01OY33exJ39oGzqk+kIGsVRlnIGtFjQ/JIERyorcLzG9s5yLpWPoJ069whdW11eqp q6pqre9WpzhtQBlZ1QxcmXmEaFib8bUL1DIw52n5myttaFS9vlrnTvtFaUn187Sv6ZOBrJZv rMsXr0ux/FjKVXXzS+ED4ftupSCflZj5W55JXVUEEeE0uPZVM+8DKXuuHUhBMTKwWRWQtR0y kHVIv1u1cw3aJuC7lYK1KtHHOLXTDVdTkqVP1ubLfbWK0w5YtZMzZ8al2c3V3dmOrS3j0HZs 8+dT3+Y29VU1EeTWafHWbL2srhW8rAf+Cxti11emQe3Y4trLlVkkHZsI+3fLP2/INV7nj2+a C+r/mNc+pZzGYy3zt+KmcPGjRV/F6n9tVX35V2VQf62ArO0AWUXJfCyuIqn2oIpF1mS/ZJnr QLIUvV7v9/d4Z19QURRjxVhRjI2NFWPF2NjYWFGU/xvbFqqdKsYWIlWnim3/9J0yLh8rtqWt nyoWsl04tV0MNeVth9op4/KxQrkL9VT/5dtOFVVa6ilmmW75xrptUQ87Zfet13/gZ/Pn9578 zRNb1hPRi4le9N4zLrv4xANWnf7YptMeXXfApUfQ0duvfGjtvg/ecPabzllDRJ88lDafPUlE +5x40p3/tPprXz+NiPY67sTbztjzimN2+Ye3Po2Ibrpw6Re/9M7rv3CygCZ0wtI//P5fvvqP TjjoGS/+z1urwP123Fz+u+Ub69TjFS996n47bn7LgTvtt+PmMia0tRVtnSCiW2eOE3rGSdEj 6hE92X3GW2rbsK6Gp6cNC8j/edUK19WnVR1r0UYKzffRsgJJ25NypqamyhybZBQxNTCUoNHm squlOrZ0um3cuHHjxo2lH20VWHmr1rrYujBdRzdu3KjOVa2yUx151azVSa5asbbksmTKoInq wm4ENMffnrIJFDWbc2FifXhMz+MK/yK0cVQyRNxsTssQpYxmBHJqEWYEirUVUKwyaJ9QFGsr 1I8UaqdalmdIqG9lmW0ns3XratTSyDyJ+laWh6Evo+g2RX0ry5ykorZhqqaB2gIx5zh6TpXp mMdqe0a2xcHEbDu5pq5QXbvON2vTPHC1gtSftae0pGrPDpBor4SwCVDD3R4T7FWIXG8ijtrp 2x1PEq8lWh6nbWV+nVqarmHKEJSOp5utG6vttK3+21ANtnXSZsMXiiODB08HWDdWO9IIxE2C 7MY0p/ABELatEXbNXBuxexlctGJbTcdrlyUV75nn5K6FJ+U5hG5sGdCN3QV22zrZv/mT9RWb 3L6aVBUiqPVNJjC1sShhdWuqVnrwTXdQl77ofqJWNevOdcp1VXmgjeOax6R0WZD4uCdsqwiw rV3QZwS6X2R2WOkr1g48cEYEGIFWCO7Bci07Ii9aztTUBFJrFCYLqybQsJZq9To2x3GZQ7NW 12VPTHWiKf9aWSzamqCGqo+5toFgeg8yx/WawNXWINd1jw4G/VQD1bPzm242118oA6tT6nEV zXphBzgbr+oN136mzM78oH5u108tWfVnau+TBhqvMqDx2gUoVhngiNkFrOXoPeNXCdbGUgCf LBnqP1lapdU/UdP100xTPQhyfc3R+9NXb+WUrFqlZTZDrS0CzoUZWZtIZyEzfnTMjAqLD2oC rYBibQUUayugWGVAK6sLmrayXGe1OKOGcCtrZNuyrFYWBbZt1G78oGGFYcXpMUjsktUGNmiE 3/2KsAW9S1x+mVXzTPPndkU2R3RcNl2NrAlg9RYduC2y1wQiZLIOZHlGAM0+ATPT6j1Qy86V lxY4WENkX77TLxOz0NUxUbN8tfE+1ShP9i8qraZTXV5baoPVVtZUYg7WoVntU0aG3mlXae7K ntwTN98+rxb1/mtRR+2tY/ea5nr6yTzdgImXZkWYV4vfW2CUqa+3Wm2rauZMY2f6WpHtGXic ZWr7tvm93a4Q18CEatBr5WQSUBOY7HcZ83zZJm2eZZ4vvhnoMQ7azZtn1fDa+ol6O5rRa/Ii Cri2xX3iXOmYqbmSlaqciqQT5tpm1TsXfuGYVSJr7dXf19OciPa6HwxoywAfrC5AsbYCirUV UKwyYCyrC7jFij7/IAK0Fc1/PsIL5GPWLLmWbkTRNAefrFYYwHqeQ8/EXXfccuDyS9WggP2Z 9FM1+zO1vhFU325P8htBcQp0vx03jxHR1/7+vx31jlf8bP78n82fT0SP37v+u5svIqKfzp94 6ynPrmJ/9ttriegHN3/k+5cdaqZ11z+fqfzai4jetRvdesUqIrrp8nd9acUue4Q+7oGydKeH DvyDB1/ylAc+c9byMqTcZaz8d8VLn/qWA3eqdhwrA99y4E5bvrGOKpP626c9WCX3lD1XEtG/ 3v3xq876NBH9eNP5vTe87c0XnltF2O2Spz9444ceuH76U4fRGz/8QXrtf73n6rOIaH7ujO99 cO8/IyLafATtddUr33bsP/6UiF5+8dYVX/q/XZSEHLXjApqvidpXO0FEh7xmr0PGJn/5i1/9 9re/KUMP2Ovd21/JR8Y+/t6xYuyyrxdfHhsbGyv+ZOlZY2PF867a/lJcfXYxVux9bf8rSXQl bR77/JbynaIbv0FFcR8R6+VJg6qAVq5aHRSfyv2oYU9l7WkGe3xnB6qo8qBM5UGZyrPQ6i/7 UJYfebhr6JjPCK7vpnaVLJRptbGiFdM51OqdWv4c8b6Yhe/+ov2XYNRaBEuPX9tvrjpQHpeC /5USoYnrrqVMp6ammkpkYN0hNDSjLl8jf3edXxL7d99sMxTbCRXOjyvZiIw4HoD+y6XG3+r3 EShXK1afm3WH2Fqs9YdqQWSRNZFr3THNORsqUk1KX5lWpakuFE3GctFMrBJXRWldbTqooPnT E4LiR2AvU+vuVWYEPq7PkSsjc3uV6enp6jh61XV+OTax3ahLyYO2qTwoU3lQpvKgTOXp++63 sYvJiKB+3iesoaAJePflQZnKgzKVp9FejNYZ1xjcXmibVuNRZFv1oMIcLPFnUEYe+hGqmvEo bbiJjAmjFZWeausjqIEjOEKFPhR5Auzp0E9DifgSrFy1ev26tVpgwHe/N+yoNyu/eoKfspNf +2sGuq6tzpojUW0MeQky2b8kkStacJlW+8Zrx+QoZXIXcaUaVeRSXxIpVm3VEfOD7CK4ftpz jHOYaKNY1sg92xb0rgS7xFweRBvI8hQrvvvyoG0qD8pUnkbt/VBq+7ybG5/JxUulzHG0MJ3q Kb+q5K8e+qsy1lpdbSVEEPvKidRO91J0PUmtx2iBFZXAWl1Cy7GDSoV9IbqB99dxFlDTcGlu 1UbqrEERY0/9lV7/2Wg1qa0V+rPrss6L+qk8qEvJI1yXiujOkbXdgh2S0YIJ62nDHrZBySAr mHydX/22dvll0ATo8eptbUjo09Po96jXwJ2aT7LjDj49jTMoPaXK3aqeusTrDaL+pIK6lDyo S8mDMpUn8rtv9tolYjdmZufE5yGG3ppvE6oBLi2Z7Dedg71fSjuw0mo9ybNNQARNBs9LgtTL 2X9aMsBOP8GszeqdVt+qrXUFCePcOJkpKDCJ/EYl8kWyMnDZhq0ulYJT5rCVaQqgTOVZsKfq ZG4QimpzsF6fPHj35UGZyoMylcfZh+IB23b4idRTfNk8YOxEnlbGTUccX5niBY8j7BvF1Fzr LBjX39qkgjK1ph+0cF9znH19rryt7rUl2jReTpqczU2DXhfrFr1mdlLb0lrhbi7NQVMH7ad1 E2JBOGUksq1wLdzvfttyDBN2exq0jqWpd34jaK6fqb6S2rHHNCdLwA7oKpO2XcbVkKD9pTVD 7F8GJP1i9Y1Fe1BLgfnl8VA+IXNJEG0ScsrlqIJ2lDzol5IHZSoPylQelKk8C2WKD5QU0FN5 UKbyxIxHqTFzqYd3id1X0jU1vqJq9ng6sUa2z2VBT1UX/driMNv4oMLZJ81v9QMNfKPk4faf ipBRH2gTIvtP4xgRW4G+PnlgT+VBmcqDMpUHZSoPylQelKk8KFN5UKbyoEzlwXiUPNBTeVCm 8jQajwqNPCLY5/Ayx6Pg6GsF41HyYDxKHnyj5BErU6tP/mgiNsbnn5g0UsjseZDI0mmJEPPu B830GUFY7z6numqd02lNxzUN1DNvip/RYJfDLHH6oJl3yJk0pcVvae19baZl7TzXjgl49/1C 8yfeWtcCtcbXWhauPZVTs0XwmZCH24cSNwXeOqfe5TVVmUKrQ5XV+KbpeuVbq9P/peLXn9Rt ivgT2a1be5vZJdiP45y/LyJrrVW1mlTTbmoh/oc9cJz2NMHnnwvO+mlEgdbqi7V+aq1jhmad FNz6KbmXF1FNpLU4XHUgGsYCpW76+lyfeC0CDUWBkuu7z3zxg/qiRsc6R47xaZVN67IT/mqm p8Lr0uJQJm0rqriy5vQ2MHGuz9+8+47ZP2B2C5iDXa5vZhVBOztpWwmkCm+7qzeyT5pZIXdd aObozz30zl3bi/DTaVLWaO/LI7aupNWM1iqgmYLV/poWMIV+Uhfc/fhq30fTDtR2hZgXurpv XEaGb6b8EbSMGsKtn3rWEyRFazjdpp50rCGuQpFVUsG2+MjZ0w76MUbOZ6KDpsfIlWkHoEzl QZnKgzKVB2UqD8pUHpSpPJgfJQ/0VB6UqTySZbpy1WrB1PKFW6Zp9lSmCXdvY87CiKAE9lSe gD24oZhMLGU6MzvXvRzDBPbhlQf2VB6UqTwoU3mKXq+H3hOQODOzc9tqUwcuv/SaL5xQnRgf H3vyyV6v1ztkxadobIeiKIqCqCiK7f+V0MLxtsOFP4USu+8qWrh+4SolrIzdn5Fy1UJc6s/I uErJaPthSxlpJyy3uS0VI3ddKCV3y2lSrrTlvnCVkbuePxX9eVhy3xbUl9HLdn7YVKOVq1af eM4V6lUrXvpU0/zNzM5NTU1Zw1/4+lWuS174+lX77biZ1O/Uvz2x49oNm8751o27/clz9pvc 54D9Fr1o/8keERE9sWV9Gee7my/6+T0X/es3/suL3nvGZetPpD8/8dZTnn3LHef/eNP5N696 Vu8Nb3t03QFvvvDcS4+gR7699ke3rv0LIiL6wc0fIaJ9T37Phnc8k/50xYM3nP3A5w8hovs3 rrlv49SigrZc+8F7r/lrIjpq+qy7rzrrrn8+k4jm5864859W7030ta+ftveyI/+MiIhu/+r7 iOi22VP3POZtVxyzy55vPe4f3vq06hZuunzlHkRf/NI7b/jiydeft7DEC5Cl1el+Lj+4vhrV 7//xI7v8yaNEdOed870e/eIXvzAvOHjvd9NuhxERXf3pyz68LxE9n+jpB5y3+/HHEhE995ll tKuJTj1w9ZeVCy8+5unv+rtHH/zrfd7/qg/ufsw1dNjR9PD1e7zmk3ToX9A3/3H1TfR3r6Vz Xk77HPYRIqJD3kh0776vW3tPefGG2a8REdGL/vyS73z1vWv+/IJ7b7xv1yUvPHTJztd98yc3 /8N7iOimy991/NHr7yMiohPf8gl61otjywrIEOHVWrmzm1dtq6ceuPzS3pO/Ma8sxiZI/TTg 62/LSDthuc1iSL7+Xzj7LVYN077+nzrtSL52EtFJ5866Ljnp3Nn9dtw8MzuHFhXIgJnZOfSn gDyApoI8gKaCPGBpqmtmtjpDUjv2zyA345PS92E9C0Ycu6aq601XVJqkTYtXQ6pjjyvBpG0F PhXxSaEgFzw+PPa2fyIzUiexjv2IMTM7t/zIw63hSddTzXXpwMjC8kxduWr1hg0b2halOdbv QCm8dqrVO+KLkSPWmiGHomjkXpq0TQ0luhBlaSIGvwXpisZvgEanUI1daX9bJUxTK4FUyaph N39Ma7Q24A83a/JoMlul5cQJFUNDW8LIXHnKtXSSay2fJimkQ8C8FJOiKHq9HhH1er3quDwo jz2XtEfEJ6YNqeIW7VW7UKr1DmUFCxXGpHzc5nGrhGlq9TgrBdX+qgfWS5LCejvmT84lIpiL O2oH/L9msnF/Xag33s2TTbqXSopEbicRMVIm114qKRLRj0TEyJSR0FQwBEBTQR5AU0EeQFNB Htg1FXV/MBCsDf8S2FSQB9BUkAfQVJAH0FSQB6xxf4/nRNCx5nIxadsX0rqUcBXizwgMMQHz qFTM7UVds6O0eVeu/eus0aybmGr6DR0dJnKdR2UFk6uGmKHyUMHkqmGCv3dJI09qD4lMFAFx NJzz1AbclSm09SaY0xi0KRx+53B1cTlOsmSb8aIuT2fK4AoHfMxpM+aBFllkqZGwr7/2nvm1 Vp27UoZUMxlMLTHnh1jVsTyu0jEv8bviu7LQMjKzhlp7MJsN2s7uruZ1EAH7UPkjmE0cTZ9M XVQjeOZdWY+tMSMmb2myaRPCNFETnGDTPcwJM9armtQoWJpq9gox5TNn23AmXVljuo5D529Z w4MmhI0mA99Lq60WVbKdXICDaXc8Xk5N4CebXy8VGE3asqkDp/kiC4l006S5WkT3hTO0NrXX mEHfwQLN70Wc7gshoD+1OhYXInQpJc8awiaCXUvMhXH86z35BfbEsXaDuDrarFdlDdemln1m Ln11de2a602b16qJaMecRZe6/AxZ8/KPhniE97z8/JvqKR1q1tXBBmL/2qBTD5UmbiWh1zYf zk2k+2Jy8dIEta2lwvF4qHTaompi/0KvTUTPmjO/6eahuZcmDG2LCgwZ0FSQB0n3p3bjOpig h5vKSNVTPQTvR8XpZOETvVD3QDpfopeZri6n8CIqsXqfifzNhcivf5NFu4P6RHv9fiTpdBZG LExeecdxrgUaCdVTPX6uZqCptd0Q7V7Jp9bfV+32r97kJsdZ0PWMv6Du+hzrqeJTEUeqnppK fyoFdot2U22XVSxxi4v+1JKEvv4AeOjapnIaDSn3GXXPwJ3tmyPihd21pnKqXPjYaUxNTQ1a hHqsT81V74wgrD9V60zxOwT5zWdenXklzacCW1NjnuV0iOZYqkwazaL2e8G5PuLWCdB5oU4L rg5cvo4ampa7+l/N0vOXmDYoYJ3/rS56YD2uv3MGIq+xSfDcVLJNVbUeuMhXR11zdK2nyFEU nlXiPFeR8YZ7VkgoUWNq4VWI9bjhA2qpmdF1PRV1UA9NNoB0nbUecyJH0GrjL2kPFUBEy488 PJfXu6WZ1iXoTwV5AE0FeQBNBXmAndNAQmDnNJA90FSQB9BUkAfQVJAHAR4qTWbzhfqvAKBh H6OqpoWUnQDaEu7qzDXtLzHmn0w69lgj7Lgy8kxPT7ua/43mUYnPGQIjTls7p0FNQWegRQXy IMbnn0/oEr6uEP8SGORdqNW/LGuQkH7JOevC1iZiFbL2FqwZSd1gIrA01bNhWtwSKa5pHuox v2qhVpfVth0nBbUhGLS4iz9NVyDfw79E25SsYcMga5WVX5kir2bWwKUduABJ0ele1HmV+8Cl HbgAuRC81p8rhHOVdopZOeOPIPirGWYEfxZBdV/X3fmvBXyCbWptNc6cmuiaq8mf7NYcf8rm mIXro6zWgJvXaAGfrldQA8BDp/VUANoAmgryAJoK8gCaCvLAuTIFHPBA93ia8nZNRcMfpAa+ /iAPoKkgD1r0+quN7B9jxKgPUGHNo9Kw+qFZ51S5Ipe4FgpWT3kmaaHNN3y0NY8KAFkwmgqy B5oK8iDSP7VJfL+bZpOGlH/qVXtOomj8dUCkf6rL5ZmjKyXaahfWjPy5+N1Dg1xda9NkulRD ZdsjgxYVZhqNDnm3qKCmgNCiArkATQV5AE0FeQBNBXkATQV5AE0FeQBNBXmAeVQgITCPCmQP vv4gD6CpIA8GP4/KGpPjNwhGikHOo7Ima8Z3pYw23/CR6zwq+PuNGrl6/UFNQUXSmgpABbdF Fdeo4qSsHXNmnoARhGtTy9aMS1+1U5xNHapktSzibgMMPZ22qNBCAn5SaVFBTUE0kj3/nsol 87PuiVZWJII2eQoaWTDnavPltNa2mROvQ0NGtoIUaVM9k/HLAxHzqeZSbQRlfVTMLVK1+LKr VGjpNBHVmuCIk3TPf0UuFdxc5EyWVOqp0eTy+HORM0fkPVRccUS+Zf76pb9CwqkU1l7COcus H9fWs4EKS1M1UxHaVuA/MNeF1eN3GS3NeUVN3LoPqqBmaMnyzarpiCMl0lASWU/NpUKWi5yg RL6emsvjz0VOUEvTemp736zQlDlVWM5ZfnUWdEmMTeXUO62BtZ3YLi0hrztBCczncJNWf2rb 1Up/+uZZVHM7Jpv+1LbVwp++eRZqmg4tzvirTcc6RG5GNn9yhsIjhsuZlRPPtcyMRLDWkaqf k7GOB9YEzZjd19rDbKo5XO7pDVVD1MutyQreeW1S/pZW6Li8KzuOWpPtRfVrFUeehj4S7fU9 N2Fg9dQRqQJ2f5tZF2yK9dR8SzOI7m9zWAs2cj+qoC9C7eWeiib1908xhWnSA1pbjbNWCv3Z 1XbYpUBSwpgE2FR+J7n/FAXWBT0bAVsrfJ6Y/uaFeRUHV5WOXw929RPz//pzr72WI/bASas/ VYSIilrWdbtaQu9ugKWRYj21PSJKeYjVlMLvLs3SGEJNBUMJNBXkATQV5AE0FeQBNBXkATQV 5AE0FeQB9qMCCYH9qED24OsP8iBdTV25avWgRQAJka6mAqAirKkDnGcDhpt2bSrfHxQAP8Ka WjmMVZPOrH8BCAX1VJAH6Wrq+nVrBy0CSIh0NRUAFWgqyANoKsiDotfrDVoGAGqYgCcKSJ8J Ijpw+aX+SMU2aNt/5fG2o4XTxUKQErZwFfVF6b+koIUUFyL1Z9QX25JTFa8vIy3jMkBPpy// /twVeY2r1Oz7c1dy7kun76r+3LvMSMmk/yrS0l2QSb+q/xFrhS7Kfjtu3ubsd80XTqhCx4qC iuLJJ5+86uprPnrJw7JZgnz5q2V/ZH57Z2bndj9spRa4346bzctXrlpt7XBcuWr1SefOui45 6dxZqlpRL33xARd8/aGLrt36d7fes3i/RYv33ef9n71rW9w3nvTElvWP33sxLXrDz//piDLs Z/PrjiH6yZ0XOO5o8SPfPnbb4euOefhbH3n4pg/v64iqceT0mX97iP3Uuq+97wgi6u1y21eO p1e/4dYrVn3soG2nvvXld910+bu+edlKeu6SG8+D33e6VOu5WldkcvmKbFPTf//lr/fZ8w9+ Pv7Y4+OPElGv13v6vj9eiHXtJU/Z811ERLsd9vO7P/5iIiK6aP2LiIj2fv22srnPAAAgAElE QVT/veP8H286j4gevf1jRPQvt330zResIFr0o1uP2Xb5DZfv+vIPXPnNDxPRgzee/cAN05NE dNjR92+cuu/Sgxe9/eR7r/nrubc/g4juufqsc15GRESHvPHOf1p956cOot0PuuPvX7XpyiOJ aNWF9/3lcbvQa15+/bpLvv2eFxz4pnUHvWdVmcPL/uLil1+8lR65jYjo2S+54Qsn79GwOEFr zG+6ufzXeqpUX+3sNjUtiuL2x+75vZ1+8XtP/beyenHZCbolJyJ66Kqnnvm9a/72xUT0bjqW iOieb5Rn1uy1EOuyU79EdNdzDvy8dvXkO95dHnz1nH23nrX3C14zvcdx135lxS57HvKh3d58 0lFnf2DDRz9y5reIiObfvycR0R+/jIjoj5+2+IhZIqINX33um15+4SkvOPU6i2g3vev5x596 MxHRI7e96hMP/M9TXuAqJtAEjy1sj4Wu09/b6d/+0x88/p/+8xN3fO/O7905/8tf/cp6wbGH 7nfVVd8hos+v/BwRveXiC7Z+5rxPfH/b2f1d+bzwUHr4uvkHfkx09+6vmnr+mXcS0b5Ep3/4 4CrKlod/8rzdnlH9/MDr1u77+o8SEf3wJ1XgJT/a4yC6n4geJtqTnkb00z3feuyX37ILvfL1 9Mi379se7U8P3P3GW+8PKQfApbKFnGWsQ7W5tKPmwtnF/KabD1x+6Y9uP3+np4zTk0/S2Niv fvnb3/z2t08++eS6iz9ZNqHUNiZa+iPb0n/7sme5mlBaocs2oRZa+s854JRe7z+0SAURje1Q /wqA0WDZsmXWcLOl75o+5JlW5J9xtM2a+uVT32NY05G1pv1X9T/ilvtNC3gug/SB9wnIAKgp yACoKcgAqCnIAKgpyACoKciAejX1LHDC3J+O6haYwPITwI9zGVQTdT9pc38682zl56JucmyN r2I9i87dEceipjOzc9Xx8iMP11StxHS10nSRvLpV+ha4Nui2nlWlAsPK1NSUddaT3ZqqW/qp TiuuJXeY1q7JPoXWXQbBiFBfNzU9Vf2V1OqrrX6yzRQ8qblSBiOLZUzftUFq95TaPNw75wIV 1xL9SXdIYVk/UJK0mgJQUt8hNQRNbK0OM6g7SqQq1YQmTYUmX0VWv+nU1FR0Bp0RtHxLe3c0 9KvIRK/m1KRkhvyjn8inIBEx8mXI1TQv+FMx/cPO/OziEqnmr2h/2yNATdVpLi5Btb+q9G3f SQTWgrbeYxXiOStCl90a/rxqlbXLtRwD1NQUqwopim0LUKpxzPgdaGrEYgfW4mbekaAY1YWa P0OViOmg4983xrW3jDVBM5HaF6ZLu9Poo28VtHrAtYFtwPEocCE4KzJODHMlBdmhjSaFM1hk 6qa9Xq/6CLrUsbOXj7Mgh5Veryf4BYgQQzNm4gPFIjXXEvVBd2CDAhz5NDThVE0ldw2hM7PK oZLZvBHrKQ3xezFH3fwbbnE24vLECU2qIq4i1IQwNa1ksgrqqbx64gwWzx1ZRe3sRuDJoBJv TRMkke5JETGa62gbWj6/6eaBjF+w1DSXkRX+aGSrdzQEg6KpUd+EGr5CH747GnowCgUyAGoK MgBqCjIAagoyAGoKMgBqCjIAagoyAGoKMgBqCjLAMliaxQQ9MFJY1DSXEXwwOuCjDzIAagoy AGoKMgBqCjIAagoyAGoKMgBqCjIAagoyoNG+UMwLQ5P1rzkDRpCYCdDWjaBcuz25do2qsKZj 3f3M3CzKmiAYPur3hdLOelY48uz25No1yrrdVPVXzdeVeHV5IpP0QRPi94UyCbVe1vic7aaY KZcpYFrzEMP66KvfVvVTa37rrbs9WdeZMT/Z/OVotHotPvpDT9L7QlnBZlFDTJb7QlnBZlEj SH5qCrpn0f5L2kiW3+ptZUU+dHbmTmofq7YWjkxtHVMQRGozOPDRBwFED0k2hKWm6qYc/DFM 64Y1QfFrY2qRzXDXBkDd7GY09Kha4dloxdyVJRSuNa02PHDVWlzZV0vuVyGVuph6o0XwHJO7 XhEabhVAk9OMA0rUYcWqr9AcQVR/RmgqV039r4spioamIv4V7OPqtUEbNlQ7QJiJuNJJanOL 9NFGs9WfEe0zbhPKk3TzVqHLSqk7iqjHIpipaQZV3cwEdrTCs4WkaVnJsGJx4zICLX3XsJD2 mMtdl0zNqHZjMlVBjW8ec2ybR8PUT3klm0c1YUrJ4d2mhVt9jKyX82GpKX+nIo2gDXrUbW78 F1pDoo+1A2bWoEu63nBH6nlDbzpmsH6SrajpoHYPAi1x1x23DNYbCd37IAOgpiADoKYgA6Cm IAOGamvdChHHiESc2dL0iuy4cIZTTalxj1U6w04Jdr11Xzj46IMM4DryWY+lkF1PpULcWy/a D626nKIK0OMyZsasDcmRMGs68HqSayUfK7KfS3VhAU++fs8Mv+OFK2XmsO1waKSVAEc+82fz v6FpmvE7q8tb1wLi35Er3IwTekce7Rwa58MAa2paAqt3FtNTyxUnkfa1FXOFrOh0/I7DTFQV HGJTSkHe+2agueoY2Z6BldCPZmg65PVxjkCwwmO+ydG1f9W5sbrT4VPZTlc9abJUSdC1k4uX Nu+QSsSutzRHvgntFY5r1ZOO+k2b1COxUBTIbw0pMMQMzxpSYASBmoIMgJqCDICaggxI10Oq s4HZxPsQBj5AbQWOfAt0M9CX+OzCBEc74cgHgAVhRz5xlzxtST1qwT2PSbUsYdxXONqLj9xr Gzb/mwvB1tSslDR5bLXpJPXJKx352quWNVHl4SZYTTmrnLbnkudZnKwDXMt5uu6uG0e+USC+ CVXrCyJe3OqKaAOxsq5VuyLudNLYoLChbMNNfBOq1mFPpJ6qOuO5jgdOxGfa3CzTk5q6PKC5 YGCT41wYgOsJ0yWvuTMeE9kOqSbOilbgyEcd95vCJQ/E0amaBilopsv6ib+ECRZC94YG3fsg A6CmIAOgpiADoKYgAwbQ0q8FXQEqg130vjlTU1PNW4HJbRGRXc9z22zcuHHDhg2DlqIeqy6u XLV6amqqeeL46AMZWh2G4FrTqmdec5KYVDZTY36sq13CEhnqZOK6cdABXH9T1YGN6czmqonm pZ0qsl58QR4RHIfRIa4vCX/0Vbc0zxPNzpS6CF170B/iKb2gOr11PVTzwHMcTRPPcQ+NPKSs 4bVfw9x1tNag+p30rOXT0EirRWpuEFz9dK3gpzpPNRGDvDuDNiFs4UjPKW33X398kRc3WTxO euZZaxxrCB91db7aCNWxa4PjUNqosne9Ih/n4zWyTROroV25anXZIaX6g5u+4a6zqn+q56w1 zVDMPqlSeH6/aRKOfKAJEZthF/1br/vTSbkm1rUjX+2LNbKmlFqbltON/k1PT7eXOKxp6qxf tzZBl1MTa0VRqvaIUSjQLiLvGNQUZADUFGQA1BRkANQUZADUFGQA1BRkgL3fNPeJDSBTXL7V ozuADjICH32QAVBTkAFQU5ABUFOQAVBTkAFQU5ABUFOQAVBTkAHc5SSqiY78GY/a7ErrJjUA cKifZKItvxM9aqXOkI5LAYws9da0mldeKSvzr4ZmTatAV3wAKizWdGZ2rlrsr5zIErqYmRXP teWpBHeWAd0TME9fjdrB0nNlFlnMnwStEuAhxV/1BIsnAlmEVz3BRmSgSyLVFAoKugTd+yAD oKYgAwJGoUQ2Ho/DzN0aQsaAGee4uWD+wokoN4/Y5m26MpK6xxTgWtMO+qT8IebuFGqIuX+D dqzFt66FG4d/ZI6/K7uWpvUWqH8wbwj0jwlXTdUhU+bf6kIzhBOZv3a4uVa19Vo1XIsTMajm Eska33rLnputxGu4ZYrrm5MdLDVVTVHcS6wVtL/cmU/FtTq4y3nAb00n3Qvm87XEo1VBCaoL wzcc+dPexky7aLh1U/U44laDNNtvw8yzns0q/AKYZph/rStHzmtcW8PxJM5JLejyLBBeez+v skhB2hRkSAfXKNRId0hBP3JBWE3x4ENBiXEI7jcNbfwyqe3XtHZP+muQ1u4F86yr49Mqjxnf mrLrXjJtaA+cgH7T0A3U+G0gT1eRKUAEtfW/KnHr66HKZsb3tKY59wU4BPSbMvtEPSGu5jnz +bX3pKu7Y/aUeWzkSPW6d0awNbWeUn9G91i1Z2yYppQpjBZf5PaBH4EmlGY8mOakeV8sH788 pu33d8T6KzOgDTrdsxQAP+g3BRkDNQUZADUFGQA1BRkANQUZADUFGQA1BRkANQUZADUFGWBZ 9aRajg+ARLCoKVbGA6mBjz7IAKgpyACoKcgAqCnIAKgpyIB6NXVNvORcyEk5NFkwggSvISVF NSfTNXMDGgwqgj/65kxR119X/BJtPUQzsj87MFKw9oUyCZ2+7FmkLmi+XhUZm0gNK5H7QlkJ XSjBjBM3m7RamRFDZUNJK/tCASALZpaCjIGaggyAmoIMgJqCDIhc31Q7WxsiddaPa0HTVhcZ RT9uBwisbxq3SlkHT7eDTaFAN0Subxo3/uRa35R/LSdfl/zRm0KF3iwQR2B90wpPj330SFVt Lswc294UCha6VSSbUJ5H1bxG68qFk2Ntys03hcLqu62SwSgUNGB0wCgUyJgM1BSmFGSgpgBA TUEGQE1BBkBNQQZATUEGQE1BBkBNQQZATUEGQE1BBkBNQQZATUEGQE1BBkBNQQZATUEGQE1B BmBfKJAB2BcKZAA++iADoKYgA6CmIAOgpiADoKYgA7AvFMiAVPaF0k75LxQUA2TBwPaF8iTr zwiMIIPcF6oh2BpqKElrX6hqhyf/hR4wWjZ85LcvFBbiG0GwIh/ImHTVFKYUVKSrpgBUQE1B BnD3hbIeC6Lu22TmiPGqESfMmorrCnOvJs4+KmCICdgXyvzZ/C9/kx1Y01EmwJpau+jNU8z+ Tmsc17WwpiNOwPZlZqD1k810UvHvuweASqejUBhYAn5co1D2MX1xgmqiAGh0pKZQUNAEbr8p p63N37DUn4vLUdrsW2U6UJsxzYzUNJnzDqxesOrlHgH8grmkGtnujrAdoPkKFydNmYvH9Gop VyJxNs+15uWSgZMgU06tG8Qa7gphZjf0xAyWevzqG9ZBTVPE1HiOw6srxGrPOAlazV55oUvR +SXjt7KjhnDdtOEbX2tdoqdkaV7Y5YFVHT2nPKK2TSVVl5mmg7DrieykpVK3mLaNmaashB78 Pc3McFCSrvd+RUa9rRmJmiYZe+9n9OAzEjUvMlBTAFhNKHW8vjZmkE9JE9ReBc+x1d/AjGmm TEbDRWvA+e9Uu2WzDE0548phFGjketI9mpa4XF6s+qQ1860xPYmrl1v7Qc2fZoKum0qkeJMl wN9UMy3aMIy1E5FsT0476+qFtZ5y9VgFzfr397Grd6eqY8N+UFde0FEOkWtINS9cq21zxXFl p45C8eXhuB16rKmL0DJRXzB0SPkJngsV3cHuSbMW66BobQquaqIgtVVVcssJO8onpt80l/LN RU5QIdZvmtGzz0VOUEuwmuLZg+5p6m/aXt2/Scqap5XH28h/1hUCOqYVf9OBwOxSrT3LDAFd 0tTf1AyJ+9s8Zb6Lce1ZkBrxY/ouT01/iBkeoS6akvm7VF0CwDpmRLyauoaX/CFmeIS6mGMN zDRdA2Ouq6DKiZCWv2mr3+LQagAqBt2Tsb+pFKGTRqCj6ZCWmkIzgJUADynOGDonEWufpdlV 6cnac6EaOGmb3u4R0i+PpwT8wsThT0q7NU9NXS0KVzrWlK3y+MuhPbjd+xwXIY4t9PggMy8J qjKaYsc5fXJuXxZOafulcnX9+ruENd9cV74da2rTXfZqezTNl1XzWqq956ASqR1AcnXZhvrp mUbL80HwCxBUpLW3Vkvo+2bNt+OXNmZMn/N0Xa7yES9ikxIJsoJNSl/LqDYpjpetP3LtrbVk 81K3ptU7zXmWniqjCfPL1WrRuO4rItPJfrd/V5ygBCOyDk0t6Pl2zMD6TdMsDnE6vs3cSzW5 ftOsS5NPag2vTEmr3xQAK8FzoVwh0VgTd1VJI3pAI+TxtN/NfDkiaXHa6GdtQiJieGjdmkao uNnv44nWUmNWPfa/D7WzW7UWVYKeu+2VpBQxLX1miCs8uinKz1draPO7dZkCVMxvXx/A36uq xSfbq9jkr5ZOdCKpmfmKVqypy1owK/ia7WmSIz+v6NTUyJyr2jZdHmttnZXgj5AIraipvw+y tt+uCummZ94jEidOUNYdKMGke5TIDHd9TFLrMUjL31SE0FJO8KkIEnF3AyyQ5PpN2yO0iIdY RyNI86UdQjUFKsPx0kJNQQZATUEGQE1BBkBNQQZATUEGQE1BBkBNQQZATUEGQE1BBkBNQQZA TUEGQE1BBkBNQQZATUEGQE1BBlg2Kp+amupeDgA8WNTU6uUPwADBRx9kANQUZADUFGQA1BRk QL2aLtp/SQdyaMzMznWfKUgWWFOQAVBTkAGWftNo4pZ/AqAWYWva/f5JYBRo8aPvX4wTAD6o m4IMgJqCDJBUU21nPddfAEKBNQUZADUFGcDqN8XQJRgslrX3AUgNfPRBBkBNQQZATUEGQE1B BkBNQQZATUEGQE1BBhS9Xg/rRwAAQENmZucWhksPXH5pk7SKoiCi8g8VVCyELZzrP1n9s/0y 5U8Zs0phe0J9uXjzUhJXftjy0pPQfxZm/v3/60+4+rFwC4ZUtvNaMZl5+e6ov3Tsd2TLy7gV NS/HHTmSNh5a3R25C0h/mJbHZy3nPtn7lc6SlyNPS162O7Leu+2O+u/EnotW6NY7MtK13JE1 JU1zrK+JdkfW10TXEdsrqWXsyMt8fK68dAVKlv123Fwe6O4npx+/KzOJm+74fzd892fl3QMA gMpfLfsjfuRly5adeM6MP86Klz41KMENGzYExT/p3NmIXMqrKnR7+v73v5eZ1sc+dv713/lx MbaD/fSiN3z3isOe/9BVB7/uyu/wBUySI6fPPOdltPHcc955zSCyf+6SL659ya6P3Hbi+269 bxD5AxAHsyOR7y0cmmAZ3zNfuPQS1QRoIrZuT39nvNhw3V1f2/yD8R16Yzv8x9gOT47v8B/v edUrdt75D6s4h5x6+TUXHN132RtPeuKj+9O1lzzlHbd5JHjRe8+45sRnEtFVZ53y5uLEn3x4 362fOW/JhY9wpCciosWf/faKQ+muUw/83OVq8OuO+cHUPnTD5bue9j164aEbL3n18+ju973i SzXfu5Y54qz3nb3kp5es+szFDxLt9op/XLdk11u+/tLLdrniwiW7/uiWY9+95dCLjj3uOT/9 3Ps+t/4h8+pdTr5wxTHPphvWrz/jh52LDsBwYfWu56zLUMYpL1ePXejDpv/+y18T0ZafP7Tl 8Qfuf+KBrU/cv/Xf7iOintKu3/eI2+2JHXz84/euf/zeD5yzqC/4xe8781/v/vh33vvs8udV Z32OPnLiMeblxbOmv3reY5tOW7MX9d7wtkdv/9ij6w4gojdfeO6/3PbRS4/w3fYCW65edvbd RPuct3Zf2uO11974oWvf8Uwioj89+oHrp//3f38GHXb01uvW3H/pwfsSET3z9A8fvOiwv9hy 7Qe3fGiSiI760F9vvuYDf/daotcuv+fqs+6Z7r+T57/6yrkzrjzhGUREB7/xzm+c/r+Ofzrt ftDXvn7aHX//V1+98rRNVx75Z9vjXvmRK6+nnY9//yv3IjpixZJd6f41a+/d85V77Er08C1b 7qWfXH3LT4l2fvUrnmbcw4IxXX1j34k9jl5x/RdO/vzRO/PKAoAkMC1XLmvMlAs6TS5eOrl4 KWdxJ2P6XlEQ0e/94S8mdvjt+I6/nZj4zcQOvyGiovckbe8VXnfwR+2JbaufFlRQoRii79z/ KNEzn7/7s+iBMuD2N5+1+Kcf2bf8ccApp199wjO3fua8pR//l3sfInpu0P1amNz96UT04Pcf m3ztsucRPViG/vPlu19FBdGb/mZvIrr289feSUVBj370A4++6cNTRHTt9fNExVeu27z25Xst O2jyKNqLiDbccJea8j6v3nM3ooe23ew/7ruhKIjo+XsTEdG9q4+44Z6FPnci2rxq1S5fWbf0 vx1Hz11C11/4tSuJ9qoXf7sxvXj96m/q5+774c+I/nDXZ+9M9NOIkgEABBFaP9Xt6VhRPPLI 1ne+8DAt/Hvz2yzLPnvv/atf/5p6PUtiBx//+L3HE9HW//k3B3yDiIh2O+zaew4jItpw6U4r b3/xe7cn+9VPv/vQCy96DRHRdy+8+qoTjjnshPf9+ITHtn5/e1L/66pP/OXkyQet+D/fWaFk sOmCSw859LhFF9y69gK669Qln/+ymvurjn74W0cTET183RGvuHqeCiouet7/fu21n3nng2/d FuXBL/7ta89cc8VhR289a839ZxIR0Q9uOOptZx/19pO/csYH7z2DiOihyz51+P94jOixPT5z 0omnn3X36Qs53P3pT01e9+orP/GXd27v7fj+lz/9hhssJbE9vxvPuOKFX3zTku9fcemp1xEV dO/nP/vSH77h2+859tY3EhFd//F177+h2POtx1561M4Pf+WLR3/paed++U9fRXTDxReffmP/ qOazX/LpL76EiOi2qw66cCtGAUFGmDao4fR2s3rrTzC6Oqwmy5F5wf+09JdateJZv/M7liGm HXaYKIrx3/z6V5Ud/ebtj9246XHaPh4Ffyn4S/U9tLo7gr+ULWPnHRnpWu4oKX+pv1r2rOnp aeKxcePGE8+ZMfLqy3LFS58alOCGDRuC4lfj+xFXlf5SM7Nzuj2NBvYU9rTvodXdEeypLWPn HRnpWu4oKXvqzst8fK68dAVKlsqeLrT3b505bnDyADCU9IwDMMxgWjQAAMgAewoAADLAngIA gAywpwAAIAPsKQAAyAB7CgAAMrC2i+SgzUConUvAmbzVUIygxEMnlgEAgIaMPdUMULV8gEji /rw84dEywJICACKQae9X1brKqGm21TxWccXhXFsrVUSaofJEyAYAGD649dOZ2bmpqSktUF14 VasYUuwiCK44GdUZF+2/ZNAiAACaMj09PTU1FbS9Xlh735U0s8ORE43fnNdQlynki9QG2N8Q gNGEu79pWT+FpbCC8SsAho9Qo9e3HgoIJdqXAAAwlMCexgMbCgBQgT8/AADIIFM/nZmd27hx o0hSIIL169Yu2n+Jv6NndJ4RpzRAN0wuXtqz7o3UJkVRDKrtKNne37Bhg2Bqo8xdd9zCdLqa np4OspI5PqP2SgMAWdB/mi6oYamgNHJH3bZErbS6wnOkRXtaFpNWQNay02Jaf2qXeLLwhAMN z+PQ4DxHV/px1w4Wcwo1SYxAhqbT6jIXXYrBeVWLoiiKIlmV4NBp/bTWzJkRIopb3Sks62fT KtaiVn9qp6qztRfy883o/fEY1irEM+dYs0RVTDMda3wTz/JD1nT8ibvOumZjcyS0Ur2bWTz0 CAbQ3neVqfXVclVa/ahv/hAQunZXHNEq3vG70U1pmJaoDKmdhmeGm8sDmeH++H4hzXQqrPlq uLI2V1zzJMIku+9oKAOwp64y7fV6nuYhs/Q1Gzocj63SaXi8Uleloa3soxqayqSq8iRFgiKN CGmNR5ktyghjWkUuDfRwmFSSfkm0wuGXc/SFsrRtMjSjSUYltEmz17TFcTZaJB3XJWYJqJmG 3rirK8l1nCkt2lNP491z7D/lz8KfI9Dgq7XUAwq6duB4TIbVprha1rUtbs8pv9niX+IR1ZNL hEgjTlr1UwCyYOA2ZeAC8BmaYQwOsKcpsnLV6kGLkBAojXzJyO6LIGNPp6amzNWmQTRtzGLK 9xnlOKcLjCYy9hRzV9IHzwiAtsH6UgAAIAPsKQAAyAB7CgAAMsCeAgCADLCnAAAgA+wpAADI AHsKAAAywJ4CAIAMAf7809PT7ckBAAC5w7Wny488vFU5AAAgNUJnFaK9DwAAMsCeAgCADLCn AAAgA+wpAADIAHsKAAAywJ4CAIAMsKcAACAD7CkAAMggs9+JuUl3q/twNdn6XE2hIjqp5pIA AIYGyf1NVbOSsqHRZJtcvHRy8VK/qOol6nGaNwgAGAhd7BftMkbWY05kfuLWS8pcqsiuzwDn kxB0a8xjAECmcO3pzOycudtwxJaZLpMhYkqsprM2psuWtW3dVLOuZbdo/yWtZg0AqGV6enpq airIyoXVT5lJe2pbnGpmNMxEZKNFo9VP1T4H7O0MQI4UvV6P8/aW9VO85w1Bux6AXAg1ejOz c130nwLVnQDGFIBhBfa0C2BDwSiQXb//smXL1q9bK5gg7CkAQIyMugRnZufE08zJnk4uXtrr 9QYtBQAjSlEUaGn5ycmeAgDywpw5SUPd/ZWxPS2Kojo2663l2ej6rHp5w6Q88piB6k2VmGet iZiRI+ID0Aaau3ftdMR8EbOnofOXmmA1Q1K2z7RoXVJJzrwRze5X5SAVH4DmuJbL0CazxE2Y TGr+4SDrp1Yvorg7r4yCeqDai8pKmmbXeuyyqrUXuo41efzwvwpVstrtR8MsGU9g6C2Aocdf P/W/7NU0QtecRs88Q2YWggxsvT7tk6UWR3s3b329S2NH4SZAs9S14W2g2mtOplVMTwQzHbVk rBG0QBhTIEhVxyyNg7meESl2w9pjqxrcVhlw/2mc6bTWPc1jZpVQM0l8XFbDFR4qT5AwTDgy e4rXk4JgXzMYGvzLYmhnZU/xq8CCDMyeumrpzPa++sa6jl3xOZdw0g89rpWq9hKXFeOcDZIz 7pQ1BIDRQcyeclZy8nxYatOJI7XXOzV5AACCZOYvNdjBdwCAh2XLlg1ahAGTkz0dVp81AIYD 2bnwOYL9+AAAQAbYUwAAkAH2FAAAZIA9BQAAGXIajwIprFiIRds0UngoWTAKmoP6KQAAyID6 aa5g2b004c9C9q/NyEnNfy3onk7X60uZNuRsdcUwdUJ9asvuuVasMBvzscEAABOmSURBVE9F pBYUv0mxd6O6rgfnn7oSuq4j6Abh+ql1WS0tQnXsiikVTsYrbcb33Ig/kdp8qxC1TKLXK7Ai uExfq5i3X5UJp5y1S7RA7XI1C/NavjpporZnW60PsXbdSC2auFQgDvn+U6tCW0O0mOWKW9ZV Ds1F/Kwvg7ZyV22+tbdg/WmuDGbNtzrWArVrm6xPyF+mr2PU27SuemMtHGs5W2Oq8bUiVeNr 1/rVzExWvbaNZSR7CoTVDocC4fqpuWqUabz8S3hpK8Vaw81jpmwBd5J2H0Xir5xp6Ty1y9Dn GI1Lncyz3eBf+bA2fuI6MJrI1089FQprnaVEDdT03gxX03Glz8zXcwtx8a3hnmvjVrpVV2uN WLm1bcwCdFUViVECrmLULmd24/jVydXw5z8m1+MwwzkP0RMnwecOil6vx9kye2Z2bmpqKvHN tVsd/0kh3xRcHUfBizCIFB5KFmSnOaFGb2Z2bqj8pQbVfOsy39S6SgHhoYDtDJU9HXry+ryP CHgooALzowAAQAbYUwAAkAH2FAAAZIA9BQAAGTAeFcOQuchk58iSFEOmDO0xCmqG+ikAAMiA +mlTXOvmWcOxzNpww1lEMUhhOggHgojVT10T8jgT9ZpcG4qapkj6/iUtrOuVaAthDB9tPLiI rJuIEXGt/6H74wwqHMjSdf20dmG0oGvJmNY9kDX0QtfNy2WdPXE8T5/qnl1QauqpyYQX6wND Rqf9p9YF0zzrp5jXun4Odg0987PvX95ixKsJZoGX+J+dRu6L9YGhpNP6qX/BtNAUUoC/uYU/ fJTp5pkOcLE+PPTRQX59fvWna8lL7Wy1aqpHrc2VVf2SaPHNcE7dx58F9b8kTY5HE9czdT07 zrUe/LrnCue396WUoctjIMtQrden0uoaekPmcpiyY2D6fZdDpgztkbKaWRn19fpU2m7NjWbX Z/dk8QZCGUDJ0NrTVsniJQfdAGUAFZgfBQAAMsCeAgCADLCnAAAgA+wpAADIMMzjUVKOLNn5 eYAumZmd27hx46ClGF3Wr1u7aP8libhyDrM9BaAzNmzYMGgRhoS77rhl0f5LODGnp6dT+5KN ij3FYmUAZEQi9c1QJO2pa0qSOcWlCvGcEhRMnUBdFEVRFDCprRL0xLunbRlEViDFrP8cEbOn 1oV5pJLV0gx9H7TlnKGjA8c6756/np4/3JoR9X/dqW4dP9dKFBzdU/Wt+njjoz4KdNfe56xo ab3EjBlhrGFJu8fzxCtDpi5MY12g1qUD5jp7rjhauFZH9qdjysnUvbglbjnLkvGPIy7xHw+E CLsxQFq0p1bVDEKqH2DgOjGaBD0sl41rss4eX3/E39L26qH81Fwr8NZG7vV6peShObZBpRKJ W9ISMXvqfxOir5Jt74Nk8azRF7TOXtC15ULRnnQi9m5o++PdMP2IKnAKXRNZGFMSr59ab5uz VqlsgmCwMB+o2RIPSo3/wQ4Sw3+5+CqoTa7lpNMw2YFb0rwYcn8pLKQG4sjlmw1HwKQYZnua yysBQDTDZ0NXrlo9aBHiGWZ7CkAHTE1NTU1NDVqK4SHrmWawpwA0ItOZPKANsL4UAADIAHsK AAAywJ4CAIAMsKcAACAD7CkAAMgAewoAADJw/aVKDzvmutkAAJA7EeaOa0/hZAcAAH7Q3gcA ABlgTwEAQAbYUwAAkAH2FAAAZIA9BQAAGWBPAQBABthTAACQAfYUAABkkLGn2s6U6k/XppWC 2QWFtyEPAABQS+vzezZu0myZuV+0dnnoBtShtJ0+AGB04NrTmdk5M3D5kYeXB9ru5OSwTere 5WYlsQovN0avAtWqpazJ02RQ07feLwBgpJiamgqaah9QP/UkXRlKq02Mxm9/pbDKWX0qAACj SUSlSqa9X9Yia9vOZrTQZGXR0kd7HwDQBLH+U5cxMjtDzfqmGkdLx2WXo2XgpA8AABF0ul+0 x64BAEDuwP8UAABkgD0FAAAZYE8BAEAGsf5TdazJ/ClOS+k3SdYcbTPTqY2jORu44ksdN7zl 5pi5h8rTgfwRpRp0rRm/xHVTzQsNtERb41EuM0HGm+y/3DN1qjZ9fwRPSOU86xE7Tnf9V7nm OEilX4urGEPDReBYDe2RcZ6yKTnV2TgXtTEjVKW5t3VzLQLRyPtLWd05PdOcrJ9uVxzrNAHP NCeXkFaRqhCrTlfJtqSdVdbm+2C+llKeuaE1JjI+NiKlYbVufoNYhVgLhy95808Cp2baJYm0 PEYT+fa+afsGOM3JBV+kbtRRtexmuN8JV6pI/TXBVstBy1p2YvFAOp1S60UB3SBZP3VNkWpe mfJPYZoPn+bkEqkKr6qrZrIuZWXGdxWRebPWEH86nvRN2TzN59prPeEN8SQb0R7nSF6bvv9O +TXcUI2Kw/w2w7B2RtHr9TgT/mdm50KXBhABX9r2QNkSCgG4CTV6M7Nznc6PigCK3h4oW0Ih AFHgfwoAADK05X9qDZdqW0Wkw7nEJar/uMSVMmfQPNQDyX8tf7A+umvS0w8bOtgdem2TYwDa ZpDt/TjboTk5udKxDn9NKl6K1mGHIPlr3QNqR+etA2L+NJlxpK71j1mFXsuRDYB8GZg9dfkG mnG0cNMgztc5t2pJ8WupTeAM6wclVXttcz8KNTtrWVWnOLnE1dlhVUG+DHg8qta/pDrmNwaj EXyfZf03I6p4oUXBycJ0xJFNH4DcGZg9ZXov+j0iTS/R2uw87X1Xji05WraBeC3YVVfVIjdx vK29NtQBNqPnBYaM1P1PAQBgIET4n8JfCgAAZIA9BQAAGWBPAQBABthTAACQAfYUAABkgD0F AAAZYE8BAEAG2FMAAJAhYH7U9PR0e3IAAEDucO3p8iMPb1UOAABIjdAZoWjvAwCADLCnAAAg A+wpAADIAHsKAAAywJ4CAIAMsKcAACCDjD3VVsgX2cWIn13Dy9WfnJTbvjsAQKa0st+JurlI GRK0PTInskpQIlZptUs8O6dqcTxbEzfZegQAkCNcezozO2cGMp38XVuZWvdx0iyUNbJWu7Qm XuLZq1m9Vt2niIydiNSUa7efMu9Cw1qSAIAECd3kKaB+2nD/qFbraEGJV8bOtNrWaOSuGnPk 0WwrZpoBkAURVR+Z/fhMc2OtdZqnmrT3/fH5m5hac7GaUWviQVIBAHIhYj8+7G8KAAAWsL8p AAAMDNhTAACQAfYUAABkgD0FAAAZxOypa9aQ1IyjJrOSBnVtEzjl2eQ4KZIVDIAgWpkf5cLj peSK5vK7qnW6MrNTA61Zczycah28ImTjzAGrpaFLVhM5OY5rtYlwhAEgcQbQ3lcd6c2zqrO9 +S6Z15rzo8x0rClY83X9VC93xXHJZt5LqMymALIVuiZymj65LrdcT+FwhAEgfTqtn3LwzCxi XiWVu0nojCn/vUTL7Kr6RdOSnG0IA0DKJGdPKbC5V629osXXwrXErTVfazqeOC6xa9vFoTK7 MmqSFydNppzq6ge1Gam5ePqIrTcIQOJgfpQAqEYBMHxEzI9KsX6aHbCkAACC/ykAAEgBewoA ADLAngIAgAywpwAAIAPsKQAAyAB7CgAAMsCeAgCADLCnAAAgA+wpAADIAHsKAAAywJ4CAIAM sKcAACAD7CkAAMgAewoAADLAngIAgAwB659OT0+3JwcAAOQO154uP/LwVuUAAIDUCN2RBO19 AACQAfYUAABkgD0FAAAZYE8BAEAG2FMAAJAB9hQAAGSQsaeTi5dOLl7q+ilO8/TVFJipNcm0 7QIBAKRA0ev1Qn2sTEpjMb/pZleIak3MaFo4J3JtfFcitdJaj7XU/JL4ryUAwDAyMzvH9eef mZ0zA5lO/pr1mVy81LRcWuQqgjWyVhe2Jl4iZb8qs2gmrgrJvNZamACA1JiamgqqbgbMNw1N WqPVqlle9T5MNgMgfSLqPdz2/szsnMeemp2D1lqneart9r7HztZ2CHjSdEXgXOuSBwCQFH6j Z40fUD/1UGsmXBGs4UGRQxPhRGBmJCI8AGBokLGnowaMIwDABP6nAAAgA+wpAADIAHsKAAAy iNlT1xSg7KYGmQJXIUNzjwCANhAej9I8200rE+Q41TCconyqSnco/6QDAAAwkW/vq/PiXaes Mec33Vz+q0Uww8lhQ9X4nHzNmGbi5k8AALAiXD+tKnfqTzOOJ0StD/Kn2DNlC7iTkJQBAIDa 8D+1TnVXT6nWtjoV1K7X0nGlX5uvpy3vuQvP5CgAwCgjZk9dq5Aw284i4Z56a8QcKn89mp8O AGBEGKr5UW2sLAUAAEzgfwoAADKI1U9rl5RumFpt5BKpammc8OYCVP6lpiMy8nc0+9Pk5OVP p6VnyjklW6ShxRUXB852o0Z37f3apfmI90a5ujW7HI7nW3D/UtPWZDm9uv6bjXiBU3BmsA5U WqPJFmkEKRQXSBB5f371p9ahqTqKmn2d5kL32suQyHeeX/vTpgbU4vmceCLwJXTFifM/E8dU g5aKtCGJFBdIEHn/0+rY9WLkroJBDTqXC1dcdg1J5IPUkOZFCkBLtNjeV6sSce+AZou7743i z171u7Kal4T6w9bCTDPIn9e8JFo8Tmqa8K0WKSe+K06XxQXyQma/E4CRB3FQpGCwDGy/E4DX XhwUKcgO+J8CAIAMbfmfSjXW4twzE6/acBwnmc6V1vttmGatzP5cgi6sxdqpqoZwLneVT0tK C0aWttr7Hh01PbQ9l6uXWNOxxrdS6wCrieR5gYOiuRxmTUTe5NphnKTwmzBTQ4JcRPj2EZYU iCC/Hopm++brlme2VpdqHVT98U20N9Cavute/FJZb8qaLJMmVoBjngZiNVyj3h5hON/d2hz9 3xVVOashe1hVEI18e9+0Pi6/k+5pKevoxqxGw/c5ZXOgFRH/+yduTK1xVNtdKxsALiTrp5pT nlaVa25oyFazMPPiiMcUg39VUHvfFd91yioGszyZTpShvZm1knvS1GqF1piujh2/YEF3Yepn yh8kkAUd+Z9CU8VBkQLQKun6n+K1FwdFCkBqwP8UAABkELOnk8aMZjOEc1X6DEpmNV/OcdvX hsYBYOgZ5Pqn6hso5exphvOT9QhsxrGO5LjSDAqX9b5qfi0AgIlwe7+sm5hDpWbVlfrHml1x KlRPrKBoqiOXXx4rrnyt4VZbaRXAI4MWDQCQCx2tf2qe5aTQPFoHiVSY/oxmLlZPHUEZAAAD ZDDrn7pmrXA8IkU8TyMcS0MzsiZC/bVyqwyhXqvMdKKvbRIHgJEC6586gYMnAKNMuv6nOQJL CgAIAv6nAAAgg2T91ByQaVLFa5iCtffQ/MnvvuQMMfmvNePU+mwx0+FIzi/JNqQNzTcuhQ6Q VcvQU351DX0Bm8SPSzPBBypLW+tJu7w1yVCFKtD/usb5kDLPkuID60/BHG5q7hZa6/0u6B7v d6r1BBJbWjWjWsPBf8Ealjxff7pUS4+ctWaryYcqAn8igiqaNd3N31f9MT0OQ7Xj2rUpaIGc Guh8wgu1uWqITahS89xyk5ewjWoIx/8hVJ7u1bIW89E0V9fmD4JjTGVVNFNatKdWhWhS3HGv EMd2kNfbadRor0nbENmUB6KWUnSprkPfSBdEeH1+jpNjXOKh7o1mprUNzOhXy9Pom2/snukv PU77PQ5+ozX0fYvTB7UiqUrFyd1a/gNRyxLPU+PfnfWNs8rjr57z47sYlIomyMj5n+JjCzIC 6jpA4H9aD1QTZATUNS/gfwoAADK05S8VHaelrP3XlvCHL13eYC5/Gn84U/4qWsdtQJeonFuo LV7XTYXeI6ecmTKPJigZEVpp71t7oE3HFObLZk0kNFlPl7wpsDWOC86ARq3BpZBi8aRZe++u Qe2WPG8ihvhqX2aODvjlsabGLEZ+eGg6LsFc10YL4Amn/sJ0XQhT66LF9v58/wqh6nC/Glj7 ys0r64F6Hq01HVUnBujB47lNT7H49dhMk1+kVtk4iPvoVLlXMlcH1oys92hVDy39SWVZXlcE NVDL0R/fGu5/HP7H5FKDUMGs8V2Ja5d47sgUGJTkNB7lqluZdPPIzS95c0azLmCtQU9KzLAw jVptmnw165hQwURuZB4rMYYwMHsa8ZzmHW5u6rvnSrZhf5z1m++pLFhTcwmg2Q5Xe5ZTC7be u6vcrEJaKyycZOOK2lrvrpLlC+PCvPeIS+JoYoms1/oF4z/3WsE0hZzvvMs+X0bO/zRHoM3A Q9vqMbLqB//T4WQEVRnwaVs9oH584H8KAAAywJ4CAIAMsKcAACAD7CkAAMgAewoAADLAngIA gAywpwAAIAPsKQAAyAB7CgAAMsCeAgCADLCnAAAgA+wpAADIAHsKAAAywJ4CAIAMsKcAACBD wPqn09PT7ckBAAC5w7Wny488vFU5AAAgNUJ3JEF7HwAAZIA9BQAAGWBPAQBABthTAACQQWZ/ 00X7LxFJJwuWLVu2ft3aQUsBAEgOsf2iQwfCMmVmdm7QIgAAEgXtfQAAkAH2FAAAZEjXnk4u Xjq5eKk/BAAA0kGs/7RjSsM6v+lm63FFGQgAAB2Quj2Ns4+VbZ1cvBQmFQDQDanbU9Uawj4C AFIm3f5TE2vrHj2qAIBESLd+aq2HqoFxEQAAoCVyqp8CAEDKwJ4CAIAMMu39ZcuWiaQDAAD5 ImNPsT4IAACgvQ8AADLAngIAgAywpwAAIAPsKQAAyAB7CgAAMsCeAgCADBPT09ODlgEAAIaB /w9UgAWbEs7fnQAAAABJRU5ErkJggg== --------------090309040103020209030907 Content-Type: text/plain; name="171819-log.txt" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="171819-log.txt" ZWJuYXV0LXJ4IFYwLjdiDQppbnB1dCBmaWxlIEM6XHJjNGhhYVwxNzE4MTkud2F2DQpzYW1w bGUgcmF0ZSAwLjM0MjkzOCBwZXIgc2Vjb25kDQpyeCBmcmVxdWVuY3kgODI3MC4xDQpmaWxl IHN0YXJ0IHRpbWUgMjAxNy0xMS0xOSAxNTo0MDo1Ni44MDANCnBvbHlub21pYWwgMTZLMjFB DQpjcmMgc2l6ZSAxMA0KbnVtYmVyIG9mIGNoYXJzIDMNCmJsb2NrIHNpemUgMjgNCnN5bWJv bCBwZXJpb2QgNjAuMDAwDQpudW1iZXIgb2Ygc3ltYm9scyA3NjgNCmxpc3QgbGVuZ3RoIDM5 NQ0Kc3RhcnQgb2Zmc2V0IDExNTQuNzAwDQpmcmVxIG9mZnNldCAwLjAwMDAwMA0KY29yZXMg Mg0Kc2tpcHBlZCAxMTU0LjcyNzY3NyBzZWNvbmRzIHRvIHN0YXJ0DQppbml0aWFsIHJlZmVy ZW5jZSBwaGFzZSAtNDAuNA0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tDQpmb3VuZCBWTEYNCmxpc3QgcmFuayAyDQpyZWZlcmVuY2UgcGhhc2UgMCww LDAsMA0KY2FycmllciBTL04gMTMuMDUgZEIgaW4gMjEuNyB1SHosIC0zMy41OCBkQiBpbiAx SHosIC02Ny41NiBkQiBpbiAyLjVrSHoNCmNhcnJpZXIgRXMvTjAgLTE1LjgwIGRCDQpjYXJy aWVyIEViL04wIDAuNzIgZEINCmluZm8gYml0IHBlcmlvZCAyNjk0Ljc0IHNlY29uZHMNCnN5 bWJvbCBlcnJvciByYXRlIDMzNi83NjggPSA0My43NTAgJQ0KRXMvTjAgZnJvbSBzeW1ib2wg ZXJyb3JzIC0xOS4wIGRCDQpFYi9OMCBmcm9tIHN5bWJvbCBlcnJvcnMgLTIuNSBkQg0KU2hh bm5vbiBjYXBhY2l0eSAyLjIgYml0cy9ob3VyDQpTaGFubm9uIGVmZmljaWVuY3kgNTkuNCAl DQpzeW1ib2xzIGZpbGUgQzpccmM0aGFhXDE3MTgxOS1zeW1ib2xzLmNzdg0KZWxhcHNlZCAx MiBzZWNvbmRzDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0NCmZvdW5kIFZMRg0KbGlzdCByYW5rIDMNCnJlZmVyZW5jZSBwaGFzZSAzMCwzMCwzMCwz MA0KY2FycmllciBTL04gMTMuMDUgZEIgaW4gMjEuNyB1SHosIC0zMy41OCBkQiBpbiAxSHos IC02Ny41NiBkQiBpbiAyLjVrSHoNCmNhcnJpZXIgRXMvTjAgLTE1LjgwIGRCDQpjYXJyaWVy IEViL04wIDAuNzIgZEINCmluZm8gYml0IHBlcmlvZCAyNjk0Ljc0IHNlY29uZHMNCnN5bWJv bCBlcnJvciByYXRlIDMyMC83NjggPSA0MS42NjcgJQ0KRXMvTjAgZnJvbSBzeW1ib2wgZXJy b3JzIC0xNi41IGRCDQpFYi9OMCBmcm9tIHN5bWJvbCBlcnJvcnMgMC4wIGRCDQpTaGFubm9u IGNhcGFjaXR5IDIuMiBiaXRzL2hvdXINClNoYW5ub24gZWZmaWNpZW5jeSA1OS40ICUNCnN5 bWJvbHMgZmlsZSBDOlxyYzRoYWFcMTcxODE5LXN5bWJvbHMuY3N2DQplbGFwc2VkIDMxIHNl Y29uZHMNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0K Zm91bmQgVkxGDQpsaXN0IHJhbmsgMQ0KcmVmZXJlbmNlIHBoYXNlIDMwLDMwLDAsMA0KY2Fy cmllciBTL04gMTMuMDEgZEIgaW4gMjEuNyB1SHosIC0zMy42MyBkQiBpbiAxSHosIC02Ny42 MSBkQiBpbiAyLjVrSHoNCmNhcnJpZXIgRXMvTjAgLTE1Ljg1IGRCDQpjYXJyaWVyIEViL04w IDAuNjggZEINCmluZm8gYml0IHBlcmlvZCAyNjk0Ljc0IHNlY29uZHMNCnN5bWJvbCBlcnJv ciByYXRlIDMyMC83NjggPSA0MS42NjcgJQ0KRXMvTjAgZnJvbSBzeW1ib2wgZXJyb3JzIC0x Ni41IGRCDQpFYi9OMCBmcm9tIHN5bWJvbCBlcnJvcnMgMC4wIGRCDQpTaGFubm9uIGNhcGFj aXR5IDIuMiBiaXRzL2hvdXINClNoYW5ub24gZWZmaWNpZW5jeSA2MC4xICUNCnN5bWJvbHMg ZmlsZSBDOlxyYzRoYWFcMTcxODE5LXN5bWJvbHMuY3N2DQplbGFwc2VkIDEyMiBzZWNvbmRz DQo= --------------090309040103020209030907--