Return-Path: Received: (qmail 12751 invoked from network); 18 Jan 2003 12:44:20 -0000 Received: from marstons.services.quay.plus.net (212.159.14.223) by mailstore with SMTP; 18 Jan 2003 12:44:20 -0000 Received: (qmail 7293 invoked by uid 10001); 18 Jan 2003 12:44:09 -0000 Received: from post.thorcom.com (193.82.116.70) by marstons.services.quay.plus.net with SMTP; 18 Jan 2003 12:44:08 -0000 X-Priority: 3 X-MSMail-Priority: Normal X-SQ: A Received: from majordom by post.thorcom.com with local (Exim 4.12) id 18ZsJs-0004kx-00 for rsgb_lf_group-outgoing@blacksheep.org; Sat, 18 Jan 2003 12:43:28 +0000 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1106 Received: from [147.197.200.9] (helo=hestia.herts.ac.uk) by post.thorcom.com with esmtp (Exim 4.12) id 18ZsJr-0004ko-00 for rsgb_lf_group@blacksheep.org; Sat, 18 Jan 2003 12:43:27 +0000 Received: from gemini ([147.197.200.44] helo=gemini.herts.ac.uk) by hestia.herts.ac.uk with esmtp (Exim 3.22 #1) id 18ZsJh-0001eQ-00 for rsgb_lf_group@blacksheep.org; Sat, 18 Jan 2003 12:43:17 +0000 Received: from [147.197.232.252] (helo=rsch-15.herts.ac.uk) by gemini.herts.ac.uk with esmtp (Exim 3.33 #1) id 18ZsJW-0000pg-00 for rsgb_lf_group@blacksheep.org; Sat, 18 Jan 2003 12:43:06 +0000 Message-ID: <5.1.0.14.0.20030117183432.00af50f0@gemini.herts.ac.uk> X-Sender: mj9ar@gemini.herts.ac.uk X-Mailer: QUALCOMM Windows Eudora Version 5.1 Date: Sat, 18 Jan 2003 12:42:22 +0000 To: rsgb_lf_group@blacksheep.org From: "James Moritz" In-reply-to: <72.28eb294e.2b5992b4@aol.com> MIME-Version: 1.0 X-MailScanner: No Virus detected Subject: LF: Re: Notch for DCF39/Spectrograms/Luxembourg effect Content-Type: multipart/mixed; boundary="------------080400010108040300010502" X-Spam-Status: No, hits=-1.6 required=6.0tests=EMAIL_ATTRIBUTION,IN_REP_TO,SPAM_PHRASE_00_01version=2.43 X-SA-Exim-Scanned: Yes Sender: Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rsgb_lf_group-outgoing@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false This is a multi-part message in MIME format. --------------080400010108040300010502 Content-Type: text/plain; charset=windows-1252; format=flowed Content-Transfer-Encoding: 8bit At 12:09 17/01/2003 -0500, you wrote: ><< This is the wrong way to achieve high impedance (and good IMD), > it is no need to keep the "source current low" {etc} >> > >I do not see anything in the Web page that suggests keeping the source >current low. It only says "reasonable amount," which I took to mean "be sure >to use enough" to keep IMD low. Dear LF Group, The output impedance of a follower is roughly the inverse of it's transconductance, ie. 1/gm. A J310 JFET has a gm of about 10 - 20 mS, so the output impedance is roughly 50 - 100 ohms. To get low distortion, and gain close to unity with such a follower requires that the load it is driving should be much greater than the output impedance of the follower. So a J310 source follower would be fine if driving several hundred ohms or greater, but not for a 50 or 75 ohms system. To get around this, one could use a special FET like the CP640 device used in the AMRAD active antenna circuit, with much higher gm. A small power MOSFET would give a low output impedance, but rather high input capacitance. Bipolar transistors have much higher gm (roughly Ic/25mV), but would have relatively low input impedance, in the kilohm range, and be relatively noisy with a high source impedance. Various high speed op-amps and IC buffers can be used, but they tend to be quite noisy. A cheap and easy alternative is to use a compound follower, with JFET and bipolar followers cascaded. I tried the one shown in the attachment - Zin is basically 500k in parallel with the FET capacitance, the gain with 50ohm load is about 0.95. The noise at 136kHz with the input shorted was about 0.05uV in 400Hz BW. About 1V RMS can be applied to the input before there is much distortion whilst driving 50ohms, so it ought to be OK with most antennas, and is probably better than most receivers. The FET was a J310, but other devices with Idss > about 8mA should be OK. A lower gm device with lower Idss could be used if the 100R resistor were increased in value, but would be noisier. The output BJT used was a 2N3053, but can be a wide range of small power transistors with Hfe > 50 when biased to 30mA or so and fT in the 10s of MHz - eg. BD131, BFY50, ZTX650 etc. Zout is a few ohms - If driving a capacitive load, a resistor in series with the output of 10 - 20 ohms will prevent oscillation. Extra decoupling will be required if the 12V supply is noisy. Using spectrogram software to monitor the band for signals works very well - it allows you to see CW signals that are inaudible, which you can then try to "zoom in" using a narrow filter. Although you can't copy the morse from the screen display, you can detect the presence of signals that are too weak to hear even in the narrowest filter, whilst monitoring the whole band segment at once. Some of the spectrogram programs have DSP audio filters built in, too. The broadcast station noises M0WYE is hearing may well be "Luxembourg effect", where cross-modulation of the DCF39 carrier by the BC signals occurs in the ionosphere, and is often quite strong at my QTH. Usually I can here the audio of at least two stations at once. Hope this is helpful, Cheers, Jim Moritz 73 de M0BMU --------------080400010108040300010502 Content-Type: image/jpeg; name="buffer.jpg" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="buffer.jpg" /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRof Hh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwh MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAAR CAGIAdMDASIAAhEBAxEB/8QAGwABAQEBAQEBAQAAAAAAAAAAAAcGBQQDCAL/xABOEAABAwMC AwQFCQMKAwYHAAABAAIDBAURBhIHEyEUFiIxFUFGdsInMlFWYWaVpNIjQrMXJTM0N3GBhZGx NTZSJEd1g4bECCZFYmNyof/EABQBAQAAAAAAAAAAAAAAAAAAAAD/xAAUEQEAAAAAAAAAAAAA AAAAAAAA/9oADAMBAAIRAxEAPwC/oiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC IiAiIgIiICIiAiLlV+oKS3X+0WaaOZ1TdedyHMaCxvKaHO3EnI6HpgH/AAQdVF8K2sgt1BUV 1VJy6amidNK/BO1jQSTgdT0B8lg9M62uOpeIQgFLU0NklsvbKWCqYwSSnmhomOMloOXADJBA Dv3ggoaLHXZ+q73qSstdmrfQdvoYonOr5aDnOqZXbiWx7jscwDGT84OGPIrmtuWq6esvOkp7 mysvLLV6Qtlwp6aOJ0h3uaWStflgO/a0YGNuSSD5BQ0XG0nfG6k0pbLuHML6mBrpeW0ta2Qd HtAPXAeHD1+XmfNc7T14r75q7UbhPmy26VlBTMYxoD52jMxdkb9zSQ0YIaQegJ6oNUiL5zzx U0Ek88rIoYml8kkjg1rGgZJJPQAD1oPoimukdc3TVHEeqg8Een32+SegY1oJmaycRCYkjcCS H+E4wMdD5n1TV2qNXakuVPp28w2az2qU0j6rsraiSpqRtL27H42tZnGfWeoLgfCFARY7S2qa sWy8UuqXQxXXT/8AX5YAXMki2b2TAAfvNBO0denk3IaPVTcRNI1lyorfTX2mlqq1rXQMbuwd 2cNLsYa44xtcQ7JAxkhBp0WctWvdL3y8vtFtvENRXN3Yja1wD9vnscQGv+nwk5AJHQZXz19q OXTWlJ6mjY+S5VLm0lBHGwuc6d+Q3A2kEgZdgjB249aDTosjoW/VtwZdrPd5nzXez1j4Jpnw 8ozxuJMUu0ANaHNBwAT0aDnxBa5AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQE REBERAREQEREBERAREQEREBcfVWoafSml7jfKpu+OkiLwzJHMeThjMgHG5xaM46Zyei7C4+q tPU+q9L3Gx1TtkdXEWB+CeW8HLH4BGdrg04z1xg9EGcotY3usuLdP3yxSaYudzgm9FVAqo61 r3sbl5IbjBaC1wDujsEZHQHL36w6ti1/pGnqNa8+sn7Z2aq9FRN7NtiBf4AcP3Dp18vML38P KC56h1BcL1qe9SXWr05c6u12/FPHA1hw1skpDANxc0gBpyG9fMkEU2WipJ6qnqpqWGSppt3I mfGC+LcMO2k9W5HQ480Hh0/QXa3UD4bzevS9SZS5s/ZWU+1mAA3a3oeoJz9v2LOf9+3/AKZ/ 9ytwuV3fpO9nePmTds7D2DZuHL5fM35xjO7P24x6kHz1DqGKxQQsZA+suVW4xUNBEQJKh+Mn qejWgdXPPRo6/QD8NPaeloJ5rvd52Vl+q2hs9Q0ERwszkQwg9Wxg/wCLj4ndcY5144d0l41J NffT9/oqyWJsP/YqwRtZGMeBvhJDSRuIzjJJXu0/pH0BXvqu8V/uO+Ix8m41vOjbkg7gNo8X TGfoJQY2G6wcN6rW9uYyGngZELxbI3RlweZQIy0hnRrBMGMDfCQDnJHUbLQenWaX0bbrbyeV U8oS1QO0uMzhl+S3o7B8IPXo0DJwvnqXQdl1XdrZcrlG8zUDstawM2zt3B2yTc0lzcg9Mj5z vpXZvX/Abj/Xf6tJ/Uf6x80/0X/3/wDT9uEHuU/4q1t1FqorRQWq51dHcZdtwnt0bnyxQNcw ua0AYDngkeLpgOGDnprtPQ1tPpq1Q3IvNfHRwsqTI/e4yBgDsuycnOeuTldJBILXqiKTjBRv g0zfKOF1lZb46WSgEboW9oGJCwHDYQOm71Yxhafhz+xqtY0svgqW6hqZnQu6PEbw0seR57XA Eg+Rx0Wj7v0nezvHzJu2dh7Bs3Dl8vmb84xndn7cY9S4154d2u7XyS9Q192tVymbsnqLbVmJ 0zcNADsgjADB0GPtz0QZio/bV3F2qi8dM6hjhbM3qwyMpHh7AfLc0kAjzGeq+GqqKkZ/8OFH tpYRy6GimZiMeGRzo9zx9Djvfk+Z3H6St5QaNtFs0hPpmijfDRTwSQyyNI5she3a55djBcR6 8YGAAMABLjpC33PRTNKTTVLaBkEMAkY5ol2xFpacluM+AZ6fT5IM/wARaKkg7k8mlhj7PqGj hh2RgcuM58DceTfC3oOnhH0Lnavut0ufEq10Njsj7yzT7TV1lO6cQxc6RuIsl427mDD2nqfE cY2lby+afpL/AOje1STM9H10VfFynAbpI84Dsg+Hqc4wftS0afpLNVXOqhkmmqblUmpnmncH P8gGxggA7Gjo1pzjJQTymvV8tnFOiul902+yUV6gbbXbKps7JKgOJje8xjBcRiMbsYBJzgEK sLlah0/SaktXYKqSaHbKyaKop3BssEjHAh7HEHa7zGR1wT9K6qAiIgIiICIiAiIgIiICIiAi IgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCf8ACz2196674FQFP+Fntr71 13wKgICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiI gIiICIiAiIgIiICIiAvhLW0kFVT0s1VDHU1O7kQvkAfLtGXbQersDqceS+6k/o2/0nFDRlXq O6srK+pdcMQUw201MwRZa2MEAk+Lq53U4aOu3JCm3C6W+0wNnuVdTUcLnbGyVMzY2l2CcZcQ M4B6fYvhb9Q2W7Tugtt4t9ZM1u90dNUskcG5AzhpJxkjr9qw+v6h1ZrzTNqgtb72YIKqsqLW QOU8GMsie8v8AAfuGTkjPQZIB6Wk6q3Ul57DXaPotL3qeJzqdsQicKqIYLg2WMAFwIBczzA2 u6jyDvz6u01TTyQT6htMU0TiySOStja5jgcEEF2QQfUvXbr1arxzfRlzoq3lY5nZp2ybM5xn aTjOD/oVILJfOH9su2qodVw299e6/wBW+M1NvM7uXuAHiDHYGQ7pn/ddWzOsd44lWO56Htz4 rbTwVEd0q6WldTUzwW+CMghoc4OIcRjPVp67fCFYRFk+ImlblrDSslrtd5ktk5eXuc0uDZ27 Ht5T9pB2OLhno7y+aUE7h19Bwo1RqO036h7TT3C61Fyhnt9VFLI3mCMtY+ElrmeE5y4jJ8gR 4lcF+eNM640/wwrJqausNjl5+4x3PTVa2rLxiPMbhLIZGtyPW5oJb0aerl+h0BERAREQEREB ERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBER AWH1R/apoL/MP4DVuEQZjUOpajTF2hq7nExumHwFktXFE+SSnqN3h5gHlG4dAQ0+LAOMjPGo 7hQa81zZLzZJpprdY4qkzVRgcyOSWVrWNibuwdwblxIBAG0fvdKAiDB8PIIqmDWcE8TJYZdR 1zJI5GhzXtIYCCD0II9S5umXv4f63n0lXVWLJc81FldIXBkLy87qcFwPi6j971NON0mFTkQF i+J+nrDqXSrKLUF6js8DagSQVMkzI287Y8NB39HDDnHaCCceYW0XD1XpK0azsxtd5hkkgD+Z G6OQsdHJtc0PGOhIDj0II+kFBCNI6xOkbo6j0xbLbrRnZy1tRbbTJR10cY5Y/akRHczd/wDs ScFzh0C/San/AAjqLj3eutpuNd230JdZrVTy8psf7GFkbWjA/wAT1JPXzKoCAiIgIiICIiAi IgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg IiICIiAiIgIiIJ/ws9tfeuu+BUBT/hZ7a+9dd8CoCAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgyev8AUty03a7aLPT0k1wudzgt0Bqy 4RRukz4nBvUjw46Y889cYPL+V/7jfm04p+xXvXQ/GqAgn/yv/cb82nyv/cb82qAiCf8Ayv8A 3G/Np8r/ANxvzaoCIJ/8r/3G/Np8r/3G/NqgIgn/AMr/ANxvza8dxvfEGyejvTtRpqHt1xgo qbsDJ3b5H7vC/eDhpx5jB+1UxT/in7Fe9dD8aB8r/wBxvzafK/8Acb82qAiCf/K/9xvzafK/ 9xvzaoCIJnbrJxBsnpH0FT6ah7dcZ62p7e+d2+R+3xM2E4aceRwfsXs+V/7jfm1QEQT/AOV/ 7jfm0+V/7jfm1QEQTO43viDZPR3p2o01D264wUVN2Bk7t8j93hfvBw048xg/avZ8r/3G/Npx T9iveuh+NUBBP/lf+435tPlf+435tUBEE/8Alf8AuN+bT5X/ALjfm1QEQT/5X/uN+bT5X/uN +bVARBM7de+IN79I+gqjTU3YbjPRVPb2Tt2SM2+FmwDLRnzOT9q9nyv/AHG/Npws9tfeuu+B UBBP/lf+435tPlf+435tUBEEvuOpOI+nLjYvTkelH0NyutPb3dhbUGRvMJyRvIA6A9evXHRV BT/in7Fe9dD8aoCAvhFW0k9VUUsNVDJU023nwskBfFuGW7gOrcjqM+a8l/ju8tjq47DNTQ3R 7Q2CWqBMbCSMuOAeoGSOhGcZBGViuH9DPbdf63paqvmuFS3sDpaqYAOke6JziQB0a3JIDR5A AepBubjerVZ+X6TudFRc3PL7TO2PfjGcbiM4yP8AUL1QTxVMEc8ErJYZWh8ckbg5r2kZBBHQ gj1qeaYs1t1bqTVF8vtFDX1NPc5bXTxVDeZFDDFtxtY7IDiSST9JOMZOfhYqp+j2cQLPbRuo bDE2toI6h7n8syQOlMec/MDm9B0PU5JJygpyLOd4Kv8Ak17x8uHtnoft+zaeXzOTvxjOduft zj1ro6euEt201arlO1jZqujhnkbGCGhz2BxAyScZP0oOkiIgIiICIiAiIgIiICIiAiIgIik+ tJNTVWobDNdIaaitEOqKWGip2ESS1AycTPeDhowDhoAPjOfmgkKwizmstV90aCgqvR01f2uu jpOTAf2niDjlowdzvDgN6ZJ8wuNPxCuNDdpLVcNIXCnr6hpdaYWzMl7aQ7G1zm5bEQMOdkuD W5JPzdwbxFldNawnu15q7HeLLNZrxTxCoFO+UTMlhOBvbI0AHDjgj/8ApIcG82s4gXSonq36 Y0nU3y20rSXV7agQxzOBcHCEFpMoBaRlucnoB5EhvEWYj19YJdFS6rjqHvt0Tf2jWszKx+QO WW+p2XNHnjqDnacrOXLijdLDY3XG/aNqbeZWsNEx1UHtncSNzHuDMxODSXAOb12uHQhBndZ6 6ptbXKt0RQ6dttW+CtZTOnvVwZTNZOJSzMcbXiR4wCMxuDvFgt64dtOG2irxoy3TQXbUk925 sUDI4HbzHR7A4FsZc45b1A6BvRo6eoTTiDq6O96vm05ddLaftr2PdDHcdQNnBqImzYjdHJE1 r4mEh7s52Yzlw65o/C/SNy0tZi6t1TJfIKqnpzTMa5zoKZrWnpE4uILCHDBAbkNHT6A3iIiA iIgIiICn/FP2K966H41QFP8Ain7Fe9dD8aCgIiICIiAiIgIiIJ/xT9iveuh+NUBT/in7Fe9d D8a3k88VNBJPPKyKGJpfJJI4NaxoGSST0AA9aD6IsPp/iDHqbXb7XbGb7OLYaqOqkgfG6aQS hhLNxGWDJb80Hc13qC++oNS32TUjNO6ToqKoroohPXVVa53Z6VhzsY7Yd292MgfRg4IJLQ2K LI6a1XWzT3O1app6a23a2t58r2SbYJ6ck4mjLjnaMYcT5HGSCS1vDj1Zr65W2XUVp09bzZA7 mU9FUGQV1TAMZc3B2guGSBgn6A/oXBSlj9dX28WTsHom66UoOdzOZ3gqHxb8bccvaRnGTnP0 tXbt+o7VcbNbrqyshiprjsbT86VrS6R3lH54L8ggtBJyCPUvNVM0lqivNBVtsl2rKPfmnlEU 8kHUB/hOS3qGg/bjKCS2C76k056U7Hq/hi/0lcJbhNzrlIdskmNwbgjDegwDk/arpAZnU8Tq iOOOcsBkZG8va12OoDiASM+vAz9AUr4baT03Xd7u2aftVRyNS1kEPOoo38uNuzaxuR0aMnAH QKqQQQ0tPFT08UcMETAyOONoa1jQMAADoAB0wg+iIiCD3+76k1H6L7Zq/hiz0bcIrhDyblIN 0kedodknLepyBg/aqJoe/wB+vVRWNuly0jcIImNLX2CrfI6NxJ6Pa7IwQDg5HzT0Oemb4k6T 03Q90ex6ftVPz9S0cE3Joo2cyN2/cx2B1acDIPQqiW3TVhs1Q6otdkttDO5hY6SlpWROLcg4 JaAcZAOPsCDqLD6X/tU17/l/8By3CIJdbtT27h5qfUdq1AKmmpK64SXGkuDqZ5imMjWF8Y2g klhIGRkHrnacA/3Z6Cv1LY9caihoZqc6kpuVb6Sfa1742QOjjkJzgby7yPQYzkggqnIgjh15 QTcK5dOUNJWz3yms76SsonwujNK2OIslkkcRtDW4JAzkktbgE9KPov8A5E09/wCGU38Jq7iI CIiAiIgIiICIiAiIgIiICIiAsPxK9kPeai+NbhfCpoqSt5PaqWGfkStmi5sYdy5G+T258nDJ wR1QY7iV7Ie81F8aao/tU0F/mH8Bq2NTRUlbye1UsM/IlbNFzYw7lyN8ntz5OGTgjqktFST1 VPVTUsMlTTbuRM+MF8W4YdtJ6tyOhx5oMd/37f8Apn/3Knek6C0W+x1Fu1BrPUenbpa3PbVW 9txEEYBJcHQswd4I6+HJJOQMOaTdexUnb+39lh7ZyuT2jljmcvOdm7z25648sryXDT1lu07Z 7lZ7fWTNbsbJU0zJHBuScZcCcZJ6fagl1RaaSg0FSXy0svNVb6PUMV7nkuADqiqibhr5YwAC WkYeC/acBzjgYz6+KetbBdeHNVR2uvZcJqxsUgbS+PksEkbi6X1xjJa3DsHc4DHnjeasi1C+ zc3TNTDHcYJWzCGdgcypYM5iJPzd3TqMeWMjORg59O6g1FTPsTND2nS1oq3RuuM8VRE6WVjJ GODY+U3AcBuxuaR18x6w4+qr5q65a37pahq6HT1orZZGW2V1pZXsuP7ZrYmvDy5od5O/d25G QMtxvOH3Da28PKerbRVlXVT1rIhUvm2hpcwO6saBloJeehLvV1+nx8U/Yr3rofjVAQEREBER AREQFP8Ain7Fe9dD8aoCn/FP2K966H40FAREQEREBERAREQT/in7Fe9dD8a3k8EVTBJBPEyW GVpZJHI0Oa9pGCCD0II9SwfFP2K966H41QEGDggipuN8cEETIoYtLhkccbQ1rGipwAAOgAHq X00v/apr3/L/AOA5dzu7/wDPfebtX/0z0f2bl/8A5eZv3Z/wxj/Fc3Uei6q66hp9QWi/1Nnu 0MApeY2Js0T4cuJaYzjJy4HqSPCOmcEBmNaf896h9xqn+K5bnRf/ACJp7/wym/hNXw0ppTu5 2+qqrjNc7tcZRJWVso2czbkMa1gJDWtBIAH+2AMxHwsuNJbZbFQ60uEGnJXeOhdTsdLsON7R N0LQ4g9A3HiOQcnIZGlpu28HeH9Lz5oOfqGOPnQP2yR7pZxuafU4ZyD9K1Wr9NWbTdVoyqst uht9THfKWk51MCx74nghzXkdX5DQCXZPU9epzq7xpGC40Gn6Gln7HTWWup6qJmwybmQggR5L sjoR4jny9a++pdO94fRH/auz+jrnDcP6PfzOXnweYxnPn1x9CDN8LPbX3rrvgVAU/wCFntr7 113wKgICIiCf8U/Yr3rofjVAU/4p+xXvXQ/GqAgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiI CIiAiIgIiICIiCf8U/Yr3rofjVAU/wCKfsV710PxqgICIiAiIgIiICn/ABT9iveuh+NUBT/i n7Fe9dD8aCgIiICIiAiIgIiIJ/xT9iveuh+NUBT/AIp+xXvXQ/GqAgIiICIiAs/qyo1PTW5s umYrU6SPdJUOuAmfhgGcMjhaXPcf7/VgAk9NAiD84aR1LxTtdxq6Oj0dyvTN1fWTTV1sqmxw yTFocS4EbYxgHrkgZ6lfoeg7Z6OpvSPI7dymdo7Pnl8zA3bM9duc4z1wvHbdPWy03S5XOjgk bWXN7X1cr55JDIW52/OcQ0AOIAGABgeQC6iAiIgg/Eyu4lm42mJ9goa6OjuDLpTNtNJV1HLM ZIY2WQta12cnIaAemfCCM7jhxf8AXmo+0VmqLRQ2uhZuiZD2aeCpdINhDtshIMeC4Z88j7Fr L/p62aotbrZeIJJ6Nzw90TZ5Ig8jy3bHAkZ64PTIB8wF1EBERAREQEREBERAREQF4aq8UFFd aC2VE+ysuHM7NHsceZy27n9QMDAPrI+xe5ZW/Xivotf6RtlPPso7h2ztMexp5nLiDmdSMjBP qI+1BqkUxs9drfVVfqCkpLzDbKO33iogjrzSxzSOa0gNgbH0Aa0ZcXuySXNA8nLSaBvtyvdm rIrw2E3G2V0tuqJoD4J3x4y8DAxnPl9mcDOAGqREQEREBERAREQEREBERAREQT/in7Fe9dD8 aoCn/FP2K966H41QEBERAREQEREBT/in7Fe9dD8ay+j+/npHWPdfu52HvLW7/SfP5nMy3OOX 0242/bnK7Fx03xH1HcbF6ck0oyhtt1p7g7sLqgSO5ZOQN4IPQnp0646oKgiIgIiICIiAiIgn /FP2K966H41QFP8Ain7Fe9dD8aoCAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICx2o6Kr n4k6JqoaWaSmpu3c+ZkZLIt0IDdxHRuT0GfNbFEGO4fUVXRd6e1Us0HP1DVzRc2Mt5kbtuHt z5tODgjonD6iq6LvT2qlmg5+oauaLmxlvMjdtw9ufNpwcEdFsUQEReeqr6Oh5HbKuCn58rYI edIGcyR3zWNz5uODgDqUHoReeavo6espqOargjqqrd2eF8gD5doy7a09XYHU48k7fR+kfR3a 4O3crn9m5g5nLzt37fPbnpnyyg9CIiAiLn3W926ydi9I1HJ7dVx0VP4HO3zPztb0BxnB6nA+ 1B0EXPtV7t177b6OqOd2GrkoqjwObsmZjc3qBnGR1GR9q6CAiIgIiIMDxQZzO6GHxt5Go6Sp k3yNbtiZu3v6nyG4Z/vC73fvR/1rsf4jD+pcHig/l90MMjdz9R0lNJvja7dE/dvZ1Hkdoz/c F3u4mj/qpY/w6H9KB370f9a7H+Iw/qTv3o/612P8Rh/UncTR/wBVLH+HQ/pTuJo/6qWP8Oh/ Sgd+9H/Wux/iMP6k796P+tdj/EYf1J3E0f8AVSx/h0P6U7iaP+qlj/Dof0oPnPxB0bTU8s79 VWYsjYXuEdbG9xAGejWklx+wAk+peO2cVNDXfm9m1NQx8rG7tbjTZznGOaG7vL1Zx0z5heiv 4daPrrdU0fdy1U/PifFzqehhZJHuBG5jtvRwzkH1FZe2cAdDUHN7TT11y3429rqi3l4znHKD PPPrz5DGOuQ9nCSeGqp9YVFPLHNBLqitfHJG4Oa9pDCCCOhBHXKoinfCSCGlp9YU9PFHDBFq itZHHG0NaxoDAAAOgAHTCoiAsjaL5cajW+sqCVz6mltraR1JTRtY1wL4S5zQTjJcQPnHA+kB aD0xQenvQnP/AJx7N2vk7Hf0W7Zu3Yx87pjOfsWNslZBbuIvEauqpOXTU0VDNK/BO1jadxJw Op6A+SD4Vo4i26w1Gpqq+WyOampnVMtk7CDA0NaSW80O3l2AXdDjd0zt6rTy6toqPQsOqrgx 8FK+jiqnRR/tHAyBuGDyycuDcnA9ZwFyrzpu38QqGnutFqO4NpJYG8iKCRr6SRzXFzXSwPbh 5DsBzXY+bg4IXV0RqGXVWjrdep4GQTVDXCRkZJbua9zCRnqAS3OOuM4yfNBx9E6mu2oNVaoh uNPNR01L2R1JRTtYJIWSMc7LtozucA1xaSdpOPUvPNXao1dqS5U+nbzDZrPapTSPquytqJKm pG0vbsfja1mcZ9Z6guB8Po0v/apr3/L/AOA5OHP7Gq1jSy+CpbqGpmdC7o8RvDSx5HntcASD 5HHRB7tE325XCO4We/thF9tErYaowHLJmObujlHQAbhnoPLHk3IaNUsPpP8AbcSdeVUXjpnS 0ULZm9WGRkJD2A+W5pIBHmM9VuEE/wCKfsV710PxqgKf8U/Yr3rofjVAQEREBERAREQEREBE RAREQEREBERAREQEREBERAUP1j3N/lQvf8pX9X7JSehf6b+hxJzf6Dr/AEm75/X6OiuCIJPp X+WTuvbud3c3coY9L9o7Xtz4ebs6bsY8/F/1eLK7kJ4steTPHop7NjgAx9U07tp2nJB6B2CR 6wCMjORvEQT/AOV/7jfm1n9V6D1xrm3TR6oqLUI6KknloKWyTSs59WQOXzRMNpaMOGcgjceu CVWaytpLdSvqq6qhpqaPG+aeQMY3JwMk9B1IH+K4ejdXQayoK+upYOXTU1dJSxP3k85jQ0iT BaC3IcPCfJBG7neLpxEo5NbUjM90KSkqqaERbYJ6slk1US52HbWNZtLA4k4aQ7xYd76utrL3 WVXFmkZO+ltN1igpWMgJe+1xhzJ3xggB+8yucdwBZscNwx00DbhSW22XzS2jdAzXOw0fNp7g 9lWYOZK4ESsaXAvkcBhuQS7yAGNpPWq73pu38FH3C0Wnn6fNKIBQb3QEse/lPa5wyQ7LnZd1 JOTk5yg8tFqXiDqmouVZpin0xHZYK2WlpZa81DnVLYyGmVro/C5jjnBHlgjrjJ6EJ4steTPH op7NjgAx9U07tp2nJB6B2CR6wCMjOR57Vc9W2O109stnC+Omo6dmyKJl7gw0f6ZJJyST1JJJ yStRpPU0Gq7N26KnmpZ4pXU9XSztIfTzNxuYcgZxkdft6gHIAZv5X/uN+bWX1h389I6O70d3 Ow95aLZ6M5/M5mXYzzOm3G77c4VoU9rLxYde63otPU85qIrO6K9sraOoaWGeN+0RHwkObiQE lrvs6EFBmdH9/PSOse6/dzsPeWt3+k+fzOZluccvptxt+3OVqPlf+435tfzLWx6GvNTY9N2q tvl4vVXNeJ6d87YmQtf0c7mFuA3c3ABz9pyWg9/Smq+8fb6Wqt01su1ulEdZRSnfy92SxzXg AOa4AkEf7YJDjSHiyWQiKPRTXhmJS59U4OduPVowNo27Rg56gnPXA+fyv/cb82vg/ihXy0tT ebdpGtrdM08pa65NqGse+NpAfIyEjc5o6+vHQ5LcOxQKKsguNBT11LJzKapibNE/BG5jgCDg 9R0I80GG+V/7jfm0+V/7jfm1QEQSPU3fD+Ye9vdr/jlL6O7B2n+tePZv3fuquKf8U/Yr3rof jVAQEREBERAREQRfR/fz0jrHuv3c7D3lrd/pPn8zmZbnHL6bcbftzldi46k4j6cuNi9OR6Uf Q3K609vd2FtQZG8wnJG8gDoD169cdFSKWgo6Hn9jpIKfnyunm5MYZzJHfOe7Hm44GSepWH4p +xXvXQ/Gg7updFW3U1VSV0s9bQXGkyIq63zcqcMIILN2D4ep/uycYyc/fTOk7bpSlnioedNP Uymapq6l++eoeSTl7sDOMnH95PmST3EQYqfhla5J5BDdr5SW2RxL7TS1xjpC1xy9gYBkNcS7 IBHzjjHTGxggipoI4IImRQxNDI442hrWNAwAAOgAHqX0RByqDT9Jbr/d7zDJM6puvJ57XuBY 3lNLW7QBkdD1yT/guNeeHdru18kvUNfdrVcpm7J6i21ZidM3DQA7IIwAwdBj7c9FrkQcrTun bbpazQ2u1w8uCPq5zur5Xnze8+txx/sBgAAdVEQT/in7Fe9dD8aoCn/FP2K966H41QEBERAR EQEREBERAREQEREBERAREQEREBERAREQEREBERBzbzYLXqGCngu1GyrhgnbURxyE7d7QQCQD hwwT0OQc9Qszw19r/eat+BbhZzSOn6uwene1SQv9IXior4uU4nbHJtwHZA8XQ5xkfag5XB7+ yuzf+f8Ax5Fhrv8A2V8SPeab+PAtUzSuudPSXKl0tdbMbVVyyTQQ1sT2Ggc9zjthDQ5u0ZB6 9Mj5oyc+u6cP5XcL6vS1uq2TV9S5ss1bV5aZ5ua2R73loJJOCBnJwGgk4yg42ptU8StJ0sFZ cKTTL6GSURy1NPHUvZTZIAdIM7g3r5gHyx5kA7LRVgZYbNMRdfSktxqX3CasaxrGSvkwdzGt yA0gA9CfWR0IA7FztlFeLbPbrjTsqKSduySJ/kR/uCDggjqCAR1XD0NZr1p2x+hrtU01XDSO LKKpie8yPhycCRrhhpAwAASMYH7uSGgraOC40FRQ1UfMpqmJ0MrMkbmOBBGR1HQnyWDtlsor Pxkgt1up2U9JBpfZHEzyA7V/qSTkknqSST1VDWc7v1f8pXePmQ9j9D9g2bjzOZzt+cYxtx9u c+pBytL/ANqmvf8AL/4Dlwtaf896h9xqn+K5aC/aZ1FHqsak0pcLfBPLAynq6KsicIagN3Yk e5nUuGWgdAQB87GWn76a0pWwz3O66pqKa5Xa5N5ErGR7oIKcE4hjDhnac5cD5nGQSC5wdLRf /Imnv/DKb+E1SOlinn4O8P4aWp7NUyahjbFPsD+U8yzgO2no7BwcHzwtVS6R4iWuzHTdDqS2 OtXhjjuEscjayCI43NYBlox4g3LsgeTm9Nvduuic2bS1qs5hiprLc6aqdzvCXxx7tx8LcF7i cnoASSUGbvulKDRF50xd7HNWw3CrvENBXTyVDpTWRy5MhlDsguJbnpgZJOMhuKqs5q7T9Xf/ AEF2WSFno+8U9fLzXEbo492Q3APi6jGcD7Vo0E/4p+xXvXQ/GqAp/wAU/Yr3rofjVAQEREBE RAREQFP+KfsV710PxqgKf8U/Yr3rofjQUBERAREQEREBEWXsetaO50d+rK8QWultF1mtr5p6 kBjuWWgPLiAG7i4DHX+85Qcfin7Fe9dD8a1d91LZtM0oqbzcYaSN3zA8kvf1AO1gy52NwzgH GclTS8ao/lLvmnqPSdqrq622u909fV3V8fJgDY9uWt34LnASkkdHeHoHA5FLl0/ST6op7/NJ NJU01M6mghe4GKLc7LpGgjLXkeEuB6t6IPhp/WOntUbxZrpDUyR53RYLJABjLtjgHbfEBnGM nGV6rXf7XeZ6+C31jJ5qCc09VGAWuieCQQQQDjIOCOhwcE4KzM38+8UrdWWfrDZYqimutW3w skc9o2U4cP6RzHeMt8m589xwsVa4JbFWam1vb4nyT0Oo6unuMbWl5moS9heGt/6mHDwctGA7 cSBhBX6q8UFFdaC2VE+ysuHM7NHsceZy27n9QMDAPrI+xcq+690vpqqFLdbxDDUnzhY10r2d AfEGAluQ4EZxn1LhXusguPEXhzXUsnMpqmKumifgjcx1O0g4PUdCPNd24yUGjo6q60tkudfU 3GpBqewROqZ3O2nBO52QxoGAAcNyAAMoO5R1tJcaVlVQ1UNTTSZ2TQSB7HYODgjoeoI/wWco +JOj7heWWmlvkMlZJKYWNDHhj3j1B5btOcdMHr0xnIU/c70VwO1VW0EkNPLXV0j5qOKPHYOb JHE+mcHNGHNZ0PhbjPTphx3OsNNWaLhfc7ZHboW0dBQyzUsYB/ZSMY5zXg+e7OcnOTk5zk5D uag1JadL0DK681fZqaSUQtfy3vy8gkDDQT5NP+i8On9eaa1RXvobNcu01McRmczkSMwwEAnL mgebh/qsbUSakvt30FcbbQdprqazyVk9bVtMdJzJ4GtGXNHV24ZLGjOCMYGS3T2jUN6o75TW LVsFvjra9r5KCotpe6GXYMvjcH+JrgPFn5pBx0I6h97hxE0ja7s211l9pmVZdsc0bntY7cW4 e9oLWEEHIcRjzOAtHBPFUwRzwSslhlaHxyRuDmvaRkEEdCCPWsleqig0VZnUFv0rc7tHXc+S SKlgdUiWQ43doe4lx37sZO44B6dML78NqGC28PLPTU1fDXxCJzxUQAhji57nEDPXoXFvUA9O oB6ANUiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCf8U/Yr3rofjVAU/4 p+xXvXQ/GqAgIiICIiAiIgLA8UGczuhh8beRqOkqZN8jW7Ymbt7+p8huGf7wt8sDxQfy+6GG Ru5+o6Smk3xtduifu3s6jyO0Z/uCDvd+9H/Wux/iMP6k796P+tdj/EYf1J3E0f8AVSx/h0P6 U7iaP+qlj/Dof0oHfvR/1rsf4jD+pO/ej/rXY/xGH9SdxNH/AFUsf4dD+lO4mj/qpY/w6H9K B370f9a7H+Iw/qTv3o/612P8Rh/UncTR/wBVLH+HQ/pTuJo/6qWP8Oh/Sgd+9H/Wux/iMP6l M9BaI05rG86l1BcnSXOCDUdb2SnM+6kOXRvEoaOji4YByS1zQMg4CpncTR/1Usf4dD+lS/SO v9LaBg1tQ1knKmptQVU0Nvpog1xhL44miMHazoc+EHIa0nGAgtkEENLTxU9PFHDBEwMjjjaG tY0DAAA6AAdMLD8QNQ3einpbPbLVfHwVLd9ZcbXSGaSKPJGyI+QkOPnE+AEEAkjGwtV1ob5a 6e52ypjqaOoZvilZ5OH+4IOQQeoIIOCF7EGK0pqWiD6GwW7R2o7TSNaWRvqrfyoYwAXeJ24n JIPU5JcevU5X04fUVXRd6e1Us0HP1DVzRc2Mt5kbtuHtz5tODgjotiiCT0ulrvYeKGm6KmpH yaXonVktDM1peaYSxHfFI7HQB/zS7JIdjc4jA0FRqDUOlrzcIrtbbnfbdUy863TWqhD3wM67 opQCMbfDtPXdknPqbuEQTGo0jX6lsOs7lU0s1JPqGKF9Jb3Oa2VnZ2/suYT0a57gCW/ug43Z zj+LjqjVOotPP00zR1wpb3XNfRVdTURFtDC0hzZJGyAnIx1A+3oX4AdUUQY6tF20b6MkoIa2 7aepKFlDLQU0TH1LHtwGTjoDJkANc0EYzuweuPhbjPrHV1rv0tmudqo7LFO2IXBghlnmlDWk cvr4GsB8WRlzgB80rcIgn9NqnUOmOdbNR2a832pZK50FxtNuD45oT80vAcA14O4FuBgAeedx 7Oh7HW2a23Ca4tZFV3S4TXGSnY7eKcyY/Z7/ACcQAMkADOcZAydOiAiIgIiICIiAiIgIiICI iAiIgIiICIiAiIgIiICIiAiIgIiICIiCf8U/Yr3rofjVAU/4p+xXvXQ/GqAgIiICIiAiIgKf 8U/Yr3rofjVAU/4p+xXvXQ/GgoCIiAiIgIiICi9w4K3m9y3yOr1HQ0tDXXWoroIGWxlQ9gkc 12RK7a9jiGNBa048PmclWhEEPtmmdQcGbjZo6G/QXS0Xu6wUFVSz0zo+U+QjEkYDz4trXAnI /dyHYG24Kf8AFP2K966H41QEBERAREQERTXiPxCqrPQ3a3afgqTcqBsElXWiNvJpGvc3AO8E Oc4FoDQPJxOfCQApSLw3i8UFgtU1zuc/Io4NvMk2Odt3ODR0aCfMj1JeLxQWC1TXO5z8ijg2 8yTY523c4NHRoJ8yPUg9yIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC8NtvFBeO2dg n53Y6l9JP4HN2Ssxub1AzjI6jp9q8mpbNW322x0VHeam0gzsfPNSjEr4xnLGuzlhJx4hnyxg gkLMcKKOC3UGp6Glj5dNTahqoYmZJ2saGADJ6noB5oKAimNsqddan7zst+oqKgjoLxUU1I59 E2SR2zOI3H5rWdWeLa52c/Rg+WG/a4vmijreiu9voIKeB03ooUvMZO2EnmF8jvE0uLX4a3yG 0bskuQVhFP8AUeu54dO2DsD6K3XHUNMZoKmvmDaejAja9xc4jq7xBremCT1+g8q36zuFi1Rb qGu1XbNV266SspRJR8iOekmc7DSY2O8TDkZPq+zADwqqKfzV2qNXakuVPp28w2az2qU0j6rs raiSpqRtL27H42tZnGfWeoLgfD6NE33UNz1Vqi3X9sMUlu7I1kEBDo2FzHFzmuxuLX4DgHZL QceooMXrPXVNra5VuiKHTttq3wVrKZ096uDKZrJxKWZjja8SPGARmNwd4sFvXDtpw20VeNGW 6aC7aknu3NigZHA7eY6PYHAtjLnHLeoHQN6NHT1CacQdXR3vV82nLrpbT9tex7oY7jqBs4NR E2bEbo5ImtfEwkPdnOzGcuHXNH4X6RuWlrMXVuqZL5BVU9OaZjXOdBTNa09InFxBYQ4YIDch o6fQG8REQEREBERAUT1nrqm1tcq3RFDp221b4K1lM6e9XBlM1k4lLMxxteJHjAIzG4O8WC3r h1sX584g6ujver5tOXXS2n7a9j3Qx3HUDZwaiJs2I3RyRNa+JhIe7OdmM5cOuQpfDbRV40Zb poLtqSe7c2KBkcDt5jo9gcC2Mucct6gdA3o0dPUNwsHwv0jctLWYurdUyXyCqp6c0zGuc6Cm a1p6ROLiCwhwwQG5DR0+jeICIiAiIgIiIJ/xT9iveuh+NUBT/in7Fe9dD8aoCAiIgIiICw/G H+yu8/8Akfx41uFytSafpNUWCqs1dJNHTVOze6BwDxtcHDBII82j1IM5xh/srvP/AJH8eNfP jJPFFwvurJJWMfK6FkbXOAL3c1jsD6Thrjj6AT6lsbnbKK8W2e3XGnZUUk7dkkT/ACI/3BBw QR1BAI6rFO4Q2Ka1SW+suV5ro+U2GmfVVTZHUbA5pIhBbtZnY0Hp5DAxk5CgIiICIiAiIgIi ICIiAiIgIiICIiAiIgIiICIiAiIgLHcPqKrou9PaqWaDn6hq5oubGW8yN23D2582nBwR0WxR BjuH1FV0XentVLNBz9Q1c0XNjLeZG7bh7c+bTg4I6LjaYtdwp+AU9tmoamOvNvrmClfC4Slz nS7RsIzk5GBjrkKlIglV60zcptHaLu0NohuU9ioWdps1ZDkzsfCxr2gH99u3oCD19RIDXeuy x0951DTeieHVNZaSlcyeevutrZDLkE4ZCxuDuyGkP3Yb1yM7c0pEE4jqrlw/1JeIe79zutlu 1S+4wT22HnyxTP2iRkjegDcjLT9Hrcc7XD+W5T6/1vNd6aGmrpOwOfBC/e2IGJxa0u/ecG7Q SOhIOOmF76jQt2pLzcK7TOq5rNBcJe0VNK+jZVMMxzue3efDu6ZA+jzwAB2NKaVi0vRzh1dU 3GvqnNkqq6rIdLK5rA0DPntGDhpJxk9UEv1VfNXXLW/dLUNXQ6etFbLIy2yutLK9lx/bNbE1 4eXNDvJ37u3IyBluN5w+4bW3h5T1baKsq6qetZEKl820NLmB3VjQMtBLz0Jd6uv0+Pin7Fe9 dD8aoCAiIgIiICIiAofqq+auuWt+6Woauh09aK2WRltldaWV7Lj+2a2Jrw8uaHeTv3duRkDL cXBT/in7Fe9dD8aD2cPuG1t4eU9W2irKuqnrWRCpfNtDS5gd1Y0DLQS89CXerr9O0REBERAR EQEREGB4oM5ndDD428jUdJUyb5Gt2xM3b39T5DcM/wB4Xe796P8ArXY/xGH9S4PFB/L7oYZG 7n6jpKaTfG126J+7ezqPI7Rn+4LvdxNH/VSx/h0P6UDv3o/612P8Rh/UnfvR/wBa7H+Iw/qT uJo/6qWP8Oh/SncTR/1Usf4dD+lA796P+tdj/EYf1L6Sa00rCyF8upbMxkzN8TnV8QD27i3L fF1G5rhkesEepfPuJo/6qWP8Oh/SncTR/wBVLH+HQ/pQO/ej/rXY/wARh/Up3Wa+vjuGGub9 RXaOSe332Smt1THHE9rafmwhoHh2uG158RyTnz8lRO4mj/qpY/w6H9Kldfpq5Q8JOIdro7JV sfNqOR9FSQ0rgXw86DaY2AdWbWnBAxgH6EFU796P+tdj/EYf1L6Q600rUvLINS2aV4Y55ayv icQ1rS5x6O8g0Ek+oAlfPuJo/wCqlj/Dof0p3E0f9VLH+HQ/pQO/ej/rXY/xGH9Sz9XxGra6 +VVv0XYINUQ0cUT6qqgukcLI3ybsMBcCH9G5y0nGcHBC0HcTR/1Usf4dD+lZ+r4c1tDfKq4a Lv8ABpeGsiiZVUsFrjmZI+Pdh4DiAzo7GGgZxk5JQazTl/odU6fo71bXSGkqmFzOY3a5pBLX NI+kOBHTI6dCR1XUXL05YKHS2n6Oy21sgpKVhazmO3OcSS5zifpLiT0wOvQAdF0J54qaCSee VkUMTS+SSRwa1jQMkknoAB60H0RfCirILjQU9dSycymqYmzRPwRuY4Ag4PUdCPNfdAREQERE BERAREQEREBERAREQEREBERAREQEREBERAREQT/in7Fe9dD8aoCn/FP2K966H41QEBERAREQ EXwrayC3UFRXVUnLpqaJ00r8E7WNBJOB1PQHyWD0zra46l4hCAUtTQ2SWy9spYKpjBJKeaGi Y4yWg5cAMkEAO/eCChrH8Q9N3jUdus/oOShZXW26w3BvbnPEbuWH4B2Ak9SOnTpnqvPe7nqG +6uk05pm4Q2yK3RMmuVwfCJnsfICY4mxuGDkAOJH+oIw5YdSXKz193sesKuGWpt1MbjDXxR4 7TR5O57mNGGuaRggdTnoDjc4PP8AK/8Acb82nyv/AHG/Nrw0ruJN8sx1NQ3Wio+ftqaKxup4 5GSQ9C1r5jghzm5Pq8x1ZnDfvf8AWFfddG6Vuena/wBHS3q509I+Tktm5W8Pa9uHtG7a9vng Z29DgoPv8r/3G/Np8r/3G/Nr6T6Y4gtgkMHENj5g0mNklmhY1zsdAXDJAz68HH0FdzRGoZdV aOt16ngZBNUNcJGRklu5r3MJGeoBLc464zjJ80Gf+V/7jfm0+V/7jfm1QEQT/wCV/wC435tP lf8AuN+bVARBI9Td8P5h7292v+OUvo7sHaf6149m/d+6q4p/xT9iveuh+NUBAREQEREBERAR EQYrVV8vlRqWj0jppzKWvngFbVXGZrXtpqcP2naw/PcSMYI9Y+kub8LRd9R6f1jTaa1LVMu0 N0a+S33KKFkLg6Nm6SOSNvQADqCM+Y88kMaqprvY9aUesrbQPulKKMW6uooGEztjMm8SRgfO IJGR9A+glzfhbfS+s9eW6/zWmps9osjZWU7K+EsqaqSWMNd4c4a0DHXr5evJDA7OiLxX3jvH 2+fndjvlTSQeBrdkTNu1vQDOMnqev2rKV9dftQ6E1z/PPZ/R1zr4P6qx/MpY4j+w9WM5+f1c F97XX3nRV51FbX6XudzNyuctwoaihaHQP5vQMkecCLBaASc4yTjABc0xZr7JoTXVDX0Wy619 dX7GNa6OOZ74gA6MvxlhdnBPq9aDu8NqC7Umk7fNcb12+mnoaZ1JB2VkXZWcvO3c3q/oWjJ/ 6ftWxWR4eXWWs01R22ezXa3TW2jp4JHV9KYWyuDNpMeTlwBb9A8x9K1yAiIgIiICIiAiIgIi ICIiAiIgIiICIiAiIgIiICIiAiIgn/FP2K966H41QFP+KfsV710PxqgICIiAiIgLD/8Aft/6 Z/8AcrcLld36TvZ3j5k3bOw9g2bhy+XzN+cYzuz9uMepBnNOfsOLGto5v2clTFQzQNf0MsbY i1z2g/OaHeEkdAei42qYJbhr7UrKKJ9S+PR01M9sLS8tme9zmRnHk5w6hvmR1C1Wo9C2vUly p7pJUXCgulO0Rx1tBUmKVrPF4fWMHe7rjPqzjovXpnSdt0pSzxUPOmnqZTNU1dS/fPUPJJy9 2BnGTj+8nzJJD4aMraQcOrHVGqhFNDbIeZMZBsZsjAfk+Q2kEHPlg58lLY7fLLwg4fUUzqmj fUX+ECSMmOVjXyTFr2EjocODmn+4rau4QaeHMp4K2809qllbLLaoq49mkI2/OaQXHO0ZO7P0 EYGNPddM2+7QWmB4fTw2ushrKaOm2saHRAhrcYI24PkMf3hBLtdabrtI9hulRqHU130y6UQX SjkuDzIWOyM7hhpYfmkHHUgB3iy2uWajttBZqSms8cLLcyIdnEB3MLD1Dgf3s5znJznOTlfe to4LjQVFDVR8ymqYnQysyRuY4EEZHUdCfJeHTtiZpuzQ2uGurayCDpE6se1z2M9TAWtHhHqz nHl5AAB1UREBERBP+KfsV710PxqgLB8VKSultdgr6G3VdwFrvtLXVEFIzmSmJm4EtZnLjlw6 D6cnABI0Gl9XWXWNrZX2etjmBY10sBcBLATkbZGZy05a77DjIJHVB3ERfCjraS40rKqhqoam mkzsmgkD2OwcHBHQ9QR/gg+6LjT6u01TTyQT6htMU0TiySOStja5jgcEEF2QQfUul22k7B2/ tUPY+Vzu0cwcvl4zv3eW3HXPlhB90Xht16tV45voy50Vbysczs07ZNmc4ztJxnB/0K+FZqfT 9uqn0tdfLZTVMeN8M9XGx7cjIyCcjoQf8UHVRc236hst2ndBbbxb6yZrd7o6apZI4NyBnDST jJHX7V0kBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBP+KfsV710P xqgKf8U/Yr3rofjVAQEREBERAREQEREBERAREQEREBERBD9YW3iVHqaoqq+ovldppkr3wDTV YynnhjfKA0OYGbpXNYB0wR1zvHiWo4R9wfR1X3J5/O5VP6Q7RzOZuw7Zv3eDdnfnl+HP2YWP 17w7vcF6q9SXOuodR2JkrpW2+7XGWk7MJZhlkTzIGMw3a0OLgD/0EhoOw4R6l0nf7dVxaZ09 6HkpIqdtW3lMG8kODRzAd0mNrvE8AnOfMlBqNTW2/wB2fQ0lpurLZQPc/wBITxjNSWYwGxEg hpOTl3Qt8JGcEHP8LKyC3cHbdXVUnLpqaKpmlfgnaxsshJwOp6A+SoCn/Cztf8jtu7Bye2cq p5HPzy+ZzZNu7HXbnGcdcIMlpKGrbpK21ldwzZexK2Spq7nUGB1TMHSvcXNY8F8p2EEZILvV 0wTo9Sz2vVNTonT9FKx+mrs6aZ7aRxjD2U8YcyLpjDc9C3AILRjaQvdBxTs1JBHQ3oVNPqNj RHUWuKjkdI6fHzY8Za4OOCw7sEOb1WcmstboLTWhrvPS1Nc+xOqO3U1NFudGyoY50jsgkYj8 s+Tvpag7Gp7NbdJak0vfLFRQ0FTUXOK11EVO3lxTQy7s7mNwC4EAg/SBnOBjh1d20Za+KmsO 90dE/mdi7N2miNRjEHjxhrtvm36M9PoXVrdQ0HEfUlhtunTNU0dsrorpW3DlOZHFy92yLD9p Lnnp9g6gOw7b1tL/ANqmvf8AL/4DkGUqJ9L6h1JpqTQFtzWUdzjkrKu30TqaOGm672yuw0Hc AcA5yGuA88Osalxjbwy4gMkEzKbSN+c5piALYaGqDRhx6ENDsEDBaME5AEYVRQEREBERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREE/wCKfsV710PxqgKf8U/Yr3rofjVA QEREBERAREQEREBERAREQEREBERBB9YaJqrTxDtl7vLqHUVtu97p6SJlwM5kohJK9/KYwP2O jDf+rIz02AZzdIIIaWnip6eKOGCJgZHHG0NaxoGAAB0AA6YWD4p+xXvXQ/GqAgIiICIiAiIg IiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCf8AFP2K966H41QF j+Iem7xqO3Wf0HJQsrrbdYbg3tzniN3LD8A7ASepHTp0z1XP+V/7jfm0FART/wCV/wC435tP lf8AuN+bQUBFP/lf+435tPlf+435tBQEU/8Alf8AuN+bT5X/ALjfm0FART/5X/uN+bT5X/uN +bQUBFP/AJX/ALjfm0+V/wC435tBQEU/+V/7jfm0+V/7jfm0FART/wCV/wC435tPlf8AuN+b QUBFP/lf+435tPlf+435tA4p+xXvXQ/GqApHqbvh/MPe3u1/xyl9Hdg7T/WvHs37v3VXEBER AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAR EQEREBERAREQEREBERAREQSvihqWwyVGladl7trp6LVFI+qjbVMLoGsLw8vGctDT0JOMetUC 26lsN5qHU9rvdtrp2sL3R0tUyVwbkDJDSTjJAz9oU74icJrLc6OKstGn55KqHEcdBaX0lCx2 Tlz5HvjycAAev1YAy4rWaK4d2HQdPMy1xyTTyvcXVdU1jpw0hvgD2tadmWA4+nJQaxERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQER EBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERB//9k= --------------080400010108040300010502--