Return-Path: X-Spam-DCC: paranoid 1233; Body=2 Fuz1=2 Fuz2=2 X-Spam-Checker-Version: SpamAssassin 3.1.3 (2006-06-01) on lipkowski.org X-Spam-Level: X-Spam-Status: No, score=-0.7 required=5.0 tests=BAYES_00,DNS_FROM_AHBL_RHSBL, HTML_MESSAGE,RATWARE_GECKO_BUILD,SPF_PASS autolearn=no version=3.1.3 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id u3SIAxY3001766 for ; Thu, 28 Apr 2016 20:11:00 +0200 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1avqHV-00058h-1T for rs_out_1@blacksheep.org; Thu, 28 Apr 2016 19:03:17 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1avqHU-00058Y-KN for rsgb_lf_group@blacksheep.org; Thu, 28 Apr 2016 19:03:16 +0100 Received: from mout01.posteo.de ([185.67.36.65]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.87) (envelope-from ) id 1avqHS-0000Mi-Jq for rsgb_lf_group@blacksheep.org; Thu, 28 Apr 2016 19:03:15 +0100 Received: from dovecot03.posteo.de (dovecot03.posteo.de [172.16.0.13]) by mout01.posteo.de (Postfix) with ESMTPS id 68AA5208C9 for ; Thu, 28 Apr 2016 20:03:12 +0200 (CEST) Received: from mail.posteo.de (localhost [127.0.0.1]) by dovecot03.posteo.de (Postfix) with ESMTPSA id 3qwl741gtjz5vNG for ; Thu, 28 Apr 2016 20:03:12 +0200 (CEST) Message-ID: <5722503E.3000501@posteo.de> Date: Thu, 28 Apr 2016 20:02:38 +0200 From: DK7FC User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; de; rv:1.9.1.8) Gecko/20100227 Thunderbird/3.0.3 MIME-Version: 1.0 To: rsgb_lf_group@blacksheep.org References: <571CF2AD.9030207@posteo.de> <571D2966.5080104@posteo.de> <571D3034.8020204@mbsks.franken.de> <571D31EE.9030106@posteo.de> <571DD4DE.3080703@abelian.org> <571E54B9.9010208@posteo.de> <571E5C16.2090102@mbsks.franken.de> <571E5F26.1080605@mbsks.franken.de> <571E92A0.3000608@posteo.de> <571E98A7.5070503@posteo.de> <571F87A2.7000700@abelian.org> <571FC3E8.1000706@posteo.de> <5720D81D.6020609@abelian.org> <5720E958.2010104@posteo.de> <572102E9.7020607@posteo.de> In-Reply-To: <572102E9.7020607@posteo.de> X-Scan-Signature: 0ee70a3583f20b891de0a7b302b38595 Subject: Re: VLF: T106-52 cores on VLF, continued... Content-Type: multipart/mixed; boundary="------------030207090804020909030402" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.56 on 10.1.3.11 Status: O X-Status: X-Keywords: X-UID: 7895 This is a multi-part message in MIME format. --------------030207090804020909030402 Content-Type: multipart/alternative; boundary="------------030602080203020004050604" --------------030602080203020004050604 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Hmm, well, ok, after some discussions, the show ehm the experiments must go on. I'm continuing with a higher l/d ratio. 13 of these cores are available, the other ones are parts of my transmit coil now. I like to get 3 measurements to approximate a curve showing L/l and µr(eff) over the ratio l/d. So a useful number of cores is 5 (already done, see below), 9 and 13. *_5 core stack (yesterdays measurement):_* The ratio coil diameter / coil length, *l/d = 49/33 = 1.48*. Effective *µr = 3.75* L/l = 452 µH / 49 mm = *9.22 mH/m* *_9 core stack:_* As a resonance C i use 0.3 uF (measured C = 306 nF) The resonance is at 7.26 kHz. The bandwidth is (7.36 - 7.18) kHz = 180 Hz. Q = 40. L = 1.75 mH Without the cores inside, the resonance is found at f = 17.1 kHz. BW is (17.6 - 16.69) kHz = 1.05 kHz. Q = 16.8. L = 283 µH. https://dl.dropboxusercontent.com/u/19882028/VLF/9%20cores.jpg *l/d = 96/33 = 2.91* So now the effective *µr is 6.18* L/l = 1.75 mH / 96 mm = *18.23 mH/m* L/l (9) / L/l (5) = 1.98 _*13 core stack:*_ C= 202 nF Resonance (with cores) at 6.485 kHz. BW = (6.56 - 6.42) kHz = 140 Hz. Q = 46. L = 2.98 mH https://dl.dropboxusercontent.com/u/19882028/VLF/13cores.jpg Resonance (without cores) at 16.78 kHz. BW = (17.26 - 16.38) kHz = 880 Hz. Q = 19. L = 445 µH. *l/d = 145/33 = 4.39* The effective *µr = 6.70* L/l = 2.98 mH / 145 mm = *20.55 mH/m* OK, now, this tends to a certain value for L/l, maybe 22 mH/m (see attachment) for a 0.5mm diameter wire. Hmm, so my coil would be just 35m high, about as high as the feed point of the antenna :-) So a thinner wire is needed or a tube with 3 or more cores in parallel. More soon... 73, Stefan Am 27.04.2016 20:20, schrieb DK7FC: > Hi VLF, > > I've done a quick experiment with the T106-52 cores which could give > some more ideas regarding these cores for a compact VLF coil. > > I wound a coil with 0.5mm enameled cu wire, 85 turns at 33mm diameter. > Inside the coil there are 5 of these cores stacked on another. In > parallel there is a suitable C of 1 uF. > https://dl.dropboxusercontent.com/u/19882028/VLF/20160427_195530.jpg > > The resonance was found at 7.49 kHz. The 3 dB bandwidth is (7.64-7.36) > kHz = 280 Hz. Q = 27. L = 452 uH. > Without the cores inside, the resonance frequency rises to 14.54 kHz > and the bandwidth is (15.12-14.07) kHz = 1.05 kHz. Q = 14. L = 120 uH. > > Hmm, so in this configuration, the *effective µr (ur) seems to be just > 3.75*! :-/ > That means i still need half of the number of turns for a single layer > VLF transmit coil?!? > > 73, Stefan > --------------030602080203020004050604 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: 8bit Hmm, well, ok, after some discussions, the show ehm the experiments must go on.

I'm continuing with a higher l/d ratio. 13 of these cores are available, the other ones are parts of my transmit coil now. I like to get 3 measurements to approximate a curve showing L/l and µr(eff) over the ratio l/d. So a useful number of cores is 5 (already done, see below), 9 and 13.

5 core stack (yesterdays measurement):
The ratio coil diameter / coil length, l/d = 49/33 = 1.48.
Effective µr = 3.75
L/l = 452 µH / 49 mm = 9.22 mH/m

9 core stack:
As a resonance C i use 0.3 uF (measured C = 306 nF)
The resonance is at 7.26 kHz. The bandwidth is (7.36 - 7.18) kHz = 180 Hz. Q = 40. L = 1.75 mH
Without the cores inside, the resonance is found at f = 17.1 kHz. BW is (17.6 - 16.69) kHz = 1.05 kHz. Q = 16.8. L = 283 µH.
https://dl.dropboxusercontent.com/u/19882028/VLF/9%20cores.jpg
l/d = 96/33 = 2.91
So now the effective µr is 6.18
L/l = 1.75 mH / 96 mm = 18.23 mH/m
L/l (9) / L/l (5) = 1.98

13 core stack:
C= 202 nF
Resonance (with cores) at 6.485 kHz. BW = (6.56 - 6.42) kHz = 140 Hz. Q = 46. L = 2.98 mH
https://dl.dropboxusercontent.com/u/19882028/VLF/13cores.jpg
Resonance (without cores) at 16.78 kHz. BW = (17.26 - 16.38) kHz = 880 Hz. Q = 19. L = 445 µH.
l/d = 145/33 = 4.39
The effective µr = 6.70
L/l = 2.98 mH / 145 mm = 20.55 mH/m

OK, now, this tends to a certain value for L/l, maybe 22 mH/m (see attachment) for a 0.5mm diameter wire. Hmm, so my coil would be just 35m high, about as high as the feed point of the antenna :-)
So a thinner wire is needed or a tube with 3 or more cores in parallel.
More soon...

73, Stefan


Am 27.04.2016 20:20, schrieb DK7FC:
Hi VLF,

I've done a quick experiment with the T106-52 cores which could give some more ideas regarding these cores for a compact VLF coil.

I wound a coil with 0.5mm enameled cu wire, 85 turns at 33mm diameter. Inside the coil there are 5 of these cores stacked on another. In parallel there is a suitable C of 1 uF.
https://dl.dropboxusercontent.com/u/19882028/VLF/20160427_195530.jpg

The resonance was found at 7.49 kHz. The 3 dB bandwidth is (7.64-7.36) kHz = 280 Hz. Q = 27. L = 452 uH.
Without the cores inside, the resonance frequency rises to 14.54 kHz and the bandwidth is (15.12-14.07) kHz = 1.05 kHz. Q = 14. L = 120 uH.

Hmm, so in this configuration, the effective µr (ur) seems to be just 3.75! :-/
That means i still need half of the number of turns for a single layer VLF transmit coil?!?

73, Stefan

--------------030602080203020004050604-- --------------030207090804020909030402 Content-Type: image/png; name="Loverl.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="Loverl.png" iVBORw0KGgoAAAANSUhEUgAABUMAAAMyCAIAAAG/bncJAAAAB3RJTUUH4AQcETkwAGaLlAAA IABJREFUeJzs3bGyosjbx/HneWsvRSeYmiuQK9BNJtp0Mwk12Wyq5j9Vk20ioWabbjTJyhXo FWxNsHIvzxugiAoKCgjd309N7Xo8iH3A9kc3TaNmJvDS/727AHgb9r2/7uz7uLtSoCuqmj3+ pWyJ7Dgg/xguKa737GxX5fcsee8v9r2/2Pf+Yt/7i33vL/a9v9j3/mLf+6t034e5zj+4I4my h4/7a+nTdRXf+YOiIs19HbPve0xvdraJyremVl98Hg/dudy1F04/qja2vy/embzvQraD7+5O s68dlSctA/u+Ddmu7Xh31sK+b0C6p02+Xn9p9xv7/kmq38y+it6E9HBwnF9VWrmPX+Z6+jIf 7I4X9n1F5/yWwe/yTPH3eTqaM/2V59/5x+92kUF/veckIqP0UclYze1c5tsOC9RHxyO4NNTF jR0v2Y4XjvUKOVfXi5H3Fxyt68XY90fnvS6OV/cM+/5mr4sXO17Y9+doF1+qe8bffe9tdc9w nO9ddc+c672qqgdj9ApOnnq54yW/7ydvLEVXLtLde+d9vzMzM9VQRETiJAreVaY2XKS7NDnq bVjyX+0XWX6O9jiU6ToWmTqR99fV3deAv1Ky7/NLDHnfF3zJs+NPLtp4861TW6U43Z36E19y cZy/mTkVg24c1oWxiEhyfiIWkSjQWCR4rV3mYN9OQStuQB9pvfmX/UY1FomCWfrjNIk+nT4Z T76V+307BHwJd+p98QUM7Phyjuz74sM6R3d8HDaTYR585w+camj2x8VYKw1tK8F/f+wWozsv fLzmQbfv6aN9xbDb98Xf86jIcs4/buf5J/vnf4XPmpPx3pyrPetQ3jt6ZNeei+/8np+/v3cZ Oju+vot93+f6/eCwrr8F769hH+fjFed6/+KJAQzOYI/1CPiXDelY74wd34TBHOudseMbMsBz Oez4hgzkO7/R+SSRKv3O1yCKkpvFMXDF98dLn10dLD0xaLsPnResHN/zLRhsGw8vy3/nJ/3N e7SAeu+vAbbx0BD2vb/Y9/5i3/uLfe8v9r2/Svd9QI+u60r3/afluMtyoBulc66ULU3fjpPI e3+x7/3FvvcX+95f7Ht/se/9xb73F/veX6X7nvFbTsrv1vJ6P1m9MG0fBoA+XX+R9/5i3/uL fe8v9r2/2Pf+Yt/7i33vL/a9v0r3fRTQp+ugSn26S1l1UhjH9e20yMXUKvTXeou891fz+z5s 7Vuu1venVr97WByKiAZR48VIl6yxfOUypxs5jKsuX1wGe6TKMtmSh9Wk+vL1HaqXRGT+eLnT wmYm822t5SsXo8UNsppUX3PBpiPv/UXe+8vBfX/qmThmoWqYPpnkAjhN1tP/RcM4DjU+Lp8u c87eUDW9Kjldlao2dYe69+I7/xmB6m7424197y/2vaccDHtUwY73VPGO1zBOO7ngkiQKsscF O15VZfOjw/KgI6PFl+wxB3eeIuM9xY73FDveU+x4T7HjPcWO9xQ73lPseE8V7PhQVTXs23Bx NKtgx/+xmpituy8KukSX7aCk38JN7LFfHi+Cd8nC1m4evIwd/275Q6mr/Xr6UfXbxdP2tYG3 5au+C5d192pHHn/TxO6sjh3fvPx+7Xh3VseOb4DqN5OvIk1mcNvY8c9I67TZV9Eh7ew8dnwN qt+OX92D3d8ZjuorOVZxOQX2wPe63OurT6peRO6w7DDN5KvJ16Hv72qzno8WXZSlry5SXETM hVou8212SSgZf+0c5E7jtOzZuZbLZYeai6jxN4Z/xF4FNf6mA9WDvS6e73ivvtuv8FUvIr58 vef5WOMLTo55ttclX+NVVWTu16Ar/yp65qLGb53e69cV3eO9LvkdvzWb6XkyBMdG2RZ0y/i3 14snRphd7mlnDvouDt39Nlrssi5bxw/uriu6U99iz5ieHuROy8638u9/7yhMi673uiPfYg3I 1fjNTPY/31eSJhU02Ia81zV37BXGkk3bGof69KGY3825Hrraj7kPa3Zn6EREomC02OWfrOv8 Ve/A0ZwLZ1TLd0K2gw6hTtcm8tJgmXyND2Tym+2GOv7Chb1e39M1/pzxk9Vf8ulDc0XqTnGD bcgH8IVXXIhI+jUvkkSJSBJFyQvv8cxNMvpE5H9Fz3Zejkbl/6jJxT46ZP+diLxyJ5SLLwrV 0IWDuyEfwNfVwFe9JNGA9nrpl6FPe11eOSQ/V/7txY2c5k4c5yNjl3fUyh/VhzL52POjej8P 3dvgRAeOZ1/vjThnvJn1dq+XN2/Y60867/ggSqrfe7NjpV/v7PVnXXzVb82m9xfvFfb6C/Ln 4+ezvtb4Yuz1F+R3/MaZ07J4iHH1njrXeNUwf8K/j4Z83qVvLr/qe0s5lGuYUwMxUF3+q/5i AFe/xtW7MSHF+51P4HNw56mLGv/GcqBjF331fT+qR3P4qveU45dQoQw73lPseE+x4z3FjvcU O94vWddd6Y6nP8c9qnrIHtOO9xNf9Z5ix3uKHe8pdryn2PGeYsd7ih3vKXa8p+7s+Lj8Vxg8 eu48xVe9p9jxnmLHe4od7yl2vKfY8Z5ix3uKHe8pdrynGGzpkSg479PSHT/orlw+tYWWssoe 01fvKTLeUw92fKCqYbXzs0kUqEp+mpVHKq5YTl/d7X2Bh3Fr56DjGnNN1N4glWcivd10D3b8 zszW1ea3HS12ZiIyqliWmmrdeKf6RyRd8uP3WeV117wB0LTNCcFfuHkUGe8pMt5Tbu749MBE VePzDVgTEQlV0wme9PQgvJzaTzU8NXZjDSJVTXM0XVX2cge4/FV//9ZcGkQ9vwFPq1ze8biD HQ/4xc3DOwBlKtf5JFLVtAst4PwX0HvB5c0IMpXr/GghMl+MRFX3l/3nnAIH+mh1KGy5N9Ce f/oe9gC6R3se8At1HvALdR7wC3Ue8At1HvALdR7wC3Ue8At1HvALdR7wjNWwTf+Xf9W7iw/g WlY9J6vDbTVm7C3QjvxlKH2qH7+8uwCAQ4ZwuRl1HrjrqhrfT+zL36p+Oz39tckivYZje7iu MHsrf2CzelvG7F59Vv12f4HuUecxQHr1U2m17Ft96wPqPHrnNlqpug2izuM98hX73Nzlc9Q+ 6jxad+7KSuM6PTLnI/Mm1Hk06SK9qeG9RJ3Hqy5ivK8DUZCpM94+DkUkCoon0IVXVL/lq7rZ VxMqfL8EQVBYVcl5VJVW8osudI7bB4g6j3sK6rmIKPV8wKjzuFZcz4Wq7gjqPI5KR4lS1d3C nBm+uz55fv7F6QEV3i3UeU9R1b1VXOf1pOPSoG1UdRTX+WxKnY5Lg5aUVnXhfJt3iuv8l8VI RDSIui0MGva4qgu13TvFXe7ZUf3qYIvRo1XQb98z9+ZpINW9V5zztp2LiFm+wsfp2NuARn5f 3Ut1ydV2KrwfyqpqcZ2Pxuub6J6m//uUOwpAHzyo6kK2e6qsqpYe28+39nEsDw/shWP7N3k8 0RpjaVCEcXgDUzow9mIhavtgdF99GJMzDNm1q+mFq+XLiQgVvh16+ncpjI8PEpEkXVBVVePT 42yxKDg+VtU39otR5/uuRlUXavsbbGaqqkkUZO3gdGxL2gG2mhyf/DgWuTn/nXRVyLx75+rm W1tPK6yCY/sWVJ0XncP4geu++tCe75cat0CgtjuhL3U+zfnJ6rCr0HFPnX8dVb2fqtzEJkpk IZGMfhW5rSxJ+qQGke1yC8ShTNdpxelLna+3Cur8s+rd2Ija3ktRUuGUdhzKdF34G+q8Fyqd b7t4AbX9DTobe9aLc3WxSBiLaph/LopCEdEwThdAXVXPt51fcHpAhX8H60p7f0JaZ6+UtufN trFML7rtc42Qm4X5VJaqnepCsKMhRW0Kju3b8kxVF2o7WleW86FZcZdD0cLU+aMn67lQ1dGd e+fqtqexRA9WQZ1/BbUd3Sruw9uamdmMeXJaxdh4vEOdPryyVZDztRDseCv68DpEbUcP3Luu 7vL8PF7AYTx6o6DOM7l9YxhUg/755fYpDtSfdPUlyWyT6KWy+9iUHtUHHAJUQW3Hu4UlVbWg +y233LxsZE6Su26QPjygt+JsyuoT+u0Bv9zrw6PfHnBPQZ3v4BI/AO/CuTrAL5yrA/zC/PaA X6jzgF+o84BfqPOAX56p83TpA0MQF1bV2nU+iBIzY65roPemIpPbZxl7C/iF9jzgF+o84Bfq POAX6jzgF+o84BfqPOAX6jzgF+o84BfqPOAXxtsDzmpmvL0wkQ4wEIVVlWN7wC/UecAv1HnA L9R5wC/UecAv1HnAL9R5wC/UecAv1HnAL7XrvIbMeQsMQFlVfWLK2kR1nH8V8952hk19hQ1y 13VVTbHJAL+83p5P2rjMTvV8YKKqbbxFG22UrJxx2EKZk0hVo6ThteY3bxubOmxl913coSX/ aWlQq5+QNjZ11U+dvWYuYmaT1eHF9Vzamlm+bNv5q+W8Nd82vkq72p6Nv4PIvOlV2mE1aXyd t1rY2Bdbo9ktc1hNGqkdV9pY562Hm5pje8AvnKsD/EKdH4AoUBEJTk35OPdkkSRd7n7TLv1t vnfgzvJX71WlnasaFr4j3o46PxBxuFuMVMOsxi33IiKxiGoQhyoiqnpVOcNcj5GIaHjs+spX yGyZtJWXripKJFvysrfsWAANIlWVJEpXm64kiC46dK/ePWsk471ozwN+oc4DfuHYHvALdR7w C3Ue8At1HvBL1TqfHx7M1bRA/2nJdQhV67yZ2XYuXD8PDMd2Pb19smqdT6JApuskCmQz28wY UAX0WxKZ2Y+isY9Vz8+nB/bpwmEsRV8fAHqkbEIRxuQAfqHfHvALdR7wC3Ue8At1HvALdR7w C3Ue8At1HvALdR7wC3Ue8At1HvALdR7wC3Ue8At1HvALdR7wC3Ue8At1HvALdR7wC3Ue8Eut Op+IiGrQUlEANKt4lmqrTGRy8wyAfjnXz+28sCL/UnFFGsZmu9u1N11gAM3Q2b+FFZR5b4F2 ZFPL96yG0YcH+KXqsT2ABwZyeydyHqhPL/+l7Pqfyre+HdgL7XngntvorlxdVL8dX2FfGytP Ezi2h8fuHI1b7r9V1nSq4f1HzsN1hRW7ucp8J8ZVv/Ut5IU6D3fcPQ6vlcM9rKgNos5jgPTq p9L67HbtfQ51HkOgBRWb+vwc6jx65+o43ORrD894DRd1Hu+Xr+QmX9P/oSXUebzH+fS1nA7R +SR2gjqP7lwMU+nrJSjOo86jXdfD0ajq78Y4PDQsG4iS1vZzVU9rO1X93ch5NKlgkDlVvWfI eTSjoO9dT1eYoU+o83jV+Rj+avQrtb2XKl8/n0TZFJqqYUulwbCofktb7wyJ6yfVgguMKuf8 aCGH41rmW77AvZYF+3WjHf0RhzrbiMxvf1Pz2D6JzCxQFXr+vHTRFX98SkQ4jO+f6WezdRSo yPrqN/Tbo5KC2i6nXjoMCn14eKC0tgsVfpCo8yhFbXcSdR7Fiud14mB++JjrGtdK450K7wRy HmfFtV2o7U6hzkPkYW2nwjuEOo/yKZmJdxdR571GvHuIOu8v4t1P1Hkf3Yt3ocI7jjrvHeLd cwXn5/Uku3gWbiiNd6HCe4RrbHxxL96FCu+RgpwPi66zx3A9jncqvE9ucz5WnaWPOARwwL3b IXM876XbPrzpXGRtlkTBG4qD5jyId6HCe6qgPZ/NoUXODxfxjjIF5+rmIhsREVGlh2947sW7 UOFRci2tmdlhZbbNP5meuktP43VQMjzhwSy0VHiflFXVgpxfm6WT227G55wPouTTh5FwwN9X D+JdqPDeKauqBTmf9t5tZhcH9rvFKHsch+R8vzyOd6HC+6iwqhbk/OHn/k6Yq6pMVnx+eoJ4 R5myqlrQSxeqpn14HMb33L3O+eMSVHhcK+yZT1THE5Eddb7HqPB4TkF7PgrGtp1/KbjpDXrh 8fG8UOFRijPwA1Mp3oUK/yqHB6fc5nycXUv7huKgXHYT2LsLcc1Mt+LzPZqjoKDKZPUoSiS5 XP5dbuv81E7eUByUqHTLZ47n26OnfyVy16fE58jMangSpSe79ftHkTidmuJdF7CS831XKd6F Ct+O26quxfV//PdvBS+frg9mIhL9vkyfOOwWQTS29VRE1tv39JmR871WKd6FCt8au2kr2fWT aUAedovTEtPb6vPrb5P0wUhEluM0UOMfm3YLX8LZjgoHVIp3ocK3ooM+vCiR3OjW7hRdYxOH HNu/V6WzcUIX/bC9pcJL8fn57xszm3RfFogI8Y6WcWzfI1XjXajwrfPq/PzxWhwunutY1e46 ocK/R3oCpd5LgujicXL8UcP4jSfqC66rG3+cpI15W3deHC/ViHehwnfqtpLnnzH7mkTBaLEL omS//NNKK0ySdtgH479FlsfLWKZvq10FdX602Nni9mm0omrr/bg0Fb5T+V3z4Kt58rF8NcfO ui+2kx4cPjvbaBmEGhWeLvpuVWzPpzn/cLHb03JxqNP1e3Zn8R8WqO65fr5NxHvPOdyH5+wf 1mdU+P7rbHxK9xWwuM6r6lzmazrxmlavu06o8Ghe8f3qbDtf2+f8k6fb1MZScs0gHqpxNu74 Aio8npdEQfGtpa2IiMy3109mz6wOXIRT1/9E/lfrBUZ1x1MK62xewbk6SSIzU9V1Sa3OeiCp 9lXkWu/1uuip9mhDQXs+CnSxs7C8zqOi2q134XgeraPfvi31OuePr6HCo3WF894yT86T0mCv OrPN9Yup8OhCYc7HItM3lGXgspHYtWu7UOHRncL70lLhu0WFR4c4tm9MGu+1e+yo8OhWyf3n 3zQj59A900VPhUe3Cs7P/9yLTNeH1b/dl8YjxDvepKAPLzuq5zReW6jweJ+CY3s7rKjtLaLC 462K+vB+X4oIDfpWUOHxbozD6xAVHj1QfC0t5+oaxsxW6I2COr82M7PDirtaNIR4R59wbN8y Kjx6hntRt4kKj/4puBf1XMTM6Ld/CYNq0Vcc2zcnf2DERkVfcY1NC6jw6LGCOr/Ybe9Mcamn GXAB9FlZVS2aA/Pe9fOxmUUBTVWg7w6riSwK6nJBv/3dMTlTSS+8wy3j2lj0yGixOxTdEvPe dXVSdGmdw/fxAlxSVlWpwIBfiufJAeAqxuEBfikYh3f8/3zbbUkAdKFonpzU5x/dlwZA22jP A3657bePVWfpI7r0Afdwrg7wC8f2gF+o84BfqPOAX6jzgF+o84BfqPOAX6jzgF+o84BfqPOA X6jzgF9q13lVTdooCIBGlVXVmnU+icxs1ESBALTKzP4JCma+qVnnDz9FJCpaEYB+SaLFrok5 MFVVZG62bqhcANpwvCi+YOpqrqUFvEK/PeAX6jzgF+o84BfqPOAX6jzgF+o84BfqPOAX6jzg F+o84BfqPOAX6jzgF+o84BfqPOAX6jzgF+o84BfqPOAX6jzgF+o84Jdn6rxq0Hg5ADQr0OK5 amvX+ThUmfz2cnkAtGtXMtVl3TofT9e2kuXrBQLwFsx7C/iFPjzAL9R5wC/UecAv1HnAL9R5 wC/UecAv1HnAL9R5wC/UecAv1HnAL9R5wC/UecAv1HnAL9R5wC/UecAv1HnAL9R5wC/UecAv teu8qoZxGyUB0KSyqvpLvdUkkZkFqsIsekCflVfVmjk/+iAi+6aK9T5aMvW3t9ggneloU5dX 1drz3qq6MFWuG39Fg9ggnelsU5e9EXsa8Av99oBfqPOAX16t86raeJ9EFJzXGYfNr19Ewlb6 Uc4nRtrYLG2sU5JIVaPk/BaNn4jVFlaa3xStbJbyGzy+JImyh21t6irFttcdVg2sJEfm2/Pj pgp5ZTtvfp05c5FDG+ttp9jHDb6dt7GpD6tJG5tCJsdP3Xy7zR43Z9vuJ6SdTV3xU/fqGx+s +Q/i7S7cFi73ipbrvJlt5w3v1MNq0uwKUyLzOz82ovFN0bY0aVaNfledQnaSe+Y9m/rVnbGa 5FO5KYf0W3B1OD9uWGt1Pq2ZbZS5jUOe0wdxnn4WWyp24+tcTWRyqpGribTxEWzvE/L2Tc25 OsAv9NsDfqHOA36hzgN+oc4PgAZREgXHx6cTsEF2Vv1q4eMCSfGvT+I6F3tocHFi+eHycViw zP3yoDPU+WEYL/eXFSneLUa5cSmhpNU4VzlFJIiS9MsijI+DTOKb8UjH7444zFaVviQ+Vt3z d0dWgCg4j4dJ16ZBFKimo5Ly30rZu4vIWMNXtwKaQJ0fiPn24sfkvyov2v88jBY7Efk4lk/l y4iIzjbZM6MPZcvmxJcV+NOH7GF2Jij/7iIi8m+VMqNtnKsbqiiRxeiZF8ahTtdv2OlPFxjN os4DfuHYHvALOQ8AgLM4tAcAwFnEPAAAziLmAQBwFjEPAICzGo753CWaiZ4um0yiIIpCbl4N AMCLsmxVDaosX/PO84+sj+P2Y9XvZjs53RZzEYe3UyXk51r53//+12xJAAAYnNs0vLwgLhHZ iKzz90y7r+EL6pIoGP/8Yuvp9S/iMJT17dPHQnDXcwAAHktUx2YmEqvOqkRnL/KVmAcAoA0M wQMAwFnEPAAAziLmAQBwFjEPAICziHkAAJxFzAMA4CxiHgAAZxHzAAA4i5gHAMBZxDwAAM4i 5gEAcBYxDwCAs4h5AACcRcwDAOAsYh4AAGcR8wAAOIuYBwDAWcQ8AADOajrmk0hPoiR7NlbV ht8IAADvxJoTV3iBmlk7JQn1x2dbT49vo/fe6P5vAQBAXvXc/KXx906iYLz8ZLa2aePrBgDA d2GdtnHDzejLzvm52Tp7ntY8AOBVhWeA/QqQRIN/bLeouHQv8pWYBwBUQszX1HynPQAADWMY 97OIeQDAm1QJb8v9t+JLkEPMAwCaUz255anOdhMRUf12fsK+1l+LR3pxUpxz8wDQO7XazS1/ hedzvfj9CfsSvchXYh4Amle3f/vdUX3lTnLTmq+uF/lKzAPAAxUzu/5Xad30rVQKorc3epGv xDwAH1U+jf16EpO73upFvhLzAByk2f9rhzSpjKb0Il+JeQCDw6AwDEIv8pWYB9ArdyLc5Gv2 COi/XuQrMQ+ge2VZfg7y08/AcPUiX4l5AO0pjHOzr9cj4PgSgot6ka/EPIDX3cb5xdlxQh1e 6kW+EvMA6roK9evxboQ6ICLEPIA+Kz19TqgD1XDrGgA9VaMTnlwHSvSiGU1rHoBcTVR+Gu6e zi3D6HfgOS3laxzG0/X0+Fh1JiJ33oiYB/x07wYkhRPB8j0BiKiqiBzMRhUWbrzTPg6i8e7D D5HpqTQzM5MkUg3N1k2/HYCByaLd7GvxPHF176sG+COJgn9+rdUwbjzmp7uFSHwukMy3IiKj xURUhJgHvHPVZH8c7TTZgTKHnyK/pg+jQD/sbProFS0PwRstJhvVjYjIMe8BeKDq7cCzdCfa gSqm608z1WX6w7xKvenFSXHOzQMOINqBHuKCOgDPqxrtQroD70HMA6gtP4zu0aKnB6Q78A69 6C2n0x7oP6IdGCJa8wBK1eiTF9Id6CNiHsC1Gg13Id2BXiPmARyR7oB7iHnAd6Q74LBejH1j CB7QsXrRLqQ7MFS05gGPkO6Ab4h5wH21011OAU+6AwNHzAPOej7dhYAHHFEl5gtuGJ9EwXi5 F5lzb1mgb55Jd6H5DripSsxPzSyJgvQ+9idzs11bhQJQ36vpTsADLqraaX/4uV8dbDFqtTAA ansp3YV0BxxX5Uq2Y6f9pSa767mgDqjryXQXOucBv1RozSf/tV8MAJW8mu5CwAN+6UUzmtY8 cN/z6S403wGvVb+gLlb9kXbUB6p/mUkUjP/+zXaL9goHeK6ZdCfgAY/9X8Xl4nAmslFVVd2L jMP49+VePn0oWDSJVDWMjz9FgSYNlRXwh+o31W9mX9N/NV8sogQ84Ka6qdpOb3kchrJeT0VE cpfhTcquwaPTHkilzfdn2u7C2XfAC1VSNa9qaz5UDaInmuWxTFZmZmaryZ5mPVAobbuLyDNt d7lsvpPxgMtqp2rVZnSourl4ggvqgFe9dOr9uIr09c2UB4B7epGvxDy80li6CwEP4IGqI+2j QJeftvb5RyjrtYQ6E2azB2ppIN2F5juAeqo3oxPVcfbDwazBeW9pzcNhTaa7EPB4M8e+rh37 cwox2S3QimbSXWi+o18c+7p27M8pVGWk/dQK0GMPFHvpkveLFXH5O4ZGb/7dF4fZJCsnSRAl FS8NjwK9erVqILkry6PgogTB6VI0vXlXh1W9oA7Afa9eFHdeEQGPIbhN9MJQL1ysPP5DHe/q 3At1nHsch7q9uI48/vnFRJLjheZJtD/94vDx+zNXiA9TlSF4rXfaA8PVWOe80D+PQSn8oN7m d73Pcyzb5yvAf//Kr7kfQ52tzST5R+ZbEZHRQmSZ/mr04dPPg4gft1avem5+LsJ180CmyXQX Ah6D0fOvaw2iKndaUQ3S+eN6/uc0otZfeGzWb82mzRbCgw0NN7SS7kLAYzAc+7p27M8pVPW6 +VD148GOmyOJdPyTTnv4o+F0F5rvADpS40AmN12+NHv448PxFAbqpXvJFK9RRAh4DJVjX9eO /TmFaoy0n4uYmdlBJqv2CgT0QWPD5s9rZPw8PJJ1gLX5FppePnd+JoxFEg2i3I8nSZT+GFy+ xAc17lD38ZB+OY3sL1EN2ysT8C5pumdXvTe0Um4fB49kh8jZgzuS6HTr0+OjRINA9XzRfKh5 59w59i7Pv+SeCWx9HjYWh2rrqSTR8aW//50+v7Odb/lV9dz82kziUMcbEZlvne/kgF+aP/V+ XG+60iZXCTjmeGHb4accr4b7rco91M0OGvyTy/VEJr/lfp98/3iYigTj5Smu4ly4b0Q8GltW NeZFRKZrht3BJe2muxDw8FFam9IusSrLfxzHqrPtYSX/Ffy2cuqMJvulyPFSuigY73YmIjuz KNDlXuywEvkgIiLxZHWotEpX1JvTvvFL6Y6F8GAQBPqjrXQXmu9wX7Nf10m31AT3AAAgAElE QVQU/PNrrVnv7gk1WD/qCQiiJP9+PqRPL/5CHzY03q7FdBcCHr5w7OvasT+nUJ1Oe2CYmr8o 7mLtIkLAwxeOhaJjf06hqiPtkyg4jnSM5fi/cmHu98F5kKR3lzHgvZq/KO5i7bmAd/+LAkC/ BA9y+Kx2a34zUxGZfBzfWWa9nWdDGnenY6X87DpAe1qM9uMbiAjRDuBdYg3Fcjl7X9WYHy12 9vh2AMVUdWvmQ98I3iV/3r2tdBcCHsCbJVEwXu5FRDcisvl4sIcDGGtMj3PuHkiiqtMLxGHa iJ+pan4NQBOuZrNpsfnOBHYAemC02FlqO59vH2e81Blpn6ieO+oPZg3eqNeHsY5oULtj5i/e KX2bdt8EANrz5K1ruN88utddugsBD8ARVc/NR4G2NDcOUOh2Nuzu0l0IeACOqBrzP/eybK01 D+QV3u6C/nkAeAKd9ugpTsADwOuqtuZD1a3Zf4F+2NlUJLuhL9CSjtJdCHgALqtxI9pAw51Z qDrzY4JAOIvmOwBvVOgtTyIdL2+epdMeA0TAA/BML/KVmEe76J8H4KuWZ8ED3is/ex0ZD8A/ zIIHR9E/DwB1WvMXt6Qb05pHPzH/PADkVI35teUcVjL/3GqxgNronweAGzXOzZ+Nl/fvNw90 iuY7AJSoclI8Vp3dPMkFdXg3xs8DwCNVWvNTM9vOZUunPXqC/nkAqKZ6M/qiTc9Ie7wBzXcA qIlb16B/tOR5PiMAUBP3m8dAkPEAUF/VkfY/9zLLD7avet18nN3LLlRNnioiAAAQEZEkS9XL LvZy9thWRObXr5tXeKGZ2eT0gtVqsjpc/KqZPxkAAHeVxeudX+VVuqAujKfrov76QMPdozP0 x/PucaizTdl7cW4eAIAqssSsGJ018jUKdLk/Pm42lYl5AADa0It8JeYBAGhDlSF4sRbg1jUA APRd1QvqaG0DADA4VSe7zf+cRAGteQAA+q/qdfN5ow+fGi8HAABo3DMxDwAABqEXQ9wZaQ8A QBtozQMA4CxiHgAAZxHzAAA4i5gHAMBZxDwAAM4i5gEAcBYxDwCAs4h5AACcRcwDAOAsYh4A AGcR8wAAOKv1mFdVERFJTg8AAMBzEtUgfVQxVX9pszQicTiZTE5Fmbf7XgAAOG5kthMRkbhi qrbcmp9+3n/6YmZmtpps4nbfDAAAxyVRoEEkMjVbV1m+F3eA5Ua0AAC0gSF4AAA4i5gHAMBZ xDwAAM4i5gEAcBYxDwCAs4h5AACcRcwDAOAsYh4AAGcR8wAAOIuYBwDAWcQ8AADOIuYBAHAW MQ8AgLOIeQAAnEXMAwDgLGIeAABnEfMAADiLmAcAwFkdxHyiqqra/hsBAOCFsHKqdhDzIzMz 26qG7b8XAAAuSwN+U3l5NbP2SpMXBfphZ9PCQmh3xQAAYOiq5+YvbRclVD0edExWJDkAAF3q RTOa1jwAAG1gpD0AAM4i5gEAcBYxDwCAs4h5AACcRcwDAOAsYh4AAGcR8wAAOIuYBwDAWcQ8 AADOIuYBAHAWMQ8AgLOIeQAAnEXMAwDgLGIeAABnEfMAADiLmAcAwFnEPAAAziLmAQBwVtsx n6iG6SNVbfm9AABwW+1U/aXN0ogk/0xWf6QP5ze/zBeRgwAAAG6Z2fmHu6laSC9e3wJVPZiN 4lBnYrYuW6btYiDFpu7MQDf1QIs9RGzqzji2qauk6sXyLv3xAAAgjyF4AAA4i5gHAMBZxDwA AM56c8xHgcYiIpJEQRi/tyz3lV7DEA7mGoFYVaMo7Pd2FhEJVVWD24svhrKpc+U8f2z6qbyo sfb/gyIikmgQpY96frVOFGgiIgXfdUPZ1CIiSRQM4jtERIq+QwazqRv+rrO3mpwLsJX59p1F ue+wmqwO6cP55UbLtuHk3Ruzku28z5s57/bDObBNbVuRybvLUNF1UbfzU3U8rHpdMXPe/m1W 0WE1yW/SAW3q4xbu/XfIYTVJS3j1kRjepm7ou+7Nrfm/VpP0YFx1tl1P31uYe0aL/XKciEgc bkouVtx3WyKf9XxTJ1GgYSwyNdu9uywPPC7q4efk47jbQtXT80Z8Jg7PLcniTdr7TW0DuSxr tNg9CJPeb+pMI991XFD3tDiWaY8PTFzCpu5OqOG6wpW4eB2bujOeb2piHgAAZzHSHgAAZxHz AAA4i5gHGhAFeryyK4muLqJT1cuLeGLVoM46E9XjtVgicvNjbfGpVFHJWoLrAt93LM95C9xI t8CdBaqLw0cXKN5sf8BzxDzQpHC83No6Db/U1QKqs63tRCQO9WqZ88+V4jDOFs+SO5NGeBSc 1heoapi+4+y0/HJ88fJstXuZ5wc85gqVSDo4/+Tu0cadLXBepRynSbiWFin3qzB94WyzUQ3v /O3JaDGXTVB2CAP4h5gHGpRsZDIVCXWcXZh7+ftIRKYiIslsc74iVtIJMbKX7JcPp/FQnWWP Z6fugXRyh7nI8s9YJF7uj2/x5ZOIyHRtIrI1m14uPMu9WRTMVod17sdzqXaLkUg8Xu6Phd7O x+UXs5VuATkGsNn2fLnQfJuWJH0wEfkeJRKHm/OrNlEi27mIzM3Wd/72kcgfq8l++fuDzQd4 g5gHGhOH4/l2JyJrM9nMCtqyo1+zR9v5uQ16/ZL541kkzLbZ49Wh8Kr36WpyfIvv/56fnd3t k1/uZTE6/7jYnUuVXmF/WE2OP842d67TKd0CJ/moLjZd52aomCxGMv08F9mohvf/9sPPvUx+ e7BywBtcUAd0KomC8c8v1slkUPmIXR0sn98OU7duLg68iPoAAICziHkAANzEiXkAANxExgMA 4CYyHgAAN5HxAAC4iYwHAMBNZDwAAG4i4wEAcBMZDwCAm8h4AADc1HDGn29Cmb9ndhKV3aAC AABUlURlN3Eu1GzGx/vTnSVXk312kysd/93ouwAA4KP4z2WasofVJEoeL9/WfPXZDaBC1bUZ 94MCAOB1pxb83Gz9cOFf2ihBqLo6mIgkUSDb0mjPuhr+97//tVEMAAAG5DYNr5rHUaCT1WG3 GIWqUbJ+eNvo5pvXqro1m54e534zMds1+14AALinrPM7UN0dn481FFtP76+n4TF3abGy97QT ESHgAQB4xW8TCaJEREKdzT8/CHhpOOPjUESyIX/xw+UBAEBli519Wo5V9d/V4VEbXqS9MXcA AOA5TQ1UZw4cAADcRMYDAOAmMh4AADeR8QAAuImMBwDATWQ8AABuIuMBAHATGQ8AgJvIeAAA 3ETGAwDgJjIeAAA3kfEAALiJjAcAwE1kPAAAbiLjAQBwExkPAICbyHgAANxExgMA4CYyHgAA N5HxAAC4iYwHAMBNZDwAAG4i4wEAcBMZDwCAm8h4AADcRMYDAOAmMh4AADeR8QAAuImMBwDA TWQ8AABuIuMBAHATGQ8AgJvIeAAA3ETGAwDgJjIeAAA3kfEAALiJjAcAwE0NZ3ygmSB7MlQN 42bfBwAA74SaFz5cvtmMj/fzrZmZ2Wqyj0VEYlX9uJo3+i4AAPhobUcTEbP1w+V/afTdp9k7 Lvdi6TNmEoePDzYAAEAFSRTI6lBlyWYz/ihUXR3s4WKq2sa7AwAwdGlEmhWE6Xi5NxtVWUnz Ga+qW7NphSULiw4AgOdUtTwiY5lvK66n4Yy/WywAAPCSJPq++mNXceFGx9zFoYhkA/4YSg8A aJgW/fPJP3/vf63UTy8iQrMbADAchYnuXI411SnOHDgAALiJjAcAwE2tXDsHAEBjPDvj3iAy HgDQJyR6c8h4AMCbPIzz22FnHAHUwfl4AEDLCi94u0prK/p36/QrlW/3FoOIcO0cAKBJTzTN n3gT/XZcmX1tYHX909S1c2Q8AKC+Kn3m7cRLFvDHN3Ex5sl4AECbqp/5bjlGrkK94P2di/mm Mp4xdwDgpScGr7WZ5Q+DvIx7Ad8gMh4AHFU3xd/dHM+7n9zOn49vCn31ADBkb+1Rf7rxnXol oVW/ORzwnI8HAG+0FuQvhnRpKdxN325wPh4AXPTCeHXVb21MEUNgDxcZDwDvUDnLC5raNYOc kPYWGQ8A7StPZZXy3vLyVxHbqIKMB4AWaP5hvXPe5DeaQsYDQEO0UpwT4egMGQ8AtVUZjk6W 4+3IeAB44H6im3zl1mfoJzIeAK6VhbrJ1/wPQM+R8QBAqMNNZDwATxXm+kWoC7mOYSPjAXik Uq4L0Q5HkPEAXFYc6va1YHoZch3OIeMBOOg22o9XsqXRngU8uQ6nkfEAHFGa6yKil/PCEu3w AxkPYNiuov1i5pmrDnmiHZ4h4wH0muq3wgnjiHbgoWbuQg8AbciCPIvwe9EudMjDEarNpDMZ D6Cn7swgey/ahXTH4DWV8fTVA+ij0mverpfL/7rF8gBDRMYDGCCiHaiAjAfQLw+mjifdgcrI eAC9kI/2bB46ldOYu6uAJ92BChhzB+DNrtP9+Gz2/2/c/A2+aWrM3f+9vopboWr+saoGUdLG GwEYNNVv+avjCq+DJ+CBvCQK0litsnDzGR+obk6P41D/XR3MTJbjuPF3AjBMabSn6Z5Ge2G6 A7iSRMHv8peZrWRZpfHc8Pn4UHVnpqd2/PjjpNn1Axi04m7564U6KgwwOL8v9zsbichiZ4sK y7dyPj53IiFRHadPcuIf8Fm9dLeSpOdbBH4oOx+vuVPhW7Ppo/W0O64+0PGxlEmkYWzrh+UB 4Jra6X71AEBOrgkdmq3vL8y1cwDacjvbfNFCpweEOvDIvOby7Wb87rDKOhboqwf8QboDbVjb NkvVbYVU5fp4AE0i3YHXcU8aAP1SKd2FgAe6Q8YDeBXpDvQTGQ/geaQ70GdkPIBnVE13IeCB tyHjAdRDugNDQcYDqKrSbDbHRbPlWiwPgPvIeACP1Uh3IeCBviDjATxA5zwwUGQ8gFI10l0I eKB3yHgABUh3wAFkPIBrzwQ86Q70DxkP4IzmO+ASMh6ASN10F5rvwACQ8QBovgNuIuMBr9F8 BxxGxgP+SgO+XroLAQ8MBhkP+OjJ5rsQ8MCQkPGAX0h3wB//9+4CAOgOAQ94hXY84IXa6S4M rwMGj4wH3EfzHfATGQ+4jOY74DMyHnBWvUvjjq8REQIecESlMXdJFOiNtksG4Gmq32oHvBLw gGseZ3yoOl7uJ6uD5YiIqsbtlw9AXVm61+6fFwIecIqmgQ3AAc+cfRea70DvqDaTzlXPx191 zm/Npq+/OYDmPH/2XQh4wE0VMz4WEVr8QD+91HwXAh5wVtXeANXAbNd2aQDU9UzzXeifB3qt u776UHVzesvsSfrqgbd7svkuBDzgC66PBwbppea7EPCAFyr2BsSqP8zWx9eoHsxGrZYLQAma 74Dzmuqrf7yWQHV/8yR99cBbEPCAD7rLeEkiHS8vn5pnbXoA3Xg13YWABwajw4wH8G4EPOCV jufAiVVnN09OuJoOaNvz6S70zwO+q3RPGpHpXGSbTlV/WMlkZWYi+6TdsgG+I+ABvOKZcfWB 6hezH6qfS0beharr02qzq+rnW1szTg+opoF0FwIeGKo7ffW1UrX6PHcX89XbYaXjZeFr03H4 p18lGvxju0WVtwCQIuABz5VnfL1UrToHjpllMW9mEoeT1eF2sVB1l1tSkn8mv/1a8S0AyNOT 2xxfLCKkO+Cumqnayrj67AAkiYLx8nh1/epgC+bNAcq91HwXAh5wR1k7vm6qPtlXf38OnMLC qYZcVQ+Uean5LgQ84JQq185VSdWK4+qP95bNVBw8F6qext4nMvlY7UWAX1S/vdo/T8ADfqib qhXPx09FJk+UZm3brAPgwGQ7wI1m+ueFgAe8UDdVq187dzEHDvPVAy96Nd2F5jvgrKbmuavY Vw+gSQQ8gA4wXz3QtVeH1wkBDziu63Z8FGhKkkg1eP2NAQ+9OrzuuBYRIeABPFbxSCFRHafT 4KT/5Xw8UFdj6S4EPOC4ju87d238+jsD3mjg7LvQfAdQW8WMH60mx2lwVFUmKyasAypqoPku BDyAZzDmDmhLM813IeAB73Q35i7UAvHr7ww4jYAH8HZcHw80L+uff/UEPAEPp13dCUVEJA5j STSIqrw8bYJePhNI7uWq4fl3SaRhLCJBlIg3Hmf82gowqB4o1MzVcZJLdwIeA6I3/2qKvm8q 50uykflFh3Ycfjzs8gtMVn/cvuzLT49GjdOOBxrTTPNdaL7DX0tZXT1zeb743C5XHYts0qZ5 Kpht8vdaTaLf/1qM5Ka5P11v869yGxkPNKCx5rsQ8BiI2yZ7Yau94mJH8fzL4uqpy77k861U zQ4yWdn63Ozfyzz/wj+X+5FIFOi/q4OZBePl6TdT2Xyv86cOGGPugFc1NrxOCHh4LYm+/3HT U1/Wjr999dW9VjeTlYj8vZfdYiQiO9vmfrlvqMh99+QcOACk2XQXAh6DUvhBvW2j1/k8/7nc r6+b8bLON95ruOkSiH+IfH5mTUPGmDvgSQ033wl4eOncQo+PLe9njWT/d/ZD1iWwO6zS9Qc/ csu+9EZD8vgq+1D139Vqv1zmn2S+eniusbPvQroDzYhDHa/t8TSscRiN14t+T9fa1Bw4zHMH 1EP/PNBbGsb5UXiFAg12tru/zNu9IeND1Y2IyPzJkyPA8DXZfBcCHkCxrjP+ai4hWv/wTcPN dyHgAZTqbr56ERGJRSbZgLuJCNfOwSsEPIAhqpjxY5H9cYrfJNpz/3j4pLHZ646rI+ABdKTq /eMPq8l4rMex9fNtvwckAs1oq/kuBDyALjCuHijW8PA6ofkOoKqOz8dLesM/EYkC9ei2fPBS k5PPn1cqIgQ80Iw4VFXN3yQ2DlVyCZX+mAnSYeNJ5NN9ZUWqz2WrOkuPKRY7a+r4Auih5tNd CHj4pZVKdOm/f+VgF9PdzGSbr2HfN5Pp7VXeo8VSg0XvL45vUI1x9dkPjKuHk1ppvgsBD79k o1iyB3cXDtIHaTs7CjRQ1SA6/T4uvhdaHC73Ms5d0Z1Ewerybjb7+Zd0tXp5Y9ntfO9VfnF9 PCDSxvA6YYQdnFUlv+9LK5pqYLYTkUB1ZxYF+mFXaaL0KNBfd+d2fPbj8UESRbJYSKR/fkin vTt3P8dhKOtHU+G9X1P95VX76s0si3kCHo5psfkuBDwcdKey5OO/Qp3aX/zv+sLsWHWW/VD9 PinR78vFbiGJTD4e1ze//wJ3VR9zJ9kcOO2VBuhY6/3zVBd4JqtKFetULCJJVPLLacX7nX74 JIfcj8v9XERktNgvxyIiSbQ5/Sr579+PPk3wUiPjAcc0PLnNeb0iQrrDX3Xq1OSHqo5/Th4v ec/0j9X384j5ZLL641SSg6rqnx+y9f+53Pf8jnPNYoQ8fNTK2ffjqtP1NrxWwEnZ+fjOVlXl xnR90N318eF5VGP4+vsBb9dW810IeOBtzL48vPY9DnUQAd+gOkcKSaTj42y21cc+AP3RYvNd CHgAjXnD/eOBQWu9f14IeADN6PraOWC4aL4DTbmaK2XonG/lkvFwHAEPNMj5UHRMjWvnguOM gLFXEwFi0FocXicEPIC+q5rxqnqchyj+MXvQVxOfO3OSKBuU79vdfvBebU1uc34DESHgAbxD ElU8aVLxrH6s+sNsnY4CCFU/l4yrD1U3MhHZp6sNVdfH9Seqf5rd3gYIaF7rt70i4AG06f6Y O9Ugy9kH62njnjQFhYtD/fHZtwsT0b12z74LQ+gBdOFOxqeN54oD77u5J02ss39vG/GOjc/E u/0v/0D1f2XLPc3ERETTnOfDC6BNaUReBW4SBbKtEcGtXB+fP75IomC8/EQvPVrVevNd6J8H 0J2yZvpl23jycPreqmPuAtUgSuQ4tW3VSW2TKBj//ELAoz35sXUEPAC35W8AW2l+/lpj7tIf AtUvd+eyzQ5ALo845oQ9mtVF810IeABde3i6veL5+IoZn6iOT3PUx6qzg5lPd+dD73SU7kLA A3iDjueyHa0mcr4sfrIi4PFGnTbfhYAHMFTckwZD0nXzXQh4AG/Q3f3jU0kUaA7T2aJ7b+if J+ABDFmN8/H5n7l/PNqWn6uuu3QXTsADeL+O7x/PTLToVBbqmS7SXQh4AL3QccbLnTnqgWYR 8AA813HGx6qz/M/01aMltwGfYgg9AH903Y4HOtN1O56AB9AzXY+rj0NlXD26cZXoHc1hR8AD cM5z4+qZlRata/0e8MIJeAA91XE7/iAyN0v/a9v5Jnn9nYG72r3HjBDwANxXox2fv4U889Vj 2Ah4AD3WcTt+ZIdVLGK2FRGZbwl4DBgBD8APz9xbVlVpx2OQGEIPYAi6u3YuUN3fPMn18Rge mu8ABqK7vvrdYXXz3JyAx8AQ8AD8wxw48AABD2BQup4DJ1ANokREQlXV8PU3BjpCwAPw1TNj 7gLVL5yPxyAQ8AAGqON2/Fhkc5q/Nt6LjO8uDbyfEvAAfPdLtcVGq4nMThPgyGTFhXPoNdId ABhzBwcR8AAGruO++liV+85hCAh4ADipOq4eGAACHgBynukNCFR39PCjbwh4AK7o+vr4vL0I ffXoEYbQA0CRZ87HiwgXx6MvsnQn4AHgEuPqMWQ03wG4qLu++lAL0FeP9yPgAeCuinPgAH3C beABoIKqvQGqYX6+esbV420IeACu63oOnKv56umrx3swwg4AKqvYVz+dy8V89YyrxxtwAh4A 6mBcPXpG7/6WTysAD3Q9B04SBYyrxzvRPw8ANVU8UkhUL24ZvzWjux6tKGzHk+4AfNL9XLZz yyHgAQDouYoZP5qfx9XXkUT5GXABAMAL4lqpWvXauY3IrP75+HC8PBxb/lsNomovAgAABaJg lqbqYTUJKyRxu+PqQ9U/zEYiIonq72a79t4LjuB8PADv3T8fr6oyWdlu8XhF9shcZLJaXb1q +/BldjzSOL1iLjK5+uXTfzwAAD4oT9eJzB9Hccvz1Y8WZumBRqzBx9uit/vuAAAM0MNx9aPF TjSU9YMR8JXOx+8Wi6tDg6mIJNHDcwFxqEGUiIjqbP6lQq8CAAAoEYeanoZPomCy+uPh8hXO x8ehzjZFv5hUOb8eqm5E5lt7dLQBAABE7rbjo0CXe5msDrvF6PF6KneY56bBIbEBAGhNU3Pg MF89AAD90v08dwAAYEjIeAAA3PQ440MtwH3nAADoOdrxAAC4qVLG386lw6h6AAB67nHGr80+ fr/oqO+gWAAA4EXPjM5X1S1NeQAA2sG1cwAA4B4yHgAAN5HxAAC4iYwHAMBNz8yB00GxAADA i7gnDQAA/cK4egAAcA8ZDwCAm8h4AADcRMYDAOAmMh4AADeR8QAAuImMBwDATWQ8AABuIuMB AHATGQ8AgJvIeAAA3ETGAwDgJjIeAAA3kfEAALiJjAcAwE1kPAAAbiLjAQBwExkPAICbyHgA ANxExgMA4CYyHgAAN5HxAAC4qfWMT6JAVTWI2n4jAACcF6pWT9V2Mz6Jgt/lLzNbyTKIklbf CwAAt0WBfjyYmdmXnxrGD5dXM2uvNIHqrs31AwDgHtWH6Zxo8I/tFg/W02rGq2r2eGs2be+d AABwxcOMD1U/V0jV1s/H29FhpmHb7wUAgPMC1Y+HSs3mX1otx7zVtQMA4BlVPZiNqi3cbsav bZt11285MQ8AwAtCVREZH4N1bra+v3y75+MBAEBdFcbcVcIcOAAAuImMBwDATWQ8AABuIuMB AHATGQ8AgJvIeAAA3ETGAwDgJjIeAAA3kfEAALiJjAcAwE1kPAAAbiLjAQBwExkPAICbyHgA ANxExgMA4CYyHgAAN5HxAAC4iYwHAMBNZDwAAG4i4wEAcBMZDwCAm8h4AADcRMYDAOAmMh4A ADeR8QAAuImMBwDATWQ8AABuIuMBAHATGQ8AgJvIeAAA3ETGAwDgJjIeAAA3kfEAALiJjAcA wE1kPAAAbiLjAQBwExkPAICbWs/4KFBVDaKk7TcCAMAPcRhXWq7djE+iYPlpa2aflmNSHgCA VyWR6qzisr+0WpLRYmenxx9Grb4VAADOi4N/frXtz7Da0l2cj1fVjci4g3cCAMBl092iRou5 i4w3M7PDWCsedgAAgAa0m/GhKmfhAQB4i3bPx69tq6rp44PZ/YUBAECD1IheAAD6RLWZdGYO HAAA3ETGAwDgJjIeAAA3kfEAALiJjAcAwE1kPAAAbiLjAQBwExkPAICbyHgAANxExgMA4CYy HgAAN5HxAAC4iYwHAMBNZDwAAG4i4wEAcBMZDwCAm8h4AADcRMYDAOAmMh4AADeR8QAAuImM BwDATWQ8AABuIuMBAHATGQ8AgJvIeAAA3ETGAwDgJjIeAAA3kfEAALiJjAcAwE1kPAAAbiLj AQBwExkPAICbyHgAANxExgMA4CYyHgAAN5HxAAC4iYwHAMBNbWd8oictvxEAAM6rl6rtZnwU jLdmZnZYTcK41bcCAMBxdVNVzay90gSqu3T9SaR/frD1tL33AgDADarF6Vw3VX9po3AFRh9u n6MDHwCAQmlElrbDi1L1VrsZ/0kkERmJSPxj8vGPq9+22oXQtrKDLDSOTY37+IR0hk3dmbJN fT9VC9bT6g5LomD892+2W6jq1sylnno+651hU+M+PiGdYVN3pmxT103VdsfcjRa7lSxVdb51 KuABAOhe3VTloAwAADcxBw4AAG4i4wEAcBMZDwCAm8h4AADcRMYDAOAmMh4AADe9OeOj4Hj/ nN7fsab0Vj/Z873/E0QkHsr8wWHR9hzKpg6ygmrw7rI8UFbUODz/4l1lqyYeSDnlvEUvP77D 2dQiIpJEwyinSHDzRTGgTd3gd917Mz5Z7udmZmabWa83evmtfmKZp7/p+w13QlXV7+8uRRWx qn5czW+fH8imjvencq4m+34fjZQW9cdG7ORtpasgCmaHYdzZMtlMVsftuZnlfzGUTZ3S8d/v LkIlSRT8dvMdMpxN3eR33VszPvlH5p/Th5N3luOxv/eSburRr79tfq3V6cUAACAASURBVOS+ S+If88+iqhpEbypaVWszs927S1HF1MwWt3dbGMymnmb1cnn62PRVaVE3p3Zn8pZyVbbY2UhE Vcd//9bvI7+R7RZJFKjq4TJghrKpRSRUHch3SDz++eX2O2Qwm7rR77o399VPPo7TB5/eW47q Lm/1E//YpJlkf0nfe5AHbnCbOlRdHXreXDgqLOrazMx+732vpoiY2eG3v/v/qRgtdmY2vtmk g9jUSRTIdhifZ9VZWft3EJu64e86e6etZP1Xby7JA3ORtEvQtvPJ6lC4jMi8wxI9qefb+Ww7 P3VWFej/phaR8uL3y/2ibucD+kP6/qlIlW3Snm/qy9yYvLs4pQ6ri07hwm/rnm/qvNc/1W/+ xpc0O7fzntfPw2qSHo5cfSFu56fzJuXZ3yvDzfgBberBbOTyombP9/xvyT4Vh9VkKJ+Kq006 lE2dGUo5b79DhrKpm/2ue3NfvdlhrKqzjdn6vSW57/ZWP+k45OnaPn5XVdUfn3eL0XsL6aqB beo4lNyw2F53H98UNYmCKBERMTukT1q/Rydln4rf5a9efypuNungNvVwDW5TN/td1/e/trdC Ddf9Pi5xBpu6Q3Es016PXXMHm7ozXm9qMh4AADcxzx0AAG4i4wEAcBMZDwCAm8h4AADcRMYD AOAmMh4AADeR8cDrkuxGF8HlvDdxqKphftFQNap0T4zjOqPg4tYUVz/WFYehiCRRUHrf2yS6 KvB9p/Kct8DNO6ZboHSBWh7OKRT0fN4hoFtkPNCkvdy/11yyEak2ddXIzJqduS0OdbZ5sEzy z9+T1R/V17nYme0WFRZs4M+pctvvv1aTWd/vTAh0h4wHGhSLzCVt3aqqXmdqEv2eLiC5SWTT mTaT7DXH9u6Dhm+YLa3h1ctPbfQk+zGdqna2EZHNqZm+z7888+dy/yV3DBLn3uaq2Gl3Qlm/ ws0WOP05uTVGiYjEWiAt0vlXsUgcqojMVOM7f3sQjRZfZL+8v5MAf5DxQHPiHzL/LCLL/fHe RfPL3/+53KcLxKGm92E6rCZppo6X+9N9KGT8uLc83pxvsLHJeqfNzA4rkb2IxOH4dKunL+lv t3MRmWf3hkjfTeTiMGRz2Q8x2xz/kPTQJCu2mcl+eadXvGwLyHRtp5uDLf88ruBwLIkcjuXf iEios/SGHIfVZKbhdH28I9T0zt++W6TFp7seSJHxQGOi75vVH9M0YtKk/HwZcf+KTD6OReS/ fyUN+9FiNxXJv2T6eX6VuwXiH3JqUovIf8f2/kREZPQh/eHH5vgWJWcPJkVPJpfPJ9mL0yOD 3DpFRH6UZmnpFkib3H9+2OWfHt08EJGNyH45VtXxci/yb27d5X/7yX+vn/kHnEDGA41Z7tNz 7eem5I+SsP7wSWTzQ0QkDqPk4iXxj03Wn19q+lly98csPMH/eX56i+rN2vhPmX/J/TzKXpz2 /+fWKSLyuXToQekWWO5lvrX19Hy4U2YuIuebg+5y6378twNIkfFA87Zzmamq6lXE/zaR/c+D iEzXJrJJz1enXdaH1WR2OoFd4VbL0/n51HjxCPnp+nB8C/1+fObzPHc+vkD8YzO/zO3sD0n7 /8/FVpX59s7owrItsJrIZqaqupfjpiiztu1x0dyVCDPVuMLf/ivBD4gI950DOhWHOvv3olXa CVU9ND1Kv6eSSMd/d7+FgX4i44FOqXZV6S4ulZt4EntxqN8/Hnb04AMiQsYDAOAqzscDAOAm Mh4AADfRVw8AAAAAwJDQWw8AAAAAwJDQkgcAAAAAYEhoyQMAAAAAMCS05AEAAAAAGBJa8gAA AAAADAkteQAAAAAAhoSWPAAAAAAAQ0JLHgAAAACAIel/Sz4ONSeIkkfLhnFnZQMAAAAAoNBF Y/Z+W7auPrfkkyhQ1e8fD3b25ee4uLGeRIHqbPOGYgIAAAAAkBOHqjr7d3VqzR5Wshw3eN65 zy350WJnZrvFKPfc9I/VROTf/y56M+JQdfzzi9l23nERAQAAAAC4Mv44aXX9fW7J34pDHS/3 822udR+HqjPZmq2n7ywZAAAAAACp0eKv1UT2y/FxbP14uReZbxtrtg6kJZ8OtD+OtD/98UkU HJ9qYHOo6svrAAAAAAA4qF6DMYkCHS8/bS3vsPp31tj4+r635I9N+N/lL7seaZ/88/decp0c erxOfjNrfDYBAAAAAAD6Qs3s3WUoE4elU9jNt4Xn4eNQZ5uS3z2g2udNAQAAAAB4m9oNxiQK xsv91ZPPNVYLy0PzNUVLHgAAAABQqG8Nxr6PrgcAAAAAAHm05AEAAAAAGBJa8gAAAAAADAkt eQAAAAAAhoSWPAAAAAAAQ0JLHgAAAACAIaElDwAAAADAkNCSBwAAAABgSGjJAwAAAAAwJLTk AQAAAAAYElryAAAAAAAMCS15AAAAAACGhJY8AAAAAABDQkseAAAAAIAhoSUPAAAAAMCQ0JIH AAAAAGBIaMkDAAAAADAktOQBAAAAABgSWvIAAAAAAAwJLXkAAAAAAIaEljwAAAAAAENCSx4A AAAAgCGhJQ8AAAAAwJDQkgcAAAAAYEhoyQMAAAAAMCS05AEAAAAAGBJa8gAAAAAADAkteQAA AAAAhoSWPAAAAAAAQ0JLHgAAAACAIaElDwAAAADAkNCSBwAAAABgSGjJAwAAAAAwJLTkAQAA AAAYElryAAAAAAAMCS15AAAAAACGhJY8AAAAAABD0v+WfBxqThAld5cM4w6LBgAAAADAtctm 7IVm2qx9bsknUaCq3z8e7OzLz/Ht354uqLPNmwoKAAAAAMDJdG3XDquJiMy362kTb9Dnlvxo sTOz3WKUe276x2oi8u9/pzPzcaga/PPrzsy283cUEgAAAACAO5Io0PHy09asmXa8yC/NrKYj caizjcy3lrXup2uztxYJAAAAAIAycaizzWR1sIuT1C/q8zn5nOP4+XSkfVO9GAAAAAAAtCgO ZxuZb3dNNuOl/y35YxP+d/nLbkbaAwAAAADQW8d2fPNno/vcko9D1fFyLyKyX45bmO4PAAAA AICWxD82IvPPLYwqV+M6cxERUWVTAAAAAGiIVl6SVsgQ9K3B2Odz8gAAAAAA4BoteQAAAAAA hoSWPAAAAAA0qvrQeuApw7qfPAAAAAC8Gw11vBsteQAAAADee7FxfjsVGq19tInR9QAAAABc pHX+3WEV/lUt0beX/ypAhLvQZfp2UwEAAAAA15o60d35gb/qRRve7GvXJcBr+tZg7Fdp3qhv OwYAAADwwmAb5xVdteHzaM8PSN8ajP0qzRv1bccAAAAAw9PsxeEDPzy/04bPoz0/CH1rMDLj HQAAAAAR6WSSth41heqp2CwHukFL/v/bu3skNZJFDaBZN+5SYAyFVgArADmy5I4HJjjyFDHv RsiTAyZ448qSI1hBswKFDMFe6hnQNP8NdAKZcE60MaqGquzMmm6+yj8AALgL11ksPdsovnSJ TH6gX93oei4hrRECN5TaYAkAAB7X5TJ5hh94r9wZfqF0bcW73KUWGNMqzQ2l1jAAANyDS2Ty lD60JjjmPOWQXBT/S7l4HJBaYEyrNDeUWsMAAJCoiOE8xsfPBLP0MQRa8pJaYDRPHgCAhxcl nB/8kL87b19nZvt+4jRkSpIHAOAeRQrnJ/R4R43lMjZwgCQPAECGjovNRXjbyPPjriJ1A1cm yQMAkLBi9T8vMiFcDgeyI8kDAHAzUVZrE8WBRyPJAwAQmXwOcFGSPAAApzk7qJfhn9V/AHAe SR4AgB1OiutrEX3rewDEJckDADyu4+P6oawexHWAq5LkAQDuXLS4HiR2gCRI8gAA9+CEuF7+ c9Q26UI7QKokeQCAnJyW2Bfv2TjFxuveWiQArkySBwBI1DGhfcdWbcXWf6y94U1FAiAFkjwA wO2dGdrDnrj+8p4zywNAyiR5AIBrO5zbdyf2xTsPnlduB3gMkjwAwJmWgfxQ9n5Lbg8Ho7vc DvCoirL0RyCEEIpCVQAAx9oZzpeZ/EB0l9sBcpRaYEyrNDeUWsMAAGk6fun4OdEd4A6kFhiN rgcAOMpJGX5vgN8X3RP6fAhA6iR5AIBXnJbhwz+bsVx6ByAqSR4AYId96b0M/4QQirBrnnxY 6Ye3lzsAF5PWWP8bSm3aAwBwZXuj+3Kc/FY4X+b5tQy/+f43lwyAW0stMKZVmhtKrWEAgEt7 PbpvvuHoU/tMAXBfUguM/7l1AY40bhdFURTt8frhWb9ebNl8EQBACCEUxf9Wv5bHy/Kf1a8b lhCAe7ErrNb7s0hnTzzJLwJ8UXx912vt+Pa37iS0RuWLaa8Whl+jVQ8AkLmd0T2sp/cjznJK hzwAj27Wr1e7k7WsWpaj1qRbjdTxnPiKd41BWQ7m/zlud3d9e/quXi1W/7S2RuWgcZ3SAQBJ 2jls/uTOdtEdgPMs+pwHjXminx+s9abLePtmiSf5wxa1UutNnzqVEEII43bRbBa/Xg7sURQ7 /jjvPAgA5OD/Xj1eFPte86LcNcG9OCPT+0wBcHc2AuOr0+aH82hadhb/HreLoojV9Zxzkp/9 /L4W40MIjUE5CkWz+23cOVg725We2gIGAMBhx3W8HzdyfseJVv/TJwSAR3daYKy+q4XwfiOz Nwaj1rA5/DEeNN4e5XNO8pUPn2rdbrdaD2t98sMQWh+NrweAOxRn2Hyw2TsAl1TpfGl1N4aL z/r1iGE15yQfKp2nshPG7aJaPM+hr/Wm5eGB9QBAVqKl97ArwEvvAFzAfMm3+YD6hdaoLKN1 ORtSvmB0PQCkI2Z6DwI8AG+VWmDMuk8eALgf0jsAHEmSBwBuJnJ6DwI8AA9BkgcArip+eg8C PACPRZIHAK5hO8BL7wBwHkkeALiU+Ok9CPAAIMkDAFFdZPB8EOAB4IUkDwBEcJHu97AV4KV3 AJDkAYCzXSq9BwEeAA6R5AGA01yp+z0I8ACwmyQPALzuet3vQYAHgFdI8gDAXgI8ACRIkgcA NgnwAJAySR4AWNgI8NHSexDgASAmSR4AHtoFu9+DAA8AFyHJA8AjumyAD7aRA4ALkuQB4IEI 8ABwByR5ALh/AjwA3BNJHgDu1gVXsFtcYP2fAjwAXIUkDwD3RoAHgPsmyQPAPbj4+PkgwANA KiR5AMjYNQJ8kOEBIC2SPADkR4AHgEd2iSQ/69er3cnm0Vpv+tSpXOByAPAorhTgw3qGF+AB IDFFWcb4+zxuF83hKW9ILtcXRaSqAIDYbhPggwwPAAupBcYopRm3i2YYlYPG0e+Y9evV319O ecelpdYwACDAA0AiUguMFyjNof751kl5/5pSaxgAHtb1AnyQ4QHgKKkFxrjz5HfPkAcAXiXA AwBHipvkp78nIeWOdwBIjQAPAJwqbpJvDMpRKJrN+rvE1rMDgLRcNcAHGR4A7kq0Fe+OW7k+ 3e761KY9AHCvNjK8AA8A6UstMKZVmhtKrWEAuDNXDfBBhgeAmFILjP+JerZxuyiKoj3e/s6s X9/3LQC4X0Xxv/nX/J9l+c/862LXe/5aXO/5CwC4I3Hmya8Prx82iz1j7WvvqlGuBwBpu3YP fFjvhBfdAeCuxR0hME/06U6GPyC1wRIA5OjGAT7I8ABwEakFxrhr18/t75Ofq/WsbA/APRHg AYBrukSSf82kWy26efbcA8CLGwT4IMMDAJFXvGt8bIUQar1puWnaq4UQWqOyLMty1AohDH9Y /Q6AHF17EbuXC1vKDgAIIfra9T+GIYRJt7qxRv24Xe1OwnN6n/35dfqZ28Xute8X31hniXwA ortxgN/I8ABA2i6aVeOOrm8Myum7erU72TlVvjUqB41Zv17tTkJojY4ZW79cFL/W67VCd/uc 4x/DYKA+AJdzmyH0i2uvXvh6lwUA3uyyWTVun3wIodJ52hpavzBorHz/uB+nMVi896nz167v zyvnY3h52FHvz6L+PAA8po0e+PDcCX+Va+uEB4DMXTqr7ovdZ5vPiN9jMVH+HKPW9vtHra2T rk3I3ytiBQJwX/5v6+t6ylCufl3z0gDASY7Ir+dk1SPF3RPveej8Xm8YWzBuF83hMe8/+oVr UtseEIAru+Uo+mAgPQAkLUpgPC+r7hR9dH04+JAh8hSB+RICa2sGjNvNYaj1Pps3D8AxbraO 3eLyBtIDwB26dFaNu+JdpfM0+l00m0W4zhp0jUFZDmb9elE0nw+1RmU5uPyVAcjbjXvgg054 ALhnl86qcYeUL5ea3yfdVeaNrgd4BLcP8EGGB4D8pBYY0yrNDaXWMABElFyADzI8AOQktcB4 iXnyIcz69bWN78ft9QkCAHAFN54D/1KOrZnwCX0SAADyE3ee/J7F68c/hmE4LIYJD64H4H5s 9MAHnfAAwH2J2yc//tadvKxdP99BL8wn+49aIYThDz3zAFzIRg98SKQTPuiEBwAiizzW//CG 8rXe9KlTiXi5iFKb9gDA8ZKYBj9nNTuAEEIIRVG8/iJuR/Y5VWqB8TKl2VrDPv1h9ak1DACv SjTABxkewKfrpGmdM6RWaWmV5oZSaxgA9kkowAed8AC7+XSdMq1zhtQqLcqKd69uI7+Uft88 AIlKN8AHGR4AuKooK941BuWRxHgATpPKTnIvBbKaHcCFFUd8vcW4/bxb9muvao8XO2zX+7O3 XXP94nN7T/p86bDz6ivf3TLfDnz53Vm/HrHopCTyLnQAEEUqO8mtMpAe4HHM+l+Htd60EULc HDz78+uVlcDH7aIZ9g9lfinYESqdp9HvoloP6a48zpni7kIHAG+Vyk5yLwVa7//RCQ/wAMbf upPWl9fS70r/+qZdnebjdlFUu5MQJt3qnpfM+vXmsNb7vDeorxVs3gO/6u/vm29oDEatSbf6 6hAEMiPJA5CE5EbRBwPpAeI5ZsD8SSPnTzrhqaPx5/3e++P0swOzjHd1qTcGZTnt1UKo9aa7 XzL7+X0Sap8+7HuCsFqw+QbgrdHaZb+8394SvPGxFcLwhyh/X6Ik+QPPoo54NAXAA0sxwIdd nfAyPMBblKd8RT/hab/DZ/2/u6H37xHD0U/sk3+rHQWrvauuvaTxsRX/uqQoyjz5xqAsBzFO BMCDSGsh+iUr0gMw/tadtEZPx0wrj56DKn+9D2H4exrCjstvFKzS+dLqNrsrk+DnvfRb75tP zd+I/OQuZp98vd9/rXNenzzAQ0u0Bz4YSA+Qksh97LsNmzvjyrED6y+k8blXC8OvO5ab31Gw xqAsy+mn79VF6b/99TTt1TbfOP7WndSOGmJATqLsbr/YT77W673vdg9uLJ/ufvJFEaUqANgh xYXol6xID3ABPl2fb9wumr8OrW5/6sm2VsLXOmdIrdLSKs0NpdYwAHcgmwAfZHiAyHy6fptx u/j67s1hft9ZtM4ZUqu0+KXZMzvj8KaJt5dawwBkLdFp8HMyPMDl+XSdMq1zhtQqLW5plil+ PbbvOZyU1BoGIEdJB/hgID3A9fh0nTKtc4bUKi3K2vVL098783ql8zQN9Wp3MtmzDCMAOUs9 wAcZHgC4K7GfKywWv9st3fXu0nvEApC+zAJ8kOEBrsen65RpnTOkVmkXKs1GoE94VP2z1BoG IFlJr2O3pBMe4KZ8uk6Z1jlDapUWZT/5bY1BuSr1GA/Aqza2gg9J7Qa/anVneNvCA5CKcftl 1/oDr6n3ZyGEWb9eLP5z7QR73jrr11fOuzwLdyx2kp/fQ2t33fKW3X/HApCwnAK8DA9wd7Yf JWdo1q83h6E1Ksuy3DPjeNwuDu08N+t/HdZ6n4+ZrNwYlF9+V8Wv+xY3yY/b1e4ktEZrvfCN QVmW014tDJvuJoB8bHxySjTAh10BXoYHuAsbAT5Wnt/R3712aNavF0V7vKOPcuGld33Lrrwz bhfFfCuvYXNf/+asX28OW6O9Y5ln/b+7offvy7dXyrDrhI3BqCV+3bW4a9dX39VCmAybRVhf 226e8EOovatGvR4A0WWwjt2SyfAA+YjVqX7Gec75WzZs/t2bluXOYN0YlOXg+FM1BmX5uV+v dsPe1cPG37qT0Pqyt8N9/K07aY2eKiEst/iu9aZlZ/XA5lU/92rD7tf+54aZzncpbpJfbjc3 bBZbK9hnsOwdwOPKNcAHGR6AC6itdoBvOLBf13m7dc3+/DrU6zkfWD+dn3f28/tkPVpVOk/l X9tFqvz1PoShbcDvVdwkH+b3USf2SQG4kJwCfNAJD5CxM/7E7Ox+j/SnarIacWc/v09CqB37 3hP75N9qtUN+YbIR0Mc/9u4Ezp260Nr1ACRt30L0NyzSK6xmB/B4Nv42xf1TNWy+zG6vfj8+ xl9C5cOnWph8/7lrvfnNle4qnadpr7Za+qKo/9hR/vGPYThyiTwylNaeeDeU2vaAAJeQx1bw qwykB8hTyp+uZ4fnrN/IuF00f8Ur1MHTpdw6yUqt0qKMrl9MFDlvUggAl5ZfgA8G0gPwWBqD ctQuqu2/ImSqWb8e86kAKYr4XGH3mokLyaf81B6xAESR2TT4ORkeIH8+XadM65whtUq7Umme U366gT61hgF4i+wDfJDhAfLm03XKtM4ZUqu0tEpzQ6k1DMAZsgzwQYYHuEM+XadM65whtUqL vgsdANeWa4APBtID3K2kMg8btM4dkOQBcnUnAT7I8AAAp4m+n/ysX1/d2rBoj5fH6v1dGyQe bdyen23X8ZW9FN92EYDk5bcV/Kpiqx9ejAcA7t64XezOs2eKm+RXFrYry3LUWhyudJ5GrRAm 3epZJV88CGgOd3/j67tp+eLL72rcGgJIw74An2WGL2V4AOBBzPr1XXH2baL3ye82/jEMIYTa u+qJ72sXRf3nh6fV5wIvKp2nsizXt0lsfO7VQvj1R888cB/uJMBvZHgAgEcwbhdF9feXnXn2 TeLOk690nqahXu0Om8XzE4eX/6z1puuh+wiNwWmLMYzbRXMYWqPy1AsBpGVjDnzIaxr8nMnw AMADG7eL5rA1KstGCCH2qPHoK95VOk9lJ/ZJX7cY11/rTctSiAeydQ8BPliRHgB4bLN+vdoN l0ynlxhdv7E03axfv+BCdItJ9H+Hf8utkfYAmdgYQr8cP59fjDeQHgB4eLOf3ychTLrVl6XZ m8MQwrAZbZH2yEl+3C6KovmrNx00lscqnady9L57gYXoxu2iqHYnIWxUkiXvgDzsC/C3LdU5 TIYHAHg2X9FtzagVFkvDx+l+LsrTJqIfNp+mvmtC/GL0e2tUrmT8lBRF3KoA2CvjfeC3GUgP ADyA1AJj5NI8b0O32zlr3l1Lag0D3J+7CvBBhgcAHkhqgfEypZn3za9Ity/+WWoNA9yNew7w QYYHAB5CaoExrdLcUGoNA+Tu3gJ80AkPADyu1AJj5F3oDo+uz6FvHuB1RfG/ncn8TvaQ2ybD AwCk5BIr3iU9H36f1B6xAGna2dP+EAE+yPAAwONKLTBGLs24XTSHOQb55BoGSM12XN92JwE+ 6IQHAFiTWmC8SJ/8fumOrk+tYYB0HJPhw93EeBkeAGBLaoEx8jx5ALJkID0AQD6u+Vxh1q9/ ++tJnzyQpQM983n3xuuEBwB4TWqB8T9xTzfr14u9Dq5qD5C2svxnO7HvPJiNYiXGl2I8AEA2 4ib58bfuJITQGpVlOWo9/1f5/K/Q+phmhzzAkZbRPeMMX8jwAAB5i9wnH0J4zuuNz71aGDbr /VkIITQ+tkIIwx/jC1wP4MryzvBzpQwPAJCr2GP913aUn/XrayPqU96eLrVpDwAxmQwPAPAG qQXGtEpzQ6k1DEAEVqQHAIghtcAYeZ58uyiKor1jCP1iKbxd3wIgumKrHz6hPz0AALxJnP3k F2PqF4bNYrj7dbV31SjXA2AfA+kBAO5d3BEC80TfGpWJbhp/QGqDJQBOYyA9AMDFpBYY446u bwzKsiw//lgbRj/r14tisYQ9ALEZSA8A8GAi70I3bhdF0fzVm650ylc6T+XofbdqmjxAXHaV AwB4SJFXvPsxDCHUPn3Y3Gqu8blXC/aTB4ih2JXhAQB4GJHH+m/uIL/OfvIAb2IyPADALaQW GC9TmvW17EPIYBG81BoGYI0V6QEAbie1wJhWaW4otYYBCEEnPABAElILjJHnybeLwyx5B3Ac K9IDALDHJXah2zbt1UIOQ+wBEmBFegAADrraCIH51Pl0w3xqgyWAh2MgPQBAqlILjP+Nerat le421N5Vo14P4B7I8AAAnCJukj8k5S3oAG7DivQAAJwurRECN5TaYAngnumEBwDISmqBMcqK d68uWW/teoAQghXpAQCIIEqSX1myfr5KfWiN1tauH7VCCKHWmya63B3AZRVWpAcAIJq4IwT2 L1A/69er3Ym164FHYyY8AED+UguMkUvzyuL16Qb55BoGyJuZ8AAAdyS1wBhldP2L+Tj7xRD7 FYvR9qnGeIA4jKIHAODy0nqucEOpPWIBUlG8/pId/DoBALgjqQXGyH3ys37d2vXA49IJDwDA 5cVN8uNv3UkIodablrsZXg/cLwEeAICriJvkGx9bIYTapw+VqKc9bG0cQL0/u+KlAQAAYKcL ZtXIffI/hiGESbd6ndH183qpdsNyDMD00/eqPA8AAMANzfr1oqh234+ex6eP3nerEaNq5Hny VzX7+X0SQmtUPnWexwBUOk/lqBUm3W8m5AMAAHATlc7Trvnl7/+KNH498uj6wZ758ReZJ1/5 8KkWwrC52tP/vKH9rz965QEAALipcXs+Pr05DCHU3lUjnTZKkl+Urd7vtw+uXB97dP38Mceo NWwuZx5UB+WoFSI+6gAeXXn0FwAArFvp7p72QrcaKRRHSfKLsj11Olftk59PPaj/+bw8/VOn Mm43hyG0PlokHwAAgFsYty+8flvMPvlXV+Rb323+7Y8iKp2nUWtjfb3msNab2u0OAACAG2kM yq2sulisPU5YLcoy2pDQWb9e7U5efVlrlGLQLoqYVQEAAMDdGJfYhAAADJJJREFUSC0wplWa G0qtYQAAAEhEaoEx513oAAAA4PFI8gAAAJATSR4AAAByEn/t+ivuJw8AAAAPJ61Z+zeU2gIG AAAAJCK1wHi5Pnnd7wAAABBflCTfGJRbpu++ivcAAAAQW1ojBG4otcESAAAAJCK1wHittesX A/D1yQMAAMCb2IUOAAAAciLJAwAAQE7+G+Mk43bRHMY4EQAAAHCYPnkAAADISVrr791QaksR AgAAkIjUAqM+eQAAAMiJJA8AAAA5keQBAAAgJ5I8AAAA5ESSBwAAgJxI8gAAAJATSR4AAABy IskDAABATiR5AAAAyIkkDwAAADmR5AEAACAnkjwAAADkRJIHAACAnEjyAAAAkBNJHgAAAHIi yQMAAEBOJHkAAADIiSQPAAAAOZHkAQAAICeSPAAAAOREkgcAAICcSPIAAACQk9yT/KxfLzbV +7NbFwsAAIDHtSuqRgyrWSf5Wb9e7U5ao3LVqDXpVtvjW5cNAACAxzRub0fVctqrRQurRVmW Mc5zC+N20Ry2RuWg2q9Xu5P5wVpv+tSpnH6yosi5KgAAALiYCIFx3C6aw9AalYNGhAKV+Rq1 5j9CrTfdPLj58GNThIoDAADgUZ2eXdeS6xvl3BE969er3fdbTzSWXfUnPejQJw8AAMBO5wXG 2WL4eKyO+Bc5z5OvdL60wrC5tmjArF9vDkNofYxbTQAAAHCk+YJ31d9fyrIsY8f4kPc8+Wfz 6QYL5z7s0CcPAADATqcFxrWMuiFO/7z4uiDJAwAAsFNqgTHn0fUAAADweCR5AAAAyIkkDwAA ADmR5AEAACAnkjwAAADkRJIHAACAnEjyAAAAkBNJHgAAAHIiyQMAAEBOJHkAAADIiSQPAAAA OZHkAQAAICeSPAAAAOREkgcAAICcSPIAAACQE0keAAAAciLJAwAAQE4keQAAAMiJJA8AAAA5 keQBAAAgJ5I8AAAA5ESSBwAAgJxI8gAAAJATSR4AAAByIskDAABATiR5AAAAyIkkDwAAADmR 5AEAACAnkjwAAADkRJIHAACAnEjyAAAAkBNJHgAAAHIiyQMAAEBOJHkAAADIiSQPAAAAOZHk AQAAICeSPAAAAOQk9yQ/bhdb2uNblwoAAADCMrTGzalZJ/lZv94c1nrT8sW0VwvDpiwPAADA 7Sx7nb++67Winz3rJF/pPJXlU6cSwqxfn1dS9funaVkOGrcuGgAAAI+rMVh0Nz91/op/9v/G P+UtVDpPZSeEEGb9erXohtbocJoviuLIgwAAALARGMuyvFVJwt0k+aVK52n0u2gOf4wHjQNR frvSi6K4bUsAAACQptQCY9aj6xczD1Znxc/69eYw1Hqfja8HAADgLuWd5BuDsiyn776+rFv/ d/i3XMydBwAAgDuU1giBG0ptsAQAAACJSC0w5t0nDwAAAI9GkgcAAICcSPIAAACQE0keAAAA ciLJAwAAQE4keQAAAMiJJA8AAAA5keQBAAAgJ5I8AAAA5ESSBwAAgJxI8gAAAJATSR4AAABy IskDAABATiR5AAAAyIkkDwAAADmR5AEAACAnkjwAAADkRJIHAACAnEjyAAAAkBNJHgAAAHIi yQMAAEBOJHkAAADIiSQPAAAAOZHkAQAAICeSPAAAAOREkgcAAICcSPIAAACQE0keAAAAciLJ AwAAQE4keQAAAMiJJA8AAAA5keQBAAAgJ5I8AAAA5ESSBwAAgJxI8gAAAJATSR4AAABycgdJ ftavF0vt8a2LAwAAAJfMqnkn+Vm/XhTVbuhNy7Isy3LUGjbFeQAAAG7p0lk16yQ//tadhFpv +tSpzA80BuWoFcLwa39225IBAADwqC6eVXNO8rM/v0KoffpQWT3Y+NgKYfJ7eqtCAQAA8NAu n1VzTvIhhO2KmP35daOScKSiKG5dhEehqq9GVV+Nqr4mtX01qvpqVPXVqOqrUdUpu2hWzTnJ Vz58qoUw/LE602D28/skhNbHxs1KBQAAwCO7fFYtyrKMcqIbmfXr1e5k7VBrVA5Or5yiyL0q sqGqr0ZVX42qvhpVfU1q+2pU9dWo6qtR1Vejqq/m9KqOllV3l0fDAwAAQEZyHl0PAAAAj0eS BwAAgJxI8gAAAJATSR4AAAByIskDAABATiR5AAAAyIkkP+vXi6X2+NbFuQenVenaqzVEZOO2 yozsqCp1V1/AuL1am/X+7NYFugun1aob+wLWKtV9HcNpVequvqxxW31GdkSVuqujS7ZKHzrJ z/r1oqh2Q29almVZlqPWsJlIu+Tq9Cqd/fw+CbXn1z8bNK5Y6Lu0+JXTHN66IPfjhCp1V8c1 r/qv71Yr9Mvvqt/Wb3JGrbqxI1v8xXw/eq7L0ftuVZx/i9Or1F19ObN+3ceQuI6sUnd1dOlW 6SMn+fG37iTUetOnTmV+oDEoR60Qhl/9FT3T6VU6/1/j04fK9Qp598btoqj//PBUluWodevC 3IcTq9RdHVml81SW5fLXSgghhMbnXi2EX3/8sj7X6bXqxo5t3gZbHwbf/6WKz3VylbqrL2Tc Lorq7y8+h8RzfJW6q6NLuEofOMnP/vwKW63S+NgKYfJ7eqtC5e30Kp39/D4JYdKtrg9X0SPx Fo3B5sdz3ui0KnVXX964XVS7k9bIjR7TK7Xqxr6c50kOzWEIofaueuvy3IEjq9RdfQnjdlE0 wyiNHsv7cFKVuqujS7lKHzjJhxC2E+bsz68bleRunFSli8fn60atSbdq1Cy5cldf0GKOw3xM uE+JkRxXq27sy2kMljU67YVu1byRNzuySt3Vkc369cWvEr+fIzm9St3V0aVcpQ+c5CsfPtVC GP5YbYP5Q5fWR79/znJylY7bOx5pzXv2dUqQKXf1RSzC5t/h33JrTDjnOqVW3djR7axS3uLU KnVXR7aj67I5DCEMm+71M51epe7q6NKu0u1nDI9k2qttVkhr9Prb2O+VKp32amFtyYhd0322 lpTgTKOWWzqyXVXqrr6wA5MC3d1ne71W3diXp0qje6VK3dXX5nNIdFtV6q6+vHSrtCjLcu9f c7iAcbv+57MuNe6Ku5q75Mbm/riruT/u6of131sXgAczbn999++T3zXcE3c1d8mNzf1xV3N/ 3NUPTJ88AAAA5OSBV7wDAACADEnyAAAAkBNJHgAAAHIiyQMAAEBOJHkAAADIiSQPAAAAOZHk AUjBrF8viqIo6v3Z8ti4XRRF0R7ve8/8+wdesTjp6jkjl3NXsfe++Jo26+7MorzWBG9zUmUe KuBzEW9Y4duFenutXeD+BeBeSPIApGnW/zoMIbQ+NpaHnmPbcelm3K52JyHUev92KuvHixU7 8tZzHjz6SqdZu/765VeT6OEfduO7q4F23C6KojkMIYRhc9ePeHQ17miCgz/MNSrztHtgqwC7 nhUVRXu8et71pwKv1v/aj32g8o9q9/HyqvX+rNL5t1cLYdKtXupZCgD5KgHg9qa9WgghhFpv unpg+c9Ra/F3qzXaOPByaOcJV7/5/J7ns26d9PlNy1fsPbD491axD/5Qz9dblmlxYOOHXn3N VgGOqoqtC62cee+Ptqf4+7597co85gffc8JlNexrkOWRvWfcvhP3NuJ25Z/Q7ls/++ZLAaAs y7KU5AFIwe6MtRkK1zP7dmTaf77dh159z9bRNyT5lZi+5cDpNn7K3VfceNH+JH/gzJvWm+Co urpGZR66B7bPsKfS99bT1pE9ZTzQiJunOLPdj61oAB6T0fUAJGj8Y+ew7l9/7mDG8K5s/LQ+ ASAFe5rg5o6/B2b9elHtTlZD8Eqf+9uc0YiZtDsAeZDkAUjOfH52rff5OUVWOl9aIazNGB63 F9ORd6v89T6EEMLk93R5aOskL1Oh2+MQwmJacph0q88zo2f9erU7CTtm25/u+frDZrHyQ5w6 ffyoqqi+m3fknv/kY6sJXi3GpSvz9Hvg2eT7z+cV9Y55+VGlONCIm5X/tnaf/p6EEEJ4/5fM D8AKSR6A1Iy/dSchtL6spr3GYNGjOl9HrCh+fDzcwdr4PB+WvBpmG4NFv+ziJC8dtoN5YK10 nsqynPZqk271+RXzrtQonaeNwfzsyx+iOZxf/qSzb1ZFOww2q6LSeRq1QgjzH+OMZeZ2NcGu Yly1Mk+9Byqdp/ng9EUB/g7/Pg9WH/44ewm5Vxtxu/Lf0O6zP79COPRIBYAHVZRleesyAMAl LPqAW6PnbHkXlh3Rtd50kQSXnd139qMyb+yXlgaABUkegDs2T0L3F3C3xpULe/fnPp9EARCH JA8AAAA5MU8eAAAAciLJAwAAQE7+HyFcRiarOI+zAAAAAElFTkSuQmCC --------------030207090804020909030402--