Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on lipkowski.org X-Spam-Level: X-Spam-Status: No, score=-2.3 required=5.0 tests=DC_PNG_UNO_LARGO, HEADER_FROM_DIFFERENT_DOMAINS,HTML_MESSAGE,RCVD_IN_DNSWL_MED,SPF_PASS autolearn=ham autolearn_force=no version=3.4.0 X-Spam-DCC: EATSERVER: mailn 1166; Body=2 Fuz1=2 Fuz2=2 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by lipkowski.org (8.14.4/8.14.4/Debian-8+deb8u1) with ESMTP id v56CQFtY000668 for ; Tue, 6 Jun 2017 14:26:16 +0200 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1dIDV8-0005CW-U2 for rs_out_1@blacksheep.org; Tue, 06 Jun 2017 13:22:22 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1dIDV8-0005CN-0z for rsgb_lf_group@blacksheep.org; Tue, 06 Jun 2017 13:22:22 +0100 Received: from mout02.posteo.de ([185.67.36.66]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.89) (envelope-from ) id 1dIDV5-0008CY-3s for rsgb_lf_group@blacksheep.org; Tue, 06 Jun 2017 13:22:20 +0100 Received: from submission (posteo.de [89.146.220.130]) by mout02.posteo.de (Postfix) with ESMTPS id D32C020F6D for ; Tue, 6 Jun 2017 14:22:17 +0200 (CEST) Received: from customer (localhost [127.0.0.1]) by submission (posteo.de) with ESMTPSA id 3whrRC46qMz10BF for ; Tue, 6 Jun 2017 14:22:15 +0200 (CEST) Message-ID: <59369E76.3080001@posteo.de> Date: Tue, 06 Jun 2017 14:22:14 +0200 From: DK7FC User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; de; rv:1.9.1.8) Gecko/20100227 Thunderbird/3.0.3 MIME-Version: 1.0 To: rsgb_lf_group@blacksheep.org References: <15c7d427aa5-45d-331e2@webprd-m61.mail.aol.com> In-Reply-To: <15c7d427aa5-45d-331e2@webprd-m61.mail.aol.com> X-Scan-Signature: 57c46fc57df9e768804caa43485df2f4 Subject: Re: VLF: New EbNaut announcement... Content-Type: multipart/mixed; boundary="------------010201030902060701050304" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.75 Status: RO X-Status: X-Keywords: X-UID: 11900 This is a multi-part message in MIME format. --------------010201030902060701050304 Content-Type: multipart/alternative; boundary="------------080904070604050405010407" --------------080904070604050405010407 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Hi Markus, VLF, Thanks for the information. Yes, something must be strange. Look on my results/attachments. I generated a local decode from the tree, of course with a big SNR. But the phase! I got no better result than 0 0 0 0 (phase pattern), as expected. Your tool telles there is no frequency offset and just a small timing offset. Is this instable phase from the transmitter or the receiver site? Maybe some components in the loop preamp? Hard to imagine. Additionally i took a recording on the Raspi, using the setting as for the ULF experiments, i.e. 24 kS/s sample rate. Unfortunately today i shut down the Raspi before stopping the recording process. This corrupted the file. So i will repeat the experiment another time, today, same start time and parameters. Yesterday it was warm and sunny, today it is overcast and rainy. If the phase change is genuine and if it has to do with temperure changes, we may see a difference in the next decode. 73, Stefan Am 06.06.2017 13:55, schrieb Markus Vester: > Hi Stefan, > > your message was decoded well from DL0AO cardioid data. > > Initially, the best decode appeared with a phase slope, -30 0 0 30. > Entering a frequency offset of one FFT bin (+9.3 uHz), the blue peak > seems to be shifted slightly to the left as expected, but the same > best decode was achieved with flat phase. > > This seems to confirm your earlier observation of a one bin offset. > This is strange, as I've never observed such an offset in earlier > experiments based on shorter data with wider FFT resolution (31 uHz or > more), and I am lacking an explanation. I don't think we can blame > propagation because if there was any Doppler around sunset > this should be negative rather than positive. > > Best 73, > Markus (DF6NM) > > > -----Ursprüngliche Mitteilung----- > Von: DK7FC > An: rsgb_lf_group > Verschickt: Mo, 5. Jun 2017 14:44 > Betreff: VLF: New EbNaut announcement... > > Hi VLF, > > For some local tests i like to transmit the 2 character message that i > already sent on 970 Hz 3 weeks ago. This time on 6470 Hz.... > > Such a short message with sch long symbols may be interesting for > newcomers or various tests by the established VLF receivers... > > > *f = 6470.100000 Hz > Start time: 05.Jun.2017 13:00:00 UTC > Symbol period: 60 s > Characters: 2 > CRC bits: 3 > Coding 16K21A > Duration: 9h, 20min > Antenna current: ~ 460 mA* > > 73, Stefan --------------080904070604050405010407 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: 8bit Hi Markus, VLF,

Thanks for the information. Yes, something must be strange.
Look on my results/attachments.
I generated a local decode from the tree, of course with a big SNR. But the phase! I got no better result than 0 0 0 0 (phase pattern), as expected. Your tool telles there is no frequency offset and just a small timing offset.

Is this instable phase from the transmitter or the receiver site? Maybe some components in the loop preamp? Hard to imagine.

Additionally i took a recording on the Raspi, using the setting as for the ULF experiments, i.e. 24 kS/s sample rate. Unfortunately today i shut down the Raspi before stopping the recording process. This corrupted the file. So i will repeat the experiment another time, today, same start time and parameters.
Yesterday it was warm and sunny, today it is overcast and rainy. If the phase change is genuine and if it has to do with temperure changes, we may see a difference in the next decode.

73, Stefan




Am 06.06.2017 13:55, schrieb Markus Vester:
Hi Stefan,

your message was decoded well from DL0AO cardioid data.

Initially, the best decode appeared with a phase slope, -30 0 0 30. Entering a frequency offset of one FFT bin (+9.3 uHz), the blue peak seems to be shifted slightly to the left as expected, but the same best decode was achieved with flat phase.

This seems to confirm your earlier observation of a one bin offset. This is strange, as I've never observed such an offset in earlier experiments based on shorter data with wider FFT resolution (31 uHz or more), and I am lacking an explanation. I don't think we can blame propagation because if there was any Doppler around sunset this should be negative rather than positive. 

Best 73,
Markus (DF6NM)


-----Ursprüngliche Mitteilung-----
Von: DK7FC <selberdenken@posteo.de>
An: rsgb_lf_group <rsgb_lf_group@blacksheep.org>
Verschickt: Mo, 5. Jun 2017 14:44
Betreff: VLF: New EbNaut announcement...

Hi VLF,

For some local tests i like to transmit the 2 character message that i already sent on 970 Hz 3 weeks ago. This time on 6470 Hz....

Such a short message with sch long symbols may be interesting for newcomers or various tests by the established VLF receivers...


f = 6470.100000 Hz
Start time: 05.Jun.2017   13:00:00 UTC
Symbol period: 60 s
Characters: 2
CRC bits: 3
Coding 16K21A
Duration: 9h, 20min
Antenna current: ~ 460 mA


73, Stefan
--------------080904070604050405010407-- --------------010201030902060701050304 Content-Type: image/png; name="rawsyms.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="rawsyms.png" iVBORw0KGgoAAAANSUhEUgAAAocAAAH4CAIAAAHA7eCqAAAAB3RJTUUH4QYGCRoJfcexCwAA IABJREFUeJztvXv8LUV14Lv6nAMOk7kanYjBRDOCIMrhIWpkPhnNQQQUc8eQK1vxBTI+iIIi iviInoMYFHwhChM11yhJJrFBJTMmISCcI4IeDOIPOCiCAoIDAe9ofCURkX3/6N/uX+16dfVz 167+fsXf6d1dtWpVrVq1qmp39852rGyXkbFBRN6y7SsXHn/8zg/6d3L7JQ99ztff9Xenbvmv b/j+de/fbcuNd2/Z51HHbLvzU7uKPOFP75CXZ1/a+2VfXL9+3SrrZ3/WZ+WZ9cqldevWrVcu zRKX2TMj8er5uY9hBVml7f+gb4nIxgMOEpEdK9s3HnDQ//jqP2c7VrY/5Q/+XxFZt37nsrx5 zUrpTVRZbJ0/fuqRmpFfedZFMsK+vW5B5eYLFNV9nafT6XQ67Vxsh3Rf5yzLsizrXGxLVDMs qm8PitbvNixKjyHR+t0o7KxBncdBUnUuxip3pFyN5EnVOcsuEGPEUpgU/yRVZ5FJyLSsjFUd TgYD6anEyUz4xJmENcYoGNu6KhfsPBao8zigzuOAOo8D6jwOQutsneDls//qksvEJdNaYq4c tJ+1lnXO85lM86AoKJ8ly9fSi4hM5rOoueYlqCdL1XMzY3EwmctVXp3Xab5lPFWYS1ysJU2L 5baT5SUxzqspTVFG9lxNlhu5rJqYArWGsJIbn9b2t7UltnvFHbQZ4c/uOmMeBBZXTxP2DEZB szq3HzuH335bKxc7jwPqPA6o8zigzuNgjHVufA9Nr1MxzwqlmcB5Gq0xmHtWF7SIGroL7aLO /iotpMIiMnE6SKM6r2225PqBnjJfLb68WqTMRc9lHnSCTbE29wE6do2K03O7G7lMzMrYatts 8NLkyEyBNTXyNa2EfZKRQJ3HAXUeB9R5HFDncUCdx0E2tvn2Pvs/dcM//Z9d/svv7PWwjW/4 2S3nishD33b9+v/1yQN//7jr//bSLZ97vYgc/mh5zB1X7PGSy77wxdOedcjp7Z9VLS8Zj8l2 /wDufjvfdMJJb/7I2e8p/hbVznbZ/RUikq3bqULL7p7PHbLOH3vT72t23rp167AdKwKm02nn Y9iiNvc89KzSdEazvNpBfaqr18dzyhHaeY4++naMaLYdRZ15Fpg6a0T+KgYrXp37Gl8Zt4cl cGqQ1DscAt8RUiSKvUN68X/HlWsJlnGQaktq/hxIzHXuy+NirnNfUOdxQJ3HAXUeB9R5HFTX eanXH1aWxs7Wpm9mj3Wydsfi3DO56gO/2tO87pQWIdZj86NNwmT+pGglup/jdSpTkMlsiane EJk7nkadmOvRms/I5sb53JZgsqrlxFVoY6bT6QbxPmyrXipLzec/enRynbeKtUoOx2qMrlpq uWHPoGPijXHYeRxQ53FAnccBdR4HY6xzsx846HWO1dGDwPYVxqTX7yUXPfd0PHc5SJ0X9Vys g6TtLPbmrq6zL8XqU73axotxqfxoZjEf1G3fKTR9jKeVp9NpozHMpZlrP0nCrD6Z+6eVSk4Z /Y5hkcI+iZvG/aFNR6rMayYYY78NYa5vq43kaTDXpbptHGIl7NYNjGGjgTqPA+o8DrIdK9t/ 8vP1IrJ+/bpf/vKBQ170Z5nKutXfi1y3dibTWTd/bpZl7YQti35o5CourDPOaOrp59YZn2y5 9LTLWan9dr6psKL61K96LCLX37f30U95yDoR+dlPd/7Y9z6TTR94/F57iIjs819/8q0P//im c3503pPy58oPP/+cH3z+iCLPAZl85bW7bd5b7v7s4Xd95vDi5J1fOWnbl991+1Wn33blO0Vk 46tOfPP5Wy7Zuvnmy98xTFcdM8WvPJcH2sc1xvZk/wgZ6WR7aWlxg1zpzeUDaOqz5tan0gJX 2R3R4X7xAraeq37WVKq06kDnOW8uwrsoD9+VMV/Lpp4xr4KK1qR10O4NrMDvb+rToRF8z2Jn uR26KU2+1ZhOp1mWWb6OjX4KlryNe9JqTSxTsISZ82bMvHw0mPYuzMzlFLSLl0j1haZk4xdl dUuDCd3CXtBhTkEjnLSbS48hS5/Np9YOGsOgHSntTauCmSNlti4qj1uBmWMmfOlctSqLft0M bWHdPBZGZeY4N9T625tbkzwqM48XzDwKMPMowMyjADOPAsw8CjDzKMDMowAzj4KluOWvQ+Lf vepHbCdfXTRWbdielVuOGkpZcHcJy7Oayv7VRW47dsnNbR9z2yUtmVlKZRGBydSUyktwi/fd 2tM3wMyuFmo9kzuaK7wg1ytkrYXOUXpzbqTw5DQroJ1U83qMam2C3BBl/c8jXObP5MpFU4KZ y9OTrDX1KGZtzPlC50ozk1XiTrbmzbqZ/e5o1VsCcokjo0u+aTz/AFApM1dSmR3adewuJbde 9djG1SzmlUDrBrBm5rUp2ESRP1n7d67QScVx+dppTdXV8/lqKb6XWxdqaLdNTETy2SWrht7b LNSMuZJ7VZNCsjIMrr31yVvKapb5d27PKWmpxPxnG/72aQp3jyQPd4+MhcHM3OEo1FhU1yNh 7KzVF28eBZh5FGDmUYCZRwFmHgWYeRRg5lGAmUcBZl5C6v9iBGYeBUmYObIfyemdSe1Xhg35 7hHv99/1NJ8Xtfp1YjsdfAz527nBGtZqtIG+iPQ7nPmzQp5k5i8RBYq1plyukcD1s072Wqzd VpDtWNmuv3t5HvVdJ+Z7T4oz1e9Dqduak/KHu5Ueu3oHgCFKTVxetaYMOW89GBKtdFU9UxM1 sfZ35u9zNwlBqnBbwVjAzKPA/pNjfsJ/dcwvs/1vjC3q1YquF8eHHLvOuErppI5zr00PzONK 6X/Bevv04Zr0jesdlCHHrjOuUjqpoz5oqz3I7E11fz2wWX90ld4VIfVq420xvL5VQzez2oPC 357qP9/MRzvsy5VadettEb5jlilY+tx43dWYOX322f+pmHkUYOZRgJlHwQbhabkRkGHjtLnw oos3b9684befd/5lf/kyEcmy7Bkv+Kis20n/6WL77wfbf5l47tDxw8n+Xy+2/S7yWlmO32M2 hNnUS6xS+z/oW1a7Xn/f3urvOm/atEmK2PyerSv/6VG/8cT99pmKHPPRc1fe9Btfv+nDIvLP 3/jQD2887h9PfuSBIiKyfeV9L9z7Wfdce9bdX3vplSfutp/I965+9x/tJXd8+tBtX37X7Vee LiK3XnGaiJy6p9y8lR9vXiTaPQQbRORXfvMuESl26D71qtec97GnPHjvE7M/eMWJW0Wy/fZ+ xn7Xnn3y6r7O8Yec91255bv7PG7TPtd/5M23ihx6/hmP/s9v2y/7wo51WZZlt4mIyO6PkSOf 8U6JbzMoMQpbWsNucbdI4coikv37x756+sAvVj+s2yCS4PhWXEusUh8/9Uir7V951kUfe9Pv lx83bdq0efPmbrsXRMeWLVu4e2QsYOZlwXfvZiWlmYe/jzWGt5H0Kqor1JdcaYTecmq5SWg6 w7zkOtPfLQBLRw+N0MHtw5abhMq5nHnJdSbr9BYAs4dpZ3rtT9YeHE5XjdAtC/thXw9mD/P3 uf5KH6C4Tij6okdVpmCJkGXZbOCxTC8W+9r0OKdOA7dDZ0/uZO6nnFQzD/ukUP3HIJdN1HCU rjyzsV6LGGMzNGDeifWeSmyOjV5CBmaOjQ6jzxqYeRRg5lGAmUfBYsw8nU6n06NCHsJbINom v8zvs/amcFdTsLkYvxgzZ1mWZRcMuYXZAG2TXz2QHhXuZdXOoB0p6hBSP7c+JGDmeGnxvR/b I0tCad363myJ7pg5UlpM8SzRHTNHSrdzPcw8CjBz/HSwkua2gl5FhVC5UFZ/uFQj9Nvx0szL 9136yOjoBl5IGMw8CjDzKFjgwzUdEuf8q4GowCz8cg3YwMyjADOPAsw8CjDzKMDMowAzjwLM PAow8yjAzKMAM48CzDwKMPMowMyjADOPAsw8CjDzKMDMowAzj4LF3o7fIct7O5h2r3WHt4NZ 7uIer41zz6dWRHHLn+VHEJbU1HnNR0a6reZSNJoem2spnTs+hggx0zRrr1xkUidr7jienRn0 IaPBusiamT2v2i8T5A7z+NVtOXjV6kyVyrjEhqS3Cm/WLxormSvKhLM2BZtInstEVv+uuUgu k9nxpExTZpp1jlz9qGqYrz3QN4faOrMiJoprzpWiajWZy7IqaT6jxcW19MqzhPlkpmQp3EF5 MZ8XuJZ9/mCi6pDPWk9tq4nxSKOm+cTIPq+S39beKZjZX/L5FK6u5Ol61jRW+WZZ1kLnk+W5 obaW0Vqd3HKcewYPU5S1CPNYbB9tbVj2G2cp80o5KVMUU7DQFy1XCs51B7UnUNOobu7vN66h cqJ8zOcvWdO7Ekxs+k+MNH5lcuOjNWXIeBv4kGtunC/PaIkt2yNqC1rbzj4Ke7H2aLNQLbHZ LWo1kMfwnkuayUMKtZZejL1mi5fNGx7UXQpYlbfi2wWbGAcNCiivWitmOo2aPly+VYIpP7el qSvf5db+NqnVXcIxxVoLqtwF06dCVQLXrrlTqsNB6TzqX1OZyXx6k9y8NJtbWWY05iWrqHJu 6NCn0nb2WhiN48kyl9GRzKMejAN+CnREYOZRgJlHQVRmbjwV7XAO28d0uPPSaysZlZmhLzDz KMDMowAzjwLMPAow8yjAzKMAM48CzDwKMPMowMyjIAkzL3Yfenjq1zcJM0MVmHkUYOZRgJlH AWZeQurfsYmZRwFmHgWhz1C1pq+7nFpnDBE15H3tHTbUmtqDmTmkpRo/KNDhEwYLf1ihl4Zi 0B4FSZh5VM8K5dbHsCtIwsyjYjJZ+xvM8k/B8vI9FE3RI13EU7A1VfOAAB3pKGd9TUOV/YoX UtQcxNxFLNVTFwG1juyJyDy3vcjCG4eK89bhq1EAm8vr+rgQ2lRHRMrYPJ1O1b/FgRXPJR95 btHV1NtjUX9GVxF+lcyPua244cnn/dUViYu3C0l1lVfNnGWZammNqYL6sYH+a3jM5lLdzOJJ oyVQLWda0dVvFkvxfik/5YzMq20WWOJ0Os2y0MQWVCU8r3KofPeENeVqEQFq1H07zurLHQab y8xPrHKjdlZFtLdjrLXMRES2bNmyefPmntSFWIhsCgZ9gplHAWYeBZh5FIRudradaVcJLD6q J7Xj4sClQ5GgmYZqXv8qUVO4VomeBqzbtg1sMWdmrZJlu5uVV9vdtI2aXms+l7Qimd/GWula VVVtzVLUM+Vxtx3XRNPB2lm17QqrbmZ71mXOzJrNSqFW0eXJNulDzoSn1/5a61IeWxs9vBFD Upo6hMipPNPA0npsDhRRt6S+/aZBocOotJCKmzSfgjXb7PRspjbWxF9coPDOt/F7qlEzVgdt 19hijbJa5HPVxxVdwudW5lUt+rrGXlMTawXjiZ19s2pml3L+KGhNY23QcPnhpXvmAaYE13Sh j9jpObkoul83R1W9SpZL28awPTIKMHP63Hjd1Zg5ffbZ/6mYeRRg5lGAmUcBZh4FmHkUYOZR gJlHAWYeBRt2rGxftA7QIxdedLGIZDtWtv/28873J82yTDLJzG+Gsvn/Wb8/ylQBYv+Gae2P mlTPopU1V4hd7Hxyh3rWsubU0T/btHCopzWCqZ7WCPoJr3p2q2CpZbBUh9z8d2cXD9asft38 Pz/6qo9fddOGX7n/fUcf/LCHPbQ4+atPeG22bqcyz0++9eEH731it3oEsech3/nTp4vInptO u2Tr5pOf8c4bF6AEQGfst/NN5skTTnrzR85+z8YDDlJP7ljZfsJJb37lWRcVWTYecFAxySoO iktl4rV59s//4533/8fbzDJ+dsu5P735I+XHH990zkvOO+eCIyX7/f/2z+c+6Yc3nn3658/+ weeP+MENH1RzbV953wszEZF7rn3vPdeetXlvuftrZ77js2fe9ZnD7/rH9+x3wsn/+6vvvuKE XxfZ/87tL/6jT//xRGTbl9+1r8jtV50uIrdd+c6Nx59465dOu+z4XeWWy/b43S2nXiUfPWxV +M2Xv6Nm6wEsDTtWthf/WS9tPOCg0qU1VqfZP/vWB395//3rd/530/t//vNfyM9/cd/6LNv1 gDcWkbnXydvbLzhjjz9723EXM3ljmj0WS3kis/V8GZmtl8ppNmvmdLoIlloiS3XI3Jr5X759 XrfSAWAwtmzZUhwM9hpHgHFifWNVP2+lMlbSi37Z2RD0+g59RC0XMbRVKx2Kl4HxPjCADmkc b9WMrV+8u+xoz5ibB/6MISmhDdqrItS3+y5OqZb0NGdpPgNPxJm1fULzwJ8xJGXkhIxK3b8c PZhstpGtfVzOZve8BHmRJOLMEDIqNbsECv268XSeutlxZoBA+v0xSfVFZMXYWtelcWaAEHr/ WVhtctRgrsT3zACVDPQDz6UDN3v1N5EZoJKh97q0/UIF3xY6zgzgJ6rbZnzDCs4M4Ce2r6Cc g4t1zRzVUNQTMdzEN0JRvTOdHlUrfZZd0JMmGp3/bpuJ1ZljG4o6p8P9DETFRX1/GWioGuCb fKbZbTFvS3TdW6omKNMoB0f5b3jUcmkS5lMeZZOvy/FUBxRim5g4x1afM2s3o1jNXHmyk86h dWKt+5odt32J4Zi3JbruLVUTKA/rlwcX+G941HJpEuZTXmCTr8vxVCcePB1sKENHNTFpupud KYjDzJUnO+kcWifWuq/ZcduXCJHg6WADGlp3IessaRDYzQZoxUT1Z/WOjjK6xLA8wZkBQpiI 5EUQ9q9TFgjODBDIxPo9VunhwyukgTMDhDPJsqwM0bEFapwZoC6T8tuHSNy4AGcGaEZPX1mN /h1gABHQyds5m48R5u2cUX1F3hMd1hFRy07fbRXy3uxudODlBAC9MtxoyDQbIBFwZoBEwJkB EsF05tge+BoPcb5OYMyiuvWF3nUmMgMkAs4MkAg4M0Ai4MwAiYAzAyQCzgyQCDgzQCLgzACJ gDMDJALODJAIODNAIuDMAImAMwMkAs4MkAg4M0Ai4MwAiYAzAyQCzgyQCDgzQCLgzACJEJEz j/xNgvlCfzti5I0/DH03ss+ZF27g3PuxvdiFV7AnrONC3lt7VlJZUKqGUMll0vdoXR2ZzU7g Txx40no+d1/tqkMEKjPkS1aLq5NZqpCi8+CUZrKaBm3eA61KhvzyktkNQrpKeLuVx8MMIpp9 Xfq0x+7M5o/ShXRH/xlXRr/JPVfrmrO8Wtk9PaHbeska9NSU4T8o5iood3e+Wo4dgquO4Xnr 9pZwabN2sNtQbSszo4hM6jdXyGu1XXZx9Z/GMc+vtsWZy85nNphL+4nSWC6FXH1xYvy1SlbL nRhnPORVuVQzm/USt+auS35nyI3jiS2LtSm0Y2tA07qLv+/m3urLLJ5U9lqrkqILn8h8bND+ qp0kN8R6mrpsjYmRxtPxTG1NXGN0aThNTj7fpC4q/cWlpD+9c5rtcjxXLBXDDOXfiVFbmW8L F2pjTYx+MKkpxHPS6sPmJbVear9Ru1FlUJrYOoFatNW31fSVw4fmga6B0q+nS72Q0dMs3S9W K8J1xjqcWZvdHyFqOZL546u57bya3vN7rda6WPWxDs1+KtbMZTEuK1pt5momV2wxxz+PEA/l WGM2gXUEMY3tcSRTQ1WI9by/S/mzW4W4dFBFaenNLqK2+cRRfX/jm+5qBlKbcF1ls9NXusHM W+ZGK4/CZtBuPLQ1yOsf+/yO2kDP2l9NucakyuI93lurdUISqBMBP2bfdY241pSVYT9wTK1l M1c8N08Glq6JdcVGq//7x5TKslzpO+wSXRHYlzQ8o7B1yGujgMWZXcZo1tyVcszzdadhVjxz ocb4W7/u3KQT6g6LViVDQpxVVMgyxyW21kATKFM975HfzAq9jhr+1ggtesfK9vaqAMCi2LJl y3Q6nU6nEd0BBgBtwJkBEgFnBkgEnBkgERJz5vZbpAsUtdTKJ0m3de/dKIk5M8B4wZkBEgFn BkgEnBkgEXBmgETAmQESAWcGSAScGSARcGaARMCZARIBZ46GMd83OQb6ty/ODJAIODNAIuDM AImAMwMkAs4MMAj9vxMYZwZIBJwZIBFwZoD+yYe4iwBnBkgEnBkgEXDmOBhkGgaLIc9lMlk9 6BOcORomuHSiTCb6QT/gzBFQjtyQGK7RuZ9RG2ee0bh9uzXMooIzk4I+sI7RvY3dOLODvF3/ Dh+SVdNW2rjMPuyQj6s3wdVopZW7blXdmaczyo/qpWZleDI2lmnH3zhF26n+oJ1Rk7k+ui65 jl1aVRqyUg1PAlN2H85ftt6YXT2wD3gymh0ysDiDDZ5rhadNp9Msy9RjLU1x1fxbJCjTm2lc cirq40et7WSy+tGMeP7ObW1oCRhT/TMoU7hrGqYqX5briuqaHLUUTb4mwXpVFbh6xsiu6jYe NLuonUGzQkjjqC1c5NUESlV3MrBMs1V3ch0vGYHB1jzv+UZBM4Y4BgIzfJmOZ4oN1z/cqVyx 3RoQ1JOu0WE8m3Zag5emN53NZWgPrgHXNHo5arjYsbI9qMgA1Pk5AAzDli1bCtfzTbPrssSh G2D5YTcbIBFwZoBEwJkBEqFjZ+5qD6zXjTSXcPU7du37dmsa6yV/mkA1KqvQByH61D22ilL/ 9kGD+xrq9tu6918MY1PLTSPWv9pVteOqf617YC6Z/rLKvK6yXM5Wqb95XFAoX/611kVNo5Ub uP/nt6umoavunfw1yw1vz7ryZb6JygR+x66lj9YfwgcOUzG/TI8cV7nqnRf9ERqZNVVcfb1D 1IZoX1bg8Kk2uqvzhRjGM6hVaqV9tz/YdwRqQapiIfcd1L0foTJNocDCvx8p2z/Qdi7Cx/o2 6F9NadFJ9SixxSXzvKm0dr6smCeveVBZSkml/EA9rR00JG8D+WZB/rp77FJZX2vH8rd/s7+u qoW3lUuIqy9Vyq+cbYX0c+ulBuV2TkVkViND+HzDk8Y1zjXAqo8WyqxT8UCZlWUtEKtdXEsP NVlIqPdU0CO8cTvXbc9up2wpUW/NbBKyrtCkWQ0QsuYJ1MdalitvuGS/zoHy1fTWvH6H9NfX n0wdRkPKrdXm1nYO6Ruuunjsng2y/lxG6u1mhxgjPH2zUrrNpeGfvXciX516uWZ9tYKna2Ye A2VduuobMtT6cxmpWDNL2DrBzGsehK+R/OuiZusWf7melV6zulfK96/xKqnVtq70siRrzoWs P5eRLu/N7gMs1x+0bWLE7swAUMmN110tODNAAuyz/1OFe7MBkgFnBkgEnBkgEXBmgETAmQES AWcGSAScGSARcGaARMCZARIh27Rp06J1AIBWbN26VUSyDn/RAgCG54ST3rx169YNv/288/3p 9EfQtEPr/2YpZh8tz7IZYg0ZmZlHLGXa1NOlG1mMkoxC3OpZm6LI4mmKVUWsj/XpYq1y7E1R Pvhka1IsFZ2lOn9Mbb+dbyoONojIZX/5svLCuiyTLHvggQcuufSyMz95R7elAsDRT3lI8XiT yoUXXbx582br+b2OOMmVZa8jTio/bhCRpzzpiUe/83MbdvnlTv/hvo+/4igROeTkTx/6yLls 2ZGv+PHhKw/+w2s6qk4NvvDFLY8Rkas+u+cnH37LO2SvY7YOrwPAMGw84KDyWFv5bjzgoOJM eaCyTkT+5d/ue8LjHvyj9ff+ZP09IjKdTh++7/fLFD+9+dyf3vwREZHHPOvHN334QJEnnfK2 H33jQ1974yNP/9uzXyzygx0fFHnk//n8EWtSH//s7//Ns+/9+rFf+fp777n2vV9+7W6bP3vW C0TuvuZMkd3u+szhz3/fu7939buvOGH/O7e/XkS++JU/3nevQ7/716/77lXvet6zjr79ytM3 ijzv3e+89YrTvnD8rs/83S17/u558jtPFxF51NNuvvwd+3TadgDxsGNle/mfeWnjAQdZ3VgK T86y7Np7v7nLr/7rLg/5WZZlWZb99ctOKC4/+dS3i8i3//TdIiK3XXzCVnnLkXL5cY94yBNe t8dxp779Y9f/38995CXbbjjwuc+65ON/Nyf4tx6x6xM/efwn7xWR3Y950Wmf2HHE7+126RU3 7v+cZ176iX/4wNNFRJ7+keu+IA+fTB/xGPnGDSIi3/i9v/j+ax5z+RuvlJMOl7P+i4jIM//k XhGZyr0ivyYicueX9nr3TZ89fWNXDQeQBquvItjlV3/2oF3+9UG7/Nt1198gInvttWdx/poz T/8PZ8nKzefKm6+z5P6bTxx249nP3PjeL+w45dB9RdTF/HfvEZFLjt111wM/cO+1L5bPn3/o 18561pPPvviak579FDn2796S7X3Y9967/6Neuu3Oq1/70WPeJtmhmuzdn/YO2euZt56x7213 3HvYR9fO/8HT9956xQWdNQDAIihn0eFfHvln1xtE5P5fyqePPUUeeEDWrfv5v93/i/vvf+CB B9REB+x1QpbJ//W5LMuuOT/Lss+9VrLsV5/wuizLHrrxpEyyh+37+kz142/+/cOfm2WZPOKJ p2SZ/PqT3iciuz35VBF55FPeLIXLf+uS3zwly+TXRTb98c0i2aW/9YJMsksPlkyyt3+m2OS7 5bI93rq68/fYTadlmez50izLtn5O5koDWDoafPtbZrHm3SAiv/HE10+nv9QuZCKybqfaCtYl +6dHHfQ2XiAH4+Hggw+2nt+2bZv1/F5HnOTKou9dS7Yuy7h5E2AIXnnWRX1k2fAv3z6vkT4A sHjKmTahGCAF8GSAFOCF2AD9kdtOTvooCU8G6JbCeyfK35CUfemRsChYFMn3h8ZaNa/OjpXt mzZtmk6nrJMB2tMyuk4UIQ3BkwHa0OEMuZUQuydrv1tfflQPtF+m17JPp9Pp9CjtN+zr/uo6 gJXp9Cjl2NI/B6SPVW6T4Gz3ZPXNBtnstRHq+fKk9R0I2SoXGG+f8N2W2cnrFDSjWocP15jC UDIAWiPPBv2gsb4kyy5Qji39c8mZNHDm1GbXmlGtw4drTAnvB64goPXIlIZEoGPuAAAgAElE QVSG6TxiVNPaFCZaI88G/aCxfkzUdubUPHkYXEFA65H99Utt+SN1AlozsnnEqKa1KaAF9ZwZ T15KtOWPENCWH23KIyK1nBlPBogOxZ9DnRlPBgik99tRtPWL4szV4MkAgfR1W2WJttORZdns TPUgYr3vOs676uK8QQ9qEWF/CPTPvFdPnk6nit+KzNx4tvfRpOgI27pbUbAo6A8VWL9sn32y V5n7rgHCGW7g0Hawle8jKsIyngxQSe8r5ALtfjXja0XfgIInA/gZeibvvjXAN6DgyQApgCcD +Bloah2Gc4KAJwOkAJ4M4CG2r7ucEwQ8GSAF8GSAFOBuTRiS3vuD+mKgEJJ5FNTqyV1t1nV4 q2q/d73CIAzRH1JxzNowuwZIATwZIAXw5A6wvh3SfG2d9Y125sv9tDRmEVp6qyZ+DT0Kwzyx remcGw1j/12osvuqT4eax4Hv97W+Xsu8ZD3jEeI/8Mj0C3eVVQvtkR213YyUR4lUtCQ0Ro/J xevmjTeD2UOBFiXm5VQM8P4EWinlhqQWmtrHFvNlkdbjcIFjQ7vdX203I+UFdVvSM8cxT/Y2 p4jqS5PgO0OK5jbtERJ25uXMnTRbOTDKyWrnuEA5trwNX3sczCMZlgjTrNZu6Rk+xsNA6+SR tzIsM76lcp9zAROeTwZoxZwLqd5bzAWG8meeTwZoxaoLlR5buX/ZAxXLdTwZIIQ1R1rQUpH3 eAF0wEQW+ZM91fvneDJAIPmw+1sq1Teo4MkAgUysAbnyxqHW8LtQAD2g3ZrSvxsH3TE69rs1 AWqhfecUiRsLngxQl6E2veo9zs3sGiBCar+VAU8GiI0mL1fBkwHa0MeTUk0eisaTAdpQeF0n /txKCJ4M0J6W/pwrQhrCW3JhSCLsDx2+30f15xCxZcoOdDA9ObYXFwEsF6oHWYebiXHQAXyf DNAfw8VF1skAKYAnA6QAngyQAngyQArgyQApgCcDpACeDJACpidHeBfOGEQBtIKYDJACeDJA CuDJACmAJwOkAJ4MkAJ4MkAK4MkAKYAnA6QAngyQAngyQArgyQApgCcDpACeDJACeDJACuDJ ACmAJwOkAJ4MkAJ4MkAK4MkAKYAnA6QAngyQAngyQArgyQApgCcDpACeDJACeDJACuDJACmA JwOkAJ4MkAJ4MkAK4MkAKYAnA6QAngyQAngyQArgyQApgCcDpACeDJACeDJACuDJACmwwXYy 704+oiByJu5L0RrXo/Macfby5EUBNGHHyvZNmzZNp1Nm16vglAuExm8PngyQAhF5cuXAvKiR e4ByowpKUSnTBwNXMB+kUIsnJ2/ISswWsLZJHrbxsLx01RNy78f+yo2HXGTSc73sMTl3HPvx 5wp0j75p4369Khxn9+1Jq4SnV9ayBhjyq2fXIUo08/aQgqzD+TD2yNuNYnUDUa0i2tOtem3C bMtQ0XdnaC9/mJlbhSc7ZpXOSyHZw/FnjzCI1VXJ5U6uQcQz6wnJEn6pccrGucI9s3GCfN6p hp9u9OrSTk8OGbP9Ll3MYyuDVUsCpS1kOC9L0Uo0z5iYy6pavTDcgdv3vNzx15PMn8aPS6vc m6ATW7t0tp6ve8dJHuAgnkuWe7wmks8Wk+pCfSJr58tLxT9qG+a5TCb24c9yJp8VVwgpD0qB ysd8IpLLJF+TMClPTtx1VPTJV1W0VaqUMF/3uZpa6zt/vKrS/FWt0fKZ3LXzk7ly16SVxWm1 cDS+GPqsHSitNNFqpzTpWt75Ei0NpTCZz++qpplTtYgoWlnS5t4K5pYGWcs4mauvzPccJzNp upULgWV7lj2qOBMy/KktUyo8mb8qtjTztpvDerdmaZiJuwj7sZFlNYHWHmoLzmxQnpnMa1pa yKrkZHbkSqYKKYrQvMtaO8/5tbJE7wpzdS+1UiquN85kdSQ2hawdqC1T/J3vqnPq5WsNEiJK 1zbX867+ndiymJTV0ZJpriB6g6wpoPRT3f9nQiwdz1HrOcmG8tUep2TUbWq0iZ7S3RXNS5aE xpDn6nJr2GfX1qSaMSbGVY/qplgzTJu5VKuHzwk1/HUJPO8RFaKMWXEX+XxzVXa3kDmqZ5bu ERuSzIU1by2B1km42eVcYvP5ljQ1Cew/zabNnqmFtV6ugqxFu0qvd2dISN+aOP52giawsv7W 9prYokRIcTI/uMzmvU5lQswT2Dj+ZLlhGmunD5fpuhRofbPcZn2gcsCt2wHaY40rJQ2q6TKN +l8IoZ7cbEANyW7qag6Z1mVws3hVmSZw+mUdpEJayeMkjWO+C8/gMjES5I5KhQsPv2pNUzlN 07J4Ri4zV7OhRDWKZ3Zg5jKz+IW3p8KTTXtbE4hNp3I/oFtClh9W//R4XVlNU3izuOoKGp1E YE8PCJ/GtyG3HXdr6MBJU12ZUschPULap6+xXg/D6ck2z6ymcU9tPGQORngEqJusZZZAIY0l +8N4M2VapgxnUT2kFp2MuQt7gqJlE7vWY7V2jDpfwEsjq9SaopuRKneMMiFT5WZzEL+Ebovz 1yLkald0Mi63mVH7M+qeHHhb8gAztzZR2lxp+9OHnCxpNmE2M3ZCg8V8M1F1k/UkJ3xzxD+H GjJWh1Cry1nxxeSoarsoZaJqhJ5ovONaOQ62HB3iafz+QldXBL3Hy9agk9m0zrWLbt+un6yG /flv+/WiNMmV+25aGo9uflGeWK7p4/q+c7XciSWjdcMlfKVpFeK3gqm/9Wa4iVcrVxZxa2WV Y9fHlrFawnwvckl25q04sUa4scJngc2ymzYCgITgPV4ASYEnA6QAngyQAngyQArgyQApgCcD pACeDJACeDJACqTkyW3eA9FriR0Sp/Lx38uYPil5MsB4wZMBUgBPBkgBPBkgBfBkgBTAkwFS AE8GSAE8GSAF8GSAFMCTAVIATwZIATwZIAXwZIAUwJMBUgBPBkgBPBkgBfBkgBTAkwFSAE8G SAE8GSAF8GSAFMCTAVIATwZIATwZIAXwZIAUwJMBUgBPBkgBPBmgf/LefzoLTwZIATwZIAXw ZIAUwJMBUgBPjoP+d0RgwfRsYjwZIAXwZIAUwJMBUgBPBkgBPBmgfyaTvkvAkwFSYMOiFeiW wI3+Dr8PGF5UnMonSeft05XA3iP8YllmTwj9sjFK5RkRQujn++QdK9s3bdo0nU6ZXQOkAJ4M kAJ4MkAK4MnRwK3XqVJYdjLp1cR4cgTgw6miWbbPb5Xx5DiYTAa4eQAWQJ7PWba3URtPjgmC 8xjox8qJ3RmynBCNU2VAyybmyUt9f0WgQFuCvNltP0wB/PTQPpNCakvJiQ/9C3XjgSbGjlKa lB7zcJYEHqN011vSvcercRt10rilkAWq0UDCYhstPQKbpdPWS86TuyKklVsaoihiIc7gGnHw TA/+xjGvDrv9MXpPjrPvurQyT/ekf55XS46z6QamWSP04ORznjxVKD+qlxoU4MnYWGYFZuM2 jjxtOquat5YCQdOBjhQLFzhCvx24yu2K02NyNmM6nRYHIlIeN3C8QkLdS33hjHXKbNM68+zK qJVyzNG6k42TkAW8dQTEw8XRE8p7MK3JQmRaI3PTrRbdk2vFYWvK6TxqSu2jVU4t7XXUxm0z QfWHUL+He3q/uTCu9Kta8TNc7crSXcnab+ktL/4pcXnV5aIuSkNbb8wOGUxFRPNkNSCXHz3e VVwtIrZ5ST3ZWE5DzA5ndmutjeouXcIjdic7W5UWbeD5JbUCy6h82Doaep6IqDvS1don8/YB fZ1sTeTytDaz7j7k6NTtc670gTPeZl7UbXHlpWqHdMsJWYOMFv8d8uHxoEzpylIztMzd41U6 qhZOxbGmtaY3z5sSrAlcpdTHMatcHUpd3x7NzmoJ8nx2R42r+86fn8vu6fG543gmxJm91iTZ O8FeU9UmIbQiqbPaaGsjn3bZ9jG3XbIxmSUrDsqPaoLcmAD2+v2WtjAGgAEo7/Hq7L7rBWxE A8CM0d8ZApAEeDJACuDJACmAJwOkAJ4MkAJ4MkAK4MkAKYAnA6RAx54c/z1eIc9Lm89yBWaX 1ve6Leo+OVe5rmfjQo5NUdLhc28OQuzr0q1xiS0TdEKMMbnXmvufl1YfzHbdal75XJdUPfsl 3joOf7ec6wkW9XzdY2sRDRSrm2WA5+E1rSrFdv9okA37s1BqdLJeFWMkFke7W9N4RnRrdk0f f8x0ybTWxcxeGsbV+aznrT5gzWst1yVEHG3l+mueDGznIbHWwprMfPZOkyDzncHVIQOb3dOS fj1duYZsZ/355KI5XC2oJdYyuoKYVaZLTmWa8kzgEBs+IrZxY/NpMKtbVqrqPxlS5fA2XBSl 7Tzdxnq+q+fhKwsyCw0RtVj0mNzsOWFP+kqZrlDZVfO5hiFXFLWmL4dYT5qudGuZPqSdNUwP mc5eNVGer3tsLcJUydqefveOxLVi0EGl+vnk8qN51XPgl+k/Nv/6T5pY5VtFuZIFtoDnaoM0 gZpbZfobylqWq1xXiXWPrUVUSvYI8beDBNTd1eD+3uW3XZuO2iHVTzVWTj/C6XsYi22Y7JUG dinbZ4CO1Tcp1aUTKjy522bqu9HHY9RmNU2pfVKqSyc0/BaqTfQbcpFZqyx187MrmX1T6mzu 32rJ6gqseylQfsu8UTV+VIR6staClSPiAC2ubc90K1Olbt0HQ9sBymZYkwXKrFzotqdNe0ay 3RUhFd8ni8NPXHHAuj+pZbFKs8rRslg/WrWyFm1msda3ErPuIfJdf/1VrkVlLVz29bd/pT7+ XJVCPLkq+yGU2GOy/xsFM6UENHTm/vKwlpxArGV1G3DMAFhrLz0wfS1l/CHLY1OtLuGhL6SH tLFpYD8EuyeXbaeZoa5J2uStS4j8Njq0kd953afG972VDizL+X1sVDrHTL33Xfu/Q/MkcAkP z15ZqOcLPVfR/uL85XraKkR+YJVdVLZ8SBX8etaynb+1QxqwjQ4gId8nLxZG4p4oGxbHSIPY PZl+1hM0bGLE+FQjANQFTwZIATwZYOm58bqr8WSAFMCTAZaeffZ/Kp4MkAJ4MkAK4MkAKYAn A6QAngyQAngyQArgyQApgCcDpACeDJACeDJACuDJACmAJwOkAJ4MkAJ4MkAK4MkAKYAnA6QA ngyQAngyQAps2LGyfdE6AEBbNpxw0psXrQMAtCXbsbL9t593flspmYhkIiLZ7J/Vk6unZr93 oBxnalrj2HrF+H9ZrPqbCnPlzaUwFLMqadV3XpV6ihn1cilZoZj6uxEOJa1tqStmKFmtmE9E HcXmlbT2CkdvcpslUDGHkpbC/IrpxduVtLbcnGKzLNrPgWRmCnwKn/IoNq8kPqUpFv+P7ey3 800XXnTxtm3btm7dWpxZ+2WoU499dKCUL1/34y99/YdlAwAAAETL0U95SHjigw8+uAyQgelf edZFDUopcpmsReVTTnlDoLj3vvf9V3zt+9m6naxXsyNf8eP37C9bP/XgP7wmXMUEeewzLvn4 0x5z55eOPGbrjYvWBQBgzNx43dUhyS686GI1/cYDDnKlLL76LdM3K8XKWlR+0Pps6xdv/J83 3bl+p+m6nX65bqcH1u/0y9c97Xce9rCHlmkOOfnTl33g+SGljos9D/nCy+595lt3ZLLrqee/ +uWPlsvPOO1Vty1aKwAAaIf1xitPtNbSFNnV40rW7tr8l3+7T0Ru/tHtN//k1m//9Nbv/PTb 3/nZLSIyVXaq9/29a7X8Tz717T+75dyVN/2GLvgxux0o8tL//uEf33TOBUeKHPnyH33znB+d 9yQRecm5H/rnb3wof64c+Ia3/PDGt5z+BDnw5Lf8YMcHf/CRA+XxR/zjDR/86usfaVf28c/e vvK+7//Nm7avvO/erx/7wtnpqey2+XNn/dPX3rh5b9n/tW+8+2tveMfjZP8T33D3NWfe9f4D 5HGHX/mP77nyxN32O+Hk//3Vd3/phF9fE3jEi+/cfsadZ+0vIvu9+qQ7vvLHn3iWyF6Hbvvy u7775RceJbLvH77u9qtOv/09+4rI895z+m1XvvNPD5eNx59465feednxu67JueWyZ751x/9z xpZbvvjqlz/6m6duOu1Vl8wpvs8rXn3z5e/4h1c8osIaAACQBDtWtu9Y2b7xgIM2HnBQcRyY cW2tXHxZvstD/3XDTvev3/n+DRt+sWGnX4hINn2g/D797GecqeW/5szTf+WWV/7szLf+9OUi IrL1kw/+BxERue3ua0U2zpK95ND9ROSSS78mIn9x6fUfPni/ww570vNfc8klx73k2c96zl7H ybmTP98zP+yvRfaQG177wbu831nfcPwT/35F5IDXvemeY3e99ZMf+M/n3H3zd0V+S0TkunMu u/SYow8/7PDHHiP//UV/9di/PORTIrvLjSd/+O7rsw888raX3LX5dd97qYiIXPHp3zzlL56z ++v/9iXP/7Oz9n3m0x9+25+fc9zFIo8TEZE7vn/TrLzbvnvvXFv/yYd3v+0Ft/7Ra259kYiI XHnhHm+7QUQ+89YtnxXZ9/gTPrdt8/F/9SeHXb6W5cbb/z+RX/tPj364yD0+awAAQBI0Xiuv ReV1WXbXXd95zV6HaSmu37H6regTHv/4n993n0yn6tUnn/r2L758tvq8/ZJNx18jRz7RLObP X/3ab5zytsvP+NCPzhAR+c4nznzS++/KJDvzE4dddtyhe2z78xd849oXb3vJOZvkO584/y9D FBdZ+dAXLjn2hYcde/I9x95763fL019//6cOufiYZ+x+xV+99FsrR19x9AeeLree/1d/LbL/ CSf//UtnC9w7th5xynUicv25H3zDb53x/qc/Qb706d89Lyhkbjz+xP/1oofP5Fzx3LfesPH4 E//mhb9WJrj8jNNedYnInvuIiDzqaZ+7/GkiIld99nFvv5E75AAAFoi5+ewPliGb1VZUsbWe P157Muqko3d70IMsN3DttNOGLFv/i/t+Xkbjq66998qVn4hyt1e3T3Gskyf9jxterM8O5N7z jj5z8ze7forjcYd98fxNu9+x7TnPv/QGj748xcFTHDwZZVHdUMyqJD6FT3kU04u3K9nMp4qj o5/ykNNOO03CKB5SqpW+vAe7QS7zySieV3Yr5laFEYQRxKyQUzGbktauq37Ap/CpIMXmlcSn NMWW9Xnlr1740oVqBQAwGFPHMUAUbJAW++YAAADQGPMrZ95nDwAAEAtEZQAAgFjYUJ0EAABg 8eTzHyf9Z1wAlVE5r0oAAADLS7Qhqog+qnqNVfVkNEtZMIFr5Yg0npGjVR3iVAytwkGrWsSp WIRaxbbuUmPkMG2llhJFhGYHGwAAFsjwkdhFFBG6bVSeTqf+x7QrEwAAwPgow15s+wcFpVZD h+e292BXRtzwkDyd6k/0m2esV/3JPAKLj9PpVD0oMbOYydTsZRqXPq4sLWsBAIGUDhie2Myr OrKZxZ/M9H01jTnaJErk8Vij1HOg3f6Inowy47c/ome2V8DVKqL4mGWZelBiZjGTqdnLNC59 XFla1qIBVoc3JyLm8GGOIJ4hJqRQABVPWHL1RnGEQGtXLB0wRBnPcOGSYw4mYowhLrFmyhAl l40ovrhtykCxOaKoDINhdXhzImIOH+YI4hliQgptjGtOYN3b0D6GL1ZcuybiiAr+mYd1zeTZ QXFVRyvOpadHYEgYs5ZiTekR4m8BM6UnLLl6ozhCYK0ADP2z1PFYpffYTFSGpcQ1J7DubWgf wxcrrl0TcUQFfwywrpk8Oyiu6mjFufT0CAwJY9ZSrCk9Qvwt4EkJCbHE8dicBM/oMTYTlQEA oA+WNR67tr6Gic1EZQAA6JwIH84Oxb+PZXz5Muk2MBOVAQCgQ5Z1iVyixl3rd1jGMrrLRTNR GQAAumKJl8iVaPdw2Da0OwjMRGUAAOiEdEJyEXpdTxO4b+3sIDATlQEAoD1JhWTzEUE1QXHG EZvbBmaiMgAAtCSdkFxgPuuoPSLlfaivVWDm1ykAAADsDP9IPWtlAABoQ2oL5S5ovlwmKgMA QGMIyS4aBmaiMgAAQCwQlQEAAGKBqAwAAM1g+9pPk01sojIAAEAsEJUBAABigagMAAAQC0Rl AACAWCAqAwAAxAJRGcD5yzCuq/70ajL1HffNdAOImG5+uzBdmtyjTlQGC7WiVBl7tCCkYZ73 FDdwDPO/6ta8GvhqXPXt9sO/TbcWgebQbD2dHmXOPMzuoUnopQIAqUBUHgLPSOS/FBj/xBEF lUtHmWV5iq4VpcrYowUhDfO8p7jIY1h6BJpDs3WWXWDOPMzuoUnoUO3wGG9ODqyTCeuUUXMo a9Gmt3alOYyNvqKy2X3NybJ1Sm7GlcrJeGVxjkBVPYV3OaqnXOtHz0jkvxQY/8QRBZVLF5hl Eflg2Qnvw+bkwDqZsE4ZNYeyFm16a1eaRw+b2C4avmKlr6hsdl9zsmydkptxpXIyXlmcI1BV T+Fdjuop1/URACBRagRm/85EQjR/6xm/rwwAAENgbnaWq5fiJIsZ4XtlAABoTcVyuVwTu74R SItWrwcnKgMAQHssgVndo/Z/9V5cSmJDu+0vdgTuYMf5ZT5a1SJOxdAqHLSqRZyKxalVV0zK mDSdTv137ZhkWabmWk66+BGtHSvbq8qIsxuhVS3iVAytwkGrWsSpWIRa9aFS7npYxkMSd341 acwdK9u3bNmyadOmsgXYwQYAgA5ZXSuHZygTL+1CuYjH3fzUNPdgAwBAl8yCax4Sbpf/7usu dq0VWCsDAEAfTESkeIWR6/VQSx6Su1wil7BWBgCAXpg9AbV281cRiZf/xq5ifdxxPC5grQwA AP1S7mkv/8PKvayPVYjKAAAwDEUwi/Be9BB6j8cFRGUAABiSMjYvRXjOB4vHBXyvDAAAw1MG uUFjXjClVkMrRlQGAIAFooa9xUZotfSFzRKIygAAEAnDR+goIrEK78HunDi1klgVQ6tw0KoW cSoWp1ZxYsbIvCqBC0/GKCKxSmVUjk5jAAAYJY3j0TIFMu7BBgAAiAWiMgAAQCwQlQEAAGKB qAwAABALRGUAAIBYICoDAADEAlEZAAAgFiqfV+aZdwCAhGnwLC9xoQGh7Rz4bq8IH8HO0SoY tKpFnIqhVThoFU7j+BphXQqWvp3ZwQYAAIgFojIAAEAsEJUBAABigagMAAAQC0RlAACAWCAq AwAAxAJRGQAAIBaIygAAALEQ+BaRON/kglbhoFUt4lQMrcJBq76JuS4x61YN7/bqFrQKJ06t JFbF0CoctAqHd3sNA+/2AgAAWEKIygAAALFAVAYAAIgFojIAAEAsEJUBAABigagMAAAQC0Rl AACAWCAqAwAAxALv9uoctAonTq0kVsXQKhy06puY6xKzbtXwbq9uQatw4tRKYlUMrcJBq3B4 t9cw8G4vAACAJYSoDAAAEAtEZQAAgFggKgMAAMQCURkAACAWiMoAAACxQFQGAACIBaIyAABA LPBur85Bq3Di1EpiVQytwkGrvom5LjHrVg3v9uoWtAonTq0kVsXQKhy0Cod3ew0D7/YCAABY QojKAAAAsUBUBgAAiAWiMgAAQCwQlQEAAGKBqAwAABALRGUAAIBYICoDAADEAlEZAAAgFojK AAAAsUBUBgAAiAWisoXlfrV5a0Ze/TEzctOPvPoQCURlgDnyGF9tDwA1WOoJVsOovNR1DqF9 BaNqIlOZBur5s+RNxUbFsusvYYboxPpRtVXeWp+oqtMHaVdQ7QDFj0Ytb31Do/LwNey1xL59 OJ4OkS9u8VfVRBEtSeOxlwt/cy1K/1wm8TddQctZY/sRo1L+wCyL4axYlZ+sXppENLI0ot5a 2doWHfbX3Psx/GTuvhSIZ6pVKx430GSx3hJYu4QHkYnkA+yUDNmAWkCKeULZ3kea6d/4J3k9 Dt7J8NUG18i81PG4ksny169GVPbUNWS7oJOmah9uw+X3l6VxrtjovBZ52DDnH2v6GLIDr/qH 15B5Xt9rsuWlk1lys4K6naV1PhK6Egy2ZGxTo64MZFa2Mir1tJhsL7/J98paD5s4LlVKaN9T WzZ6+03s8CrUDTbdbrW1/5al2VAVXmiblJ54bPbV3Js+pKDKwFk5LVhU07XPpWY3x8E2U4pu 98AGmOiEG7FZ4DHrHliimmziaLRhZn4hNpoEaNXJgFbLoVTDDT9R7v4e7LqGz5Xhsk4pa18e tBzjXAqbKvXk252EzA5X+ZP5TtlSYCdtWDnxb5Mgd6dxzcorTdY+gYsOc2k9P6SJ2hcantHv Gm28Jny+XmuZ4WEi0uBGijzANIEKdE6bAF/GY5kd+Mfnrm7dss7RrUyUNp+sfWNdW71magdF 5VzRrBaBg3uleWoFeE8W1yBbnq9rfm2AVh1PmwP6W89abuMRQZNWftESsoaz6tnttFRtlma9 tpYbmJOtsugG3h4StrvFutbxX22jQ8icTPGXXD1pbpu1CZzhA45R9EQ9X46tnj4zsR2XZ2Re QuXY0iaWm8GgUkKDRg6ZWVZKqHRz6zrYalnrvotHbDNqVdm/JV6r6eq2c8O1cqBJzJN+mVr2 8FZQpza51w/zpnY151mNbw+xzrwG+BJI279VVXLhudTgmwt/EW0mZBPlr1VIg1mRmtdsN0/n tCpTN8yoB2FLMacQUxlXsspLtdynQX1decvVlb9DepY+lSVatarllROlfSrzalHKmEkH5dWK 9mdZ4J3JzWbAjcfqEnUiVcsclYoFNnhITzCpF5UbLCXNRglvoFo6NBt3uuqp2lSg1uZM+3JD hLQsqDJ7SBCanzlZGkZdyFZSmaYcyv20dPsQQiJf7lW4vDO87x4VSHhgbjNjayChcmXcQAEV 60wlZPEXQvjQF7Kl4Sqiqx5SN+Q0SK/l9Y8q4To0RqtCT+7W/ffKZrXrzjc1rHPJTsrS5Pjj urYQb1xKeVyXBp3J2mJao3ma1yM2fOzz26h9q5rF1TpZuYbupKwGlE7t3eQAAA17SURBVO1m NlctXG0bYnQzDDTeIjK1CjypKlMm8w+LIc/G1Fp2e/ZgKrFq6x/TwtH68PALYk/LuFYpjeV3 1ffEaKgG0z4xdAvfp6mks6jcbKnuEhWQJleOawhpOcb5cQ0HdQsKiZSucU0ryzMihxBi1sA+ XbfX+ssNHIm6naX5e1qIJl2t4eruy6lnQnpIh+u/UqCr4o3Hjb4jkMfcHp3bjDBdjZ/h23Wd UDnFGb5Qf8b2QkxRHdIkKocMQ4GTo0qH7LDafQzfLQksNHcfeCQ36G3a/LHZmBKSsfEqs9fh ZiF9wIprPj5w6eGYiw+PEL/VAucNtRIMQICSvQTHWsvQug27KMIHn06WgrG1w0C/TtGm2gPP Nzu0UIPYY13cuIR3u2EVMvdvKTNwHa8x/L6cirZJ2IAQ/Rt/39YsQYOUjfF01MAbCNoU7flY 6mCd+jSbODYYrDrZ3Y2KIR22/S5Lt5tYnVAdlRfyWtGuSmy8JlNpMHnvitJp++jodeN6YwW6 KqjXZh+yk3sqGNhj1UGkgebh0aXzyZ9ZUC3hEYaiPtofQgjcHhhm5a26ZEuXqb1WDpnZ+Tev uu2RffTvaDWcuG9EXCDtpz59VCe2VrLS8luVyv3t8BboO/SaBfWx91j3SxC/tE5oLzP824EG m9gQIUv5+8qRb/UEFpfG1yEx6DBO4mn5ASZAC69sJ7tug2FOVgZTdSlmw5GT7VjZvvGAg9wJ 4tlsBwCAzmkQRokLDbC3846V7RdedPG2bdu2bt1anNnQTBAAAIwV4kKPLOUONgAAQJIQlQEA AGKBqAwAABALRGUAAIBYICoDAADEAlEZAAAgFojKAAAAsVD5vDIsBB7ShxHCU7DLAgNUA0K7 N1E5ZroapDp8C17yorqVhqhaomCJiHYKFedLP2t0b3awAQAAYoGoDAAAEAtEZQAAgFggKgMA AMQCURkAACAWiMoAAACxQFQGAACIBaIyAABALPAWkZjp8L0KiFqUNERBksRs95h1q4aoHDNx voApbVHdSkNULVGwRET4/qwC3u0FAAAAHUFUBgAAiAWiMgAAQCwQlQEAAGKBqAwAABALRGUA AIBYICoDAADEAlEZAAAgFniLSMzE+QKm5EV1Kw1RkCQx2z1m3aohKsdMnC9gSltUt9IQVUsU LBERvj+rgHd7AQAAQEcQlQHmYc0GsLwsv/8SlQEAAGKBqAwAABALRGUAAIBYICoDAADEAlEZ AAAgFojKAACQBPny34HNW0TiJs4XMCUvqltpiIIkidnuMetWDVE5ZuJ8AVPaorqVhqhaomCJ iPD9WTLrRRHqxru9AAAAlhCiMgAAQCwQlQEUkrhbBGC8TJbei4nKAAAAsUBUBgAAiAWiMgAA QCwQlQEAAGKBqAwAAMtPnsskwieVa0NUBgAAiAWiMgAAQCwQlQEAAGKBqAwAABALRGUAAIBY ICoDGCz5G/sARs1kInm+vF5MVAaYsbRuDDBqihisPRZVxOYlhKgMICKzkDyZrP4263L6M8CI KJy0iMdmSFbTLBVEZQCDJN5FAJA+/qC7nI5MVAZQFsrmSQCIkHLLOiT0LpUvE5UBRGRZp9UA o6bSbctvl5cnMBOVYZ7l6bsJsvDGX7gCAH2wVHNuojIsGi0SxBMYlvYeToDEafBDFMvjzkTl 6Bm+J3lKHFgXM2DXag1fRfLqNIEJBqArHfxyzKt91z2GtoU+aGNZV94Oe0vcTzMTlUdP3bDU SYfOc3uAbya5pTrWeXf7LS9XkAuvo5qyjzGk27Gpj4EYxknl9LGWe5aJl2S5TFSOlQadJ3D9 1+GSaLApZ+Aud38L3zKg1lusB0t2feyKZlMB19W6HayNPhAnw+zf9FSoX+ai7w7zReXpdDqd TmtdKs978vZBs+IGVrIJ4RutdSVYBYZs+QYWt1isntbfurDBfriqT68DnFZKV3ZcldZoJjS3 BxBHh4H2NJj5FateM2Ovi9qQpXatLtr1lnuTtXIRybIs85wv/lbGvOk86kktjZrYTGPN6JJf V5/Fo/Zds7tUhtJ8/mPdoq0ZG3/F28x1a2XUcpmq1lLG82TFMNP8WuVa1/TNZmCdSGDdPEK0 WFt2g8DOYIbM3PZCzWZYd7O1KbL5prBhNrRm+KJylmVq6K1cH6tnaimRzQhMPJ1OrVG/EKJG bk14oGK19OmRkK2VwCG7Mg6p511xqHLf0u97dUd2T0Gd0EyONou3hvyWGnqaMWQ+0Wwl6hn1 ahUa2ElgVJhr38Z7Nl2F50pp5U9cWBNULve1ZHXo5Xvl8HimxssY1qax6eOjzfSt2erTLzDw DTvaFNXUSurs7prJuh33w/3fb47GThu+UK4RgI3I3ceiv9amDiwpfj+1RrXyTPig0S0tg7pf bS1aSxP9K6Kytp2r7U6b58ularGcrQzP1r1iU76GS2ygnmVi7cBfaNS4tn1ayiyx9sJu3//e foPXJaHDjS+/qPDNgGbbBt0OT4HNYm3ewFeTelYhkAB+13P9XEQt+cN0FXUoq6W2lj5wLVFF tmNl+8YDDmojolfMaDoOWFXACCFaLwsMUA2wd+8dK9svvOjibdu2bd26tTizYUCdmjC+eFzA 8AQA0cIA1SM8rwwAABALRGUAAIBYICoDAADEAlEZAAAgFojKAAAAsUBUBgAAiAWiMgAAQCwQ lQEAAGKBqAwAABALsUfleN5KHY8mDailvJZY/Q0u6/m6ctroUFdOpeTAxEtt/XDq1reyb/R0 PlCrkI9LQTOdG+Tqr3E8krsqdBkta6XijZtaJcv3X5bni5+jENsPKmuJy5RWOdp581IDPRuU 65Gj1cUj35pG3I3mr1Rj/T2/4eEv2rSC+msf4bjk+OnKP001XHYMwVqXBnZRTe/qJy45dcu1 yvRUWbN1McY1SN/3eZc+gdXUUmqEd4lwF9aEu+xSOT6YJz3jZ13M1vCPY5X9MNDvrFao2//L j4GdJHKC1sra7w2XreOPLmasUn8nUdz9oGzZBmFAzdWgXFWIKsd1bJVfqeTU8fvQZspa+lee rNWwnsRdyWkjNhy1H1rtWJc2/arBUK5K8JRr9tvGhHTjkPR9n2+Jx8391O2oteziGR/KLmS1 u5k+kAbVkYBxL9DvrMOL2OrVbLxdRirWymWThY8mle1VaZUG1NKzw3J7FVi3uMr2z8Lmkv42 rLsWGbhZJLgfdkUf/blDOQMU7Urf9/n21O2iddM3GJeWDmsdU42Xw1BvB7tAna+5zmfGTpTM pjkeOdn8bpXUDCSVV035IeettVPFeupl1b+uczbQ39r+Ln38hYbrbB16wuWE9J8QZfztb9rR Xx0x7NumP4fo6e+H/vqGlOuRI95G1hrNlb7v8+G1CLevlt2VvrHnahr67eKfEIvbviG91K+P qx/WHc/D/c6UVrf/q3LSmPeErpVd5z1jruZdzeT7swemMa82m5WHr4pC2qHBjLsybyfl1m1M 16UGHlK3/9SSU1exBp2kE38JLLpW+vAxq27t6rZSV+f9eBqncb9q2Q+t51W7eNynw65Ymbjy uO6451epcadqP9pES9vfV468LSJXr5Jl1x80FmVQOlKcYBcwif3JKAAAgPHQfVT2fGVS61uu BvI7z9UTVmWiqlcpNlx+33ZPEms7N26u/tp5sM65kCr03T/p/1CLts8rq+fVk55v9c0z5R0E VvnWk570leW6qKuPK4t2UKmPq16uY0+9PO3gr7Irffh9Fqb+Lj0D2zmkdE8/NNvfY5dacrpC +06xGLsbF2G2vFTVS8vosYuriLr2qtTfVZz12G/HkHHDWq55sln/UT+2NC6MCt9a2R8/RCSb oX40j8sz1lKyqud3VR+wynfpWXpC3RsfAvUpvVQbxcq8ZdGuoO6vlwtXvSrtZb2qGrHZjL4r uzfT3zzjan/XeVc7+O1o1cfEk95VEa0Nw+W40Py0MrGr/5dd3d9udanrp4F2qRw3VGlmxgb9 oVY7A7iovtvL2snKk9Y5dUvMeXEI/TlDM30WxbIPCnX1r0zvmRYMU1B7yY3p1U8jwVrHgf10 DO0Mg+FbK5f925z4e5YCai71vLbENLNYJZg+Zsp36emXU1nxSn1cNfXjagd/vVzlus6HaKWl F2NEq1Wvbu3eQH+zoEBNum0HD1ql1KXndH6xqFUqZJTXFrKaHC2l65KawKN/Nr8nZNUzvPXq 9vMQO4aMGy49/fXytIy1pqZxAfy0fV45/Kp50rOV5DoOPxMip6U+1hG8slyPGv561T0OIdBS 3UoLbOcOS6wU3m07tC+lKxNUNoUZZa15u2rSkMSVx4GFBo4SjbtQYL8lGENd2j6vPGbahBOA GKDfAsQGzysDAADEAlEZAAAgFtjBBgAAWDA3Xnd1ccBaGQAAIBaIygAAALHADjYAAMCC2Wf/ pxYHrJUBAABigagMAAAQC0RlAACAWCAqAwAAxAJRGQAAIBaIygAAALFAVAYAAIgFojIAAEAs EJUBAABigagMAAAQC0RlAACAWCAqAwAAxAJRGQAAIBaIygAAALFAVAYAAIgFojIAAEAsEJUB AABigagMAAAQC9mWLVsWrQMAAMB42bZt29atW4vjbDqdLlYbAAAAKPj/ASYQV5/A70vHAAAA AElFTkSuQmCC --------------010201030902060701050304--