Return-Path: Received: from mtain-de09.r1000.mx.aol.com (mtain-de09.r1000.mx.aol.com [172.29.64.209]) by air-dd07.mail.aol.com (v129.4) with ESMTP id MAILINDD074-86af4d191fd59d; Mon, 27 Dec 2010 18:23:01 -0500 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by mtain-de09.r1000.mx.aol.com (Internet Inbound) with ESMTP id A4D8938000145; Mon, 27 Dec 2010 18:22:55 -0500 (EST) Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1PXMO3-00058H-GC for rs_out_1@blacksheep.org; Mon, 27 Dec 2010 23:21:55 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1PXMO3-000588-14 for rsgb_lf_group@blacksheep.org; Mon, 27 Dec 2010 23:21:55 +0000 Received: from mailt.toya.net.pl ([217.113.224.9] ident=postfix) by relay1.thorcom.net with esmtp (Exim 4.63) (envelope-from ) id 1PXMNz-0004SH-RM for rsgb_lf_group@blacksheep.org; Mon, 27 Dec 2010 23:21:55 +0000 Received: from mail.toya.net.pl (localhost.localdomain [127.0.0.1]) by mail.toya.net.pl (Postfix) with ESMTP id 2B138200009BA for ; Tue, 28 Dec 2010 00:21:51 +0100 (CET) Received: by mail.toya.net.pl (Postfix, from userid 5001) id 2048F200008BC; Tue, 28 Dec 2010 00:21:51 +0100 (CET) Received: from [192.168.1.100] (unknown [10.3.153.39]) (Authenticated sender: unimlyn@toya.net.pl) by mail.toya.net.pl (Postfix) with ESMTPA id 111B8200009BA for ; Tue, 28 Dec 2010 00:21:49 +0100 (CET) Message-ID: <4D191F8C.8060209@toya.net.pl> Date: Tue, 28 Dec 2010 00:21:48 +0100 From: Piotr Mlynarski User-Agent: Thunderbird 2.0.0.24 (Windows/20100228) MIME-Version: 1.0 To: rsgb_lf_group@blacksheep.org References: <5010F8F002AC4F598A01115AA882C5CD@White> <4D17D186.9010504@gmail.com> <002401cba55d$47d7fcf0$8d01a8c0@JAYDELL> <1EDC8A62B7414B45AA7725E81BB5111F@White> In-Reply-To: <1EDC8A62B7414B45AA7725E81BB5111F@White> X-AV-Checked: ClamAV using ClamSMTP X-Spam-Score: 0.0 (/) X-Spam-Report: autolearn=disabled,none Subject: Re: LF: "NM" on 136177.5 Content-Type: multipart/mixed; boundary="------------050800050900040804090502" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.0 required=5.0 tests=none autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false x-aol-global-disposition: G X-AOL-VSS-INFO: 5400.1158/53768 X-AOL-VSS-CODE: clean x-aol-sid: 3039ac1d40d14d191fcf24c7 X-AOL-IP: 195.171.43.25 X-AOL-SPF: domain : blacksheep.org SPF : none X-Mailer: Unknown (No Version) --------------050800050900040804090502 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Markus Vester pisze: > Thanks a lot, those are the best captures so far this season. Also > Dex in North Carolina received good traces from Ossi's "5" and my "NM". > > Going to longer symbols (actually 82 s dots, 245s dashes) probably > helped. I also dared to squeeze another 1.5 dB from the TX, giving > about 340 mW EMRP last night. I did attend the overnight transmission > by setting up my bunk in the shack ;-) Hello Markus, having some spare time i just finished a construction of another buffer/amplifier ( a simple LC network, J310 , BC109C ). unfortunately, i live in a downtown area which is not the best place for LF/RX purposes. Also, it is too cold outside (-11C) to be on the balkony and 'play' with the wires being thrown outside etc..so i took my w3dzz antenna instead. After some "harmonizing process" between the SL and SDR-IQ i was extremely happy to see your "NM" letters at 136.1775 kHz (in the attached file the time is UTC , dec.27th) {it is my first reception of ur signal) 73 , Piotr, sq7mpj qth: Lodz /jo91rs/ --------------050800050900040804090502 Content-Type: image/jpeg; name="mark1.jpg" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="mark1.jpg" /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcU FhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgo KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCAJIAq8DASIA AhEBAxEB/8QAHQABAAICAwEBAAAAAAAAAAAAAAECBQYDBAgHCf/EAEwQAAICAgEDAgQBCAcFBQQL AAABAgMEEQUGEiETMRQiQVFhBxUjMjWBgrIWM3GRlbHSQlVWlNMkNKHB0Rc2dPAlJkZUYmR1g5KT 4f/EABgBAQEBAQEAAAAAAAAAAAAAAAABAgME/8QALhEBAQACAQQBAQQLAQAAAAAAAAECESEDEjFB 8FEiYYGxBBMyQnGRocHR4fEz/9oADAMBAAIRAxEAPwDyoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAASDkqepp/T6msMe6yDjILy93r22V0Ljq6AFpa+i/f9xFrT37/Qvb N81FdP7Atvxrfj7FRcZxoNDTLef7xrz7/vHYKhpr3TGxszqKgnT+wJ8+SyCpsD6K6qXv0zzf/IW/ 6TAM9/ksHh/+hXVX/DPN/wDIW/6R/Qrqr/hnm/8AkLf9J7gBB4f/AKFdVf8ADPN/8hb/AKR/Qrqr ev6M83v/AOAt/wBJ7gAHh9dFdVPWumeb8/8A5C3/AEj+hXVW9f0a5vf/AMBb/pPcAA8P/wBCuqv+ Geb/AOQt/wBJeroXq26xQq6W56c37Rjx9zb/AHdp7dMr0t+3cb+L+RgfnUAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJitsgmPhm8d bmxMfHnWyPGvxJW0tfchr315NcyINaGvBPvtiOtrft9RxvgN+3j+0lx1rW9kJfV+EXbdkvPjb/zN 4zc58+hSXv4/8CC0V4b+qIk23t+5nKcbvsVJJfl+EWn3b8/Xz/eTt4tFFryJe717EJ6Zb3X4Ik1Z pUP8D3Hjw53EseRynI8dkYlUZTtqxOLtVskk/wBX9NLz+Ci2/Ze54aP0AMXkaL0u8H+h2dgWcRyE cOnLyLJYfwNuPuizKslBQhJQ9SPp6brjva+Tte+14t4XI1dMeniUfD8bZyfdfCPF3KmWL6OtRwU1 bGt3JJ17fc++b3XJo+nAg+e8v6FPR3B0z4Kym6rkaMmijA4u1wrjXlQc7VXGLdLlU5z7X8y7nHy0 zv8AWXT3F9R0Y9suIhk5nKQqwvisjFbniUfPZKfzrdU1F2JPX9Y61L8NzAHz3mMG+zrd2rDsne8z HlRd8HKVqpSr9T08tfo6KvFvdS03L9Jpr1lreqcuq7LyceEblZR29zlRZCL2trsk1qX49revro7A A+c9J8dm1XceuLxvzdyVXGOrlsjJwbO27M76fnm9w+IfyZP6SM2l3N7+bz9C6MxuoIdS4cs7k+Ku xk590KeOsrk12PWpO+SXnX0ZyGV6W/buN/F/IwPzqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkr3IRatbkl7b8G8Zuwclac5xh4W/ Zmar6fsn3J5OOnr6yf8A6fgYOx90nKPhPzohyl9Wz2YdXpYSzqY919XeuPH0a6dxl3lNue7HlVDb lF+daT/+fsRTU70opxWmkt/izg34G12/iMur0v1m8cdY68b/AL6c9UXvrfh+PJemHqSUW9baRWMH LS+/sHuLf0+mjjhNayym4rPV9PTmpNZeLqPu+9/bf2/BnX5LhZYdU5u+qTgk3FPz5bX/AJGMUu1L be97/tRVy3tv3O3Uz6HOsPP3+P6f0ei9TpXHUw5+u3b47Bea2vVrr86+d6+j/wDQzlHSd10lGObj f/yfv4X2/FGrb8++izk147n4Odz6f6vUx5+u/P4Nfo/V6OH/AK4d346/tXf5jjpcffGqVsLW4qW4 PaW2/wD5/eY72Yk235ewvP4I8t5vDl1LjcrcZqfTyP6bPfp4BPceP0vw2BN5PDcPw+DnwjJU5FeD WnXJprfy6bXnyk1teNlyc3Jhc5DM4OfI1YWcnG2yn4TtjK71YWupx+VuP6yfnu7UvLaW2uOvqPHl h22WY2VVmVX/AArwZKLudzgrFWu2Ti24tS2paS25NdstdfheF5fjeKzMWzl8WV1l9mTTbTguv05W WytmpKVku6DctaXa9b8701j7Oh67OErwrZ8dOdWZ8bXRPj1LBrl6bq7Fjd3iOm5a7/6xuX4GRnMr m3icdh5mZxmdT8Tk1YsqW6nOl2WKuM5asa1tx/VbfzLx766/UXUr4P4uyfDcpl42Ji/FX5GOqlXC Hz7W7LIttKDbST9190dPL6Zz30/x/F4HJ4tMKL4ZM3bhysXfG6N0I1wVsfTqTXaoedQ0t+NvMZ3G 28hRxteZkVtUX1X5CrqcYZEq/MdeW4pWquz3f6untNgdPkOpXg8hOi7huUeNDKpxXmpVKnvtdai1 uxSa3Yk2ovyn9mZ8x+Zx3xfLcdmWW/osH1LI09vvbNdis3+EHatez9TfukdmmOUsvJlfdTPGfb6F caXCVfj5u+fc1Lb9tJa/EDH8Nzb5XJyY1cZnVY1Nl1Ky7XV6dkqrHXJJKxy90/eK9v7DbOlv27jf xfyM+f8AH9HY8MzMs5SPHZtGTFxtqjx8KllNzUvUyVtxutTjtSSik5WaXzeNo6K6X4Dj+p8LL47g +Kxcuvv7LqMSuuUW62nppbXhtAeAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ92QCiz8f2kMl+5L12+H537HSzyIS2x59iC8fD21v 6jCS8Ir9fJyxUptv6+W/7jjSbL71+q2l9Tr05zu+CqST0m/qWm1tqK8BeYrxsrLXc9ffwTLibnvQ SX92yPcjY2cdze1GSvwJetLX7xvx+O/cSciapKM4uUdpPyvue/DwFL8PY9zYPLZmTmQpu6e5TFrl veRfPFcI+Pr2XSf4eE/cuVsnaMuDWeEyczI6Xs+J5b08lZ2ThrNurr7tRy5Uw8JKPqNJJeNdzXyv 2eG/pBy9HGvCUM7I5C3k/gIdyx/i6Y/Deu3JJqh2aT1p9qUoNqUlOL5jfwajk8hkLpfjcvD5LNlb Hk8fGvlkV0+pLeWqbarFGPZ43Jbr1+omm15d+tYcrXXO/jOcysS/IhXi4WHTRTJSyXKXzydlcpOK TUpqOtQqm/P0DawapzUOVo57DWJzmS55mZB1YEaKfSrxq1B3Oxut2aaU13prU7al49zawBlelv27 jfxfyM+YcBznKdnDZNryuUfMcVLkpYcIUwdMk8f5aW/T+X9PP+snN6ivO973fo3l83I6nw6reneV xq27P0908Vxj8j9+y6T/AA8J+4HgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYrZBKNY+RyLSb8+P8yq91v2JsjqTSe0noiae/P08 HXKWca8IqTESWnr7DfsYnF5VaK34S9l5Etr5WRvxolaa035+50xss1PPzhBSa34I2/P4iUdJfj5I 29a+nuZuWXsT+7+0iSaemtMe/wByGZvhT2BaXu/r+IT2taRNc6EHvrJoqyqLaMiqu2i2LrsrsinC cX4aafumeBPKZ7/M0YzC6e4bBoyaMHiOOxqMqHp31041cY3Q8rU0l5Xl+/3Zf8y8V+aPzV+bMH82 f/dPQh6Pv3/qa17+fb38lKOe46/hnysLrFhqUq92U2Qs7lY63D02u7v7l2qGtt+EnsV87x0+Nuz/ AFrI01T9OyM6bK7YzetQdTSs7n3w1HW33Q0ntbgZvT3DZ1GNRncRx2TRiw9Oiu7GrlGmHhagmvC8 L2+yO5DCxa6sWqvGphXia+Hiq0lTqDiu1f7Pytrx9G0dOXOYNeDiZlvxVVGVfHGh6uHbCaslPsip Qcd1pvxuSS8rz5R1+b6p4rhb7qs+eUpUULJudOFddGqp9yU5Sri1Ffo5e7+jAy8qKpZEL3VW764u uNjiu9Rem0n9n2Q3/YvsUpwsWjLycqjGprycnt9e6NaU7exah3P3el4W/Y62ZzGHichRhWO6zJt1 qunHst9NN6TscU1Wm09Oel4f2esgB08Li8DBvyb8HBxca/Kl6l9lNMYTul5e5tLy/L9/uzYelv27 jfxfyM1fjOcwuSzL8bD+KlOiVkJznh2wq7q59skrHFRk1JNeG/Z/Y2jpb9u438X8jA/OoAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC 9et+fsyhJrG6uxeUtr2/eV+hDINZZ23kW8+GECdePdeS69olS9vH00VDTTLy0lFrTf1NatnPoTrt flaX2+5R+/keWi/mMmmlvbWmbusuPEFI7bSRauPfJJe7aRxlotp7XucscpLO7wKEgn6GJFQz3Jj8 Bj8fY8rAs5C7KrhJ1Qy+WyrKpS00lNSlJa/HtevfW0eG2e/yUax09h8/gcPm0X0cVXlPJuyqOzJs thZ6uRZbKuX6OLj4l2qa7vvrx2vGW9JZ1vF1OTrjl1cj8dHGhyF6bXoOnseYl6zflz7mm9ar/USZ vQINR5Pi+fs6e47BoWDl5EMmrJtsycyyHpqrIhdXUpenJ26UfT9SWm9dzTbaMvzODlcrx+FiXKmq my2uefVGxyTrSc3XF6XcnJRg+5LdbktJsy4A1GzpzkKuq8nkMLI7KsrJqyLLvjLo+mo111yq+G16 VndGvXqNprv2lutb2emWU8vJjfTTDGXb6FkbnOVnj5u+HalHT9tN7/A5wBqHEdN5cMnNjmz+Gwb+ +VteFyGR+ntlYrPVgm08fz3t11zafqtNvtW9r6M6dwcPqbDyKr+VlOtzeruUyro+a2vMZ2NP3+qO QyvS37dxv4v5GB+dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAktDTfkqWg9M6dPXdNiGtN79x9vJZ6TW/KEO3a7t6+ujXbN6RQt2+C Zr2e/cnv01r2T2i9slvcKvelteBrb1EtF9qWvqnsLT7tvX10a7Zdc/NfUFPW9JeVoWbU34af4+5M 9bk1tr6MnSSbb20/b+86WZWdtvzn5wjh0WX+Xkj8PoE9ex5uI0fT3C+5AJvkEe6MHqHDzsyGNRRy kbJ707+LyqYeFvzOdaS9vqzwxH38nvvJpjkUW02OxQsi4N12OuST8eJJpp/intGb4GD4PO5XkOnL Ld4MuTjk5OL6npzhT+iyJ1ep2bb9od3Z3eX42t7WH/pfk0cP3ZFfq5tmd8BTbXg3Lz6Xq+pLF83R 0lP5H5lpPcI2dyzmD0txWDg5OHTXlTx8ifqTjdm3W6n3uXfFzk3XLuff3R096e9pM5P6N8b+b/hP Su7PV9b1vibfiPU1rv8AW7vU32fLvu/V+X28EGPyOXzquneNz6MvByrLM7HovmsSypTjZkKmUFW7 N12R7vPc3pxaaX0dY5nP8dTkZnFX8VDHjVXXRTk4tltl+VObjCvasiq026km9+7b0kdzO6W4rOwc bDuryoY+PP1IRpzbqtz71Lvk4STsl3Lv7pbe9ve22ZB8djSWApxsseBL1KJWWynNS9OVe229yfbK S8799+/kDX8nqWc+qbONx7q8SjFvqx77cjButjdOcIS7IWpqup6sgl3Ntynrt9vU2sxl/BcdfyUc +ymx3d8bHFXWKqycdds51J+nOS1DUmm12x8/KtdunEqpy8nIhK52X9vcpX2TitLS7It6j+Palv67 A1Th+qsydfHZfK112YnKcc+Sprw8S2duNFOlem1Fydr/AO0L51COu1vWn42/ozqLBzOpsPHqo5WM 7HNbu4vKpj4rb8ynWkvb6s6HGcFx3F3u7DpsjPs9OKldZZGmPh9lUZNqqPhfLFJfJDx4Wto6W/bu N/F/IwPzqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAEloe/7mVXsSvc3jxYLzaaWlrS8/icZI1r39jWV7rtEt7S/Afj4+xC9037D6CX 3RKekyDlgk1p+8l4/DycXszWWN1N+ByLcnr3fv8A+BWS86TevbZaqtyUpL2itsrNtvetJ+TeUvZM rPP5f9PaqW/CI0TsJ62cOFWjLtkpL6PehKSbaS8NlX5JS29G+7L9mIqe/wA8AM9yY8OdxLHkcpyP HZGJVGU7asTi7VbJJP8AV/TS8/gotv2XucqrNg0Xpd4P9Ds7As4jkI4dOXkWSw/gbcfdFmVZKChC Sh6kfT03XHe18na99rxbwuRq6Y9PEo+H42zk+6+EeLuVMsX0dajgpq2NbuSTr2+5983uuTRB9OB8 95f0KejuDpnwVlN1XI0ZNFGBxdrhXGvKg52quMW6XKpzn2v5l3OPlpnf6y6e4vqOjHtlxEMnM5SF WF8VkYrc8Sj57JT+dbqmouxJ6/rHWpfgG5g0Xm8CM/yg4+e+Lrzb1HHorjkca7FCELJSd1WVt11O PqNuM13N1JL9aLe5U5dV2Xk48I3Kyjt7nKiyEXtbXZJrUvx7W9fXQHYMr0t+3cb+L+Rnyjpbj8ij leVnxmFiY2ZfK+6Wfl8NKq2iVmR6no2T9RfEp7mlOufavSXvuJv3RmN1BDqXDlncnxV2MnPuhTx1 lcmux61J3yS86+jA8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAACUXq/XRRF4e/vo6dK6yl+9L4Iya8eP7SJzcvdhJPZH0NXLLWt8Cd v2I87/En322XcXGKb/2ltf3/AP8Ag1byKR9/JGvwL+F7r3X9xEVuWt+PuXs8YiYzcdST0yGvbf28 ExjtSf2LWpwk4yXs/b7fgdLMrjvLx8/PQ4mPoTLe9/fyJLST+5wsvKkdOa7vC350R+4gsvvrwWXf AofoAeAfd+57+OdgAxGFzkMzg58jVhZycbbKfhO2MrvVha6nH5W4/rJ+e7tS8tpba46+o8eWHbZZ jZVWZVf8K8GSi7nc4KxVrtk4tuLUtqWktuTXbLUGbBiMrm3icdh5mZxmdT8Tk1YsqW6nOl2WKuM5 asa1tx/VbfzLx766/UXUr4P4uyfDcpl42Ji/FX5GOqlXCHz7W7LIttKDbST9190BnwYjJ5t18/8A mmjjM7KsjVVdddU6lXTGyc4pvusTf9XJ/Kn7GXAGV6W/buN/F/IzT+E6jx+VvprqxsqiGTQ8vDtu Ue3JpXbuyPbJtL9JX4sUX868eHrcOlv27jfxfyMD86gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALR9ypaPv76NY+RMlptEL2ZMo6Sf 3Km8pq8wT7kyWkvs/JHg5Oxzjv8AckawxuW5Oaiv2j9foG/GtePoRp62SpLuTa3+BqZerx/gWscH KXamov2X2Ia1L3/tYUWvOvC8kbcXv7Ftvua+UPdJa8+xMU5Pt/B/+pXXjZG9HPfM38glt7b+5VMP 3JX1Mc7US2z3Hj9L8NgTeTw3D8Pg58IyVORXg1p1yaa38um158pNbXjZ4bbPf5m6GucLwvL8bxWZ i2cviyusvsyabacF1+nKy2Vs1JSsl3QblrS7XrfnemsfZ0PXZwleFbPjpzqzPja6J8epYNcvTdXY sbu8R03LXf8A1jcvwNzBBqmX0znvp/j+LwOTxaYUXwyZu3DlYu+N0boRrgrY+nUmu1Q86hpb8beY zuNt5Cjja8zIraovqvyFXU4wyJV+Y68txStVdnu/1dPabMmANd5Lpt53UVHJSuxV6Uq5Qs+EXxdc Yvfp13prtql57ouMm1OxbSa1m6Y5Sy8mV91M8Z9voVxpcJV+Pm759zUtv20lr8TnAGqcb0fVXDEx uXsxeR4/Bw3gYmNZirXo7rf6bcpKyX6GrylBb29eVraOiul+A4/qfCy+O4PisXLr7+y6jErrlFut p6aW14bRcyvS37dxv4v5GB+dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEogmPuax8i0ota/FbI2S3t/gVN2yX7KBaL0yr9yzWkn9x Ny7npU+X4XkqvLLQ9m/qF+t4/ds3271aizfzPyWi4q5bTlHXt7fQpJpNqOmmH48ra8+Dt39t351d /X39/GkUfuQy8ktLX7yvk82c0qdeE/8AwIb8aJfsiPcX6RUI9yUZ3M02O3mMHh8Lj64ysuyK+Tss dcEm96lTFa++2tLyeHPY9/GL4Gi9Lcvxmb0dnVvnrLaMXMya7r6cx3W1UPKsVblZuUowdaX6Rtah uSktdyxS5nOp6X7sbKpeBbyfw9mVZydjx6sb0e99ue4OTTtXb6jW1Kx1x04wkvp4Mj57y/NcdhdH cJdZyVnGzfIUTq9fk7G7orKhG2SslLd1LrlKSb8Otxel41kOscKjksajI4/lM/4rlIVYeBLD5G2q mLffN5CUJqM2q++z5nqSqUVpvzuQA0Hqbn8/B696exMmN+Lx9ud6NKjdRGOYpY805S3YrH2zlBKO teN7lKVcVu9Obi35eTi0ZNNmTjdvr0xsTnV3rcO5e62vK37nOAPn3S+bfPleVWDOvlOQlK+6DnzG Q6qYO/aqvqlFrFtUJJKPY2/SsXy6ZvvRmT1BPqXDjncZxVOM3PunTyNlkkux61F0RT86+qOQyvS3 7dxv4v5GB+dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAktF6e17lS0fL+uvwN473NB+OvA02TJuKcfo3sr9DVmrz+KJktS1vZC+xMl p+5C9h+9VWhLX7vJfzOSjFe78JnG/LbS/H+wstb+vbv9+jpMr+zfCG9fXy/c5pr1NNeyS/y8/wCR xVpee77EeZLe/ZaO0usdWbl9fw+bRx/Uv2pp+fYoTvweTHU8tC9yz8rz9PBRhFl1wiUe/jwE/ll4 fse4sfgMfj7HlYFnIXZVcJOqGXy2VZVKWmkpqUpLX49r1762jGX0V2KOe46/hnysLrFhqUq92U2Q s7lY63D02u7v7l2qGtt+EnsV87x0+Nuz/WsjTVP07IzpsrtjN61B1NKzuffDUdbfdDSe1vF9PYfP 4HD5tF9HFV5TybsqjsybLYWerkWWyrl+ji4+Jdqmu7768drxlvSWdbxdTk645dXI/HRxochem16D p7HmJes35c+5pvWq/wBRJmRs8ucwa8HEzLfiqqMq+OND1cO2E1ZKfZFSg47rTfjckl5Xnyjr831T xXC33VZ88pSooWTc6cK66NVT7kpylXFqK/Ry939GYzk+L5+zp7jsGhYOXkQyasm2zJzLIemqsiF1 dSl6cnbpR9P1Jab13NNtoy/M4OVyvH4WJcqaqbLa559UbHJOtJzdcXpdyclGD7kt1uS0mwO3lcnh YebgYeRkV15WdOUMep/rWOMHOWl9kl5ft7L3aO4abznS/I3dX8ZzHG5tnpxy45GXXdbWlGMKp1KN X6GUmtWWPTkluUtacu+O10yynl5Mb6aYYy7fQsjc5ys8fN3w7Uo6ftpvf4AdPjOd47lL3Th3WSn2 epFypsrjdHwu+qUklbHyvmi2vnh58re0dLft3G/i/kZ834fpXMhXx2JytldeJxfHPjabMPLthbkx bpfqNxUXU/8As6+RTlvua3pedv6M6dwcPqbDyKr+VlOtzeruUyro+a2vMZ2NP3+qA8BgAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUF 5BatpSW/b6m8ZuyUJS229e5VL6k/QhFt3d0Xk+5t/dlfqWm/PhaLVy7X499NG9S56t/FPSj0tabO TJhKu2UJe8Xp/wBpxt+F4OSe/TUG/bz/AH6NzVxyn8P+fPoKrbi19Svs/H9xMd+de31LrU5JQSTb 0tlk7pPr88CsvPl+/g4y0ff22GvHucrO7kRJ7exH+0ePv4J1/kZm97VH4s9/HgA90YPUOHm5kMai jlI2T3p38XlUw8Lfmc60l7fVmb4GXBgODzuV5Dpyy3eDLk45OTi+p6c4U/osidXqdm2/aHd2d3l+ Nre1h/6X5NHD92RX6ubZnfAU214Ny8+l6vqSxfN0dJT+R+ZaT3CNncsjdwaxkcvnVdO8bn0ZeDlW WZ2PRfNYllSnGzIVMoKt2brsj3ee5vTi00vo6xzOf46nIzOKv4qGPGquuinJxbLbL8qc3GFe1ZFV pt1JN7923pIDZwa5zfKclxvL4f8A3WWBkX148afQsc5KbjFznkbVdTTl4rabs7dJ7lqOxgDK9Lft 3G/i/kZ874nqPL+O5P8APNnp10W3QqwquIyfiJVxu9ONkJ7frLt7G/Tj49Rba+u19GdRYOZ1Nh49 VHKxnY5rd3F5VMfFbfmU60l7fVgeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9yC8Hryaxm7yC99PwvqPKX9pUs3teX5+xuWIP8A 8R/d/aHr6EL29hfKpX/kTDzL3/AtJ/o4pr7lYeNd36rNySZSIbfaQ38214OWLXlNP3+/0+pxOTe/ xezWc1Jz8gj2ZaSa2n9/ciT2/wBxK9tP2b9znJN2CJL28aKltfNp+CqMWcqM995NMcii2mx2KFkX Buux1ySfjxNNNP8AFPaPAjPf5mjCYPS3FYODk4dNeVPHyJ+pON2bdbqfe5d8XOTdcu59/dHT3p72 kzk/o3xv5v8AhPSu7PV9b1vibfiPU1rv9bu9TfZ8u+79X5fbwZcEGEzuluKzsHGw7q8qGPjz9SEa c26rc+9S75OEk7Jdy7+6W3vb3ttmQfHY0lgKcbLHgS9SiVlspzUvTlXttvcn2ykvO/ffv5O2AMZf wXHX8lHPspsd3fGxxV1iqsnHXbOdSfpzktQ1JptdsfPyrXbpxKqcvJyISudl/b3KV9k4rS0uyLeo /j2pb+uzsADGcZwXHcXe7sOmyM+z04qV1lkaY+H2VRk2qo+F8sUl8kPHha2jpb9u438X8jMUZXpb 9u438X8jA/OoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACUQSvfyWCyW1sNNe5L+STX9qIUvPnydfszi+UPbTJ358rzopsn95Jfoqd+ EteS0pd0YrSWvBVLbLQTlYk/Lb+50w7suJ74/JHJZ3Q7O7/ZXj/P/wAzj02k/o9+xa2W203tp+/3 I/UcoyWn7f2HfqXG52fu/PP8tJHGlsvYu163vwv8iPb2f08lX5PLdSa9qu/Om5e/uUa0GELlLRDP cmPDncSx5HKcjx2RiVRlO2rE4u1WyST/AFf00vP4KLb9l7nhz6nv45VWi9LvB/odnYFnEchHDpy8 iyWH8Dbj7osyrJQUISUPUj6em6472vk7XvteLeFyNXTHp4lHw/G2cn3Xwjxdypli+jrUcFNWxrdy Sde33Pvm91yaPpwIPnvL+hT0dwdM+Cspuq5GjJoowOLtcK415UHO1Vxi3S5VOc+1/Mu5x8tM7/WX T3F9R0Y9suIhk5nKQqwvisjFbniUfPZKfzrdU1F2JPX9Y61L8NzAGkdR4dd3VWDPF46784rJpnLK eJZKcqk69+llbcKa0lZ3VPTs+ZJJ2KUtvpy6rsvJx4RuVlHb3OVFkIva2uyTWpfj2t6+ujsAD5z0 nx2bVdx64vG/N3JVcY6uWyMnBs7bszvp+eb3D4h/Jk/pIzaXc3v5vP0LozG6gh1LhyzuT4q7GTn3 Qp46yuTXY9ak75JedfRnIZXpb9u438X8jA/OoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASiY+637EImOt+TePmBIhkyD+xb7EvW/Hg a2m/psjxpFo71r6e5vCbvKJhFyXtvRVPTW/Y5a5OMfletppnCzecmOONnkX8t6j5/sIl3N90vq/c hb+jLS9km/qyXnHn/QoyXrS17iP9mx49tfvOc/MN+EtB/h9iI6359iWmtb8J+RzYKnv88AfU9yY/ S/DYE3k8Nw/D4OfCMlTkV4Nadcmmt/LptefKTW142c6rkwuchmcHPkasLOTjbZT8J2xld6sLXU4/ K3H9ZPz3dqXltLbXHX1Hjyw7bLMbKqzKr/hXgyUXc7nBWKtdsnFtxaltS0ltya7Za6/C8Ly/G8Vm YtnL4srrL7Mmm2nBdfpystlbNSUrJd0G5a0u16353prH2dD12cJXhWz46c6sz42uifHqWDXL03V2 LG7vEdNy13/1jcvwIM5lc28TjsPMzOMzqficmrFlS3U50uyxVxnLVjWtuP6rb+ZePfXX6i6lfB/F 2T4blMvGxMX4q/Ix1Uq4Q+fa3ZZFtpQbaSfuvujp5fTOe+n+P4vA5PFphRfDJm7cOVi743RuhGuC tj6dSa7VDzqGlvxt5jO423kKONrzMitqi+q/IVdTjDIlX5jry3FK1V2e7/V09psDjzOcrxOWow7M HOddtqoWSox9P1Wu5RSb9SXjy3GLivO2u2XblzAT4jlV1LZydfI4MseXZXGq7CnOymr5O+uuxWpL vabb7G/be1GCWYpjlLLyZX3Uzxn2+hXGlwlX4+bvn3NS2/bSWvxAx/Dc2+VycmNXGZ1WNTZdSsu1 1enZKqx1ySSscvdP3ivb+w2zpb9u438X8jPn/H9HY8MzMs5SPHZtGTFxtqjx8KllNzUvUyVtxutT jtSSik5WaXzeNo6K6X4Dj+p8LL47g+Kxcuvv7LqMSuuUW62nppbXhtAeAgAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALR9ypsvR8eL9 XkruUpxsm3Gwp3YeJlWyqpybVKHdCcoyi/FTtkkpxbnCKW2+yWsbqjXNeN/YlLb919DceSp6bv6O zuV4914vKzz8WuPHSsm548HXkO117f6SltU6b3OH6st+LLdNT0bmt8omS09Ez2kk17ENPw39SZPb 3v39zfHPr/HzQlRXantt/YjWmt+V76Kra8kttr+xaJvGzwJUNxcvoh/se5n+klwT5aNXVCzo8fdC VasxL1U67PDjKbdc269++otpPaUmu15z8o2H0px+FwtHTlVksq3G9fIyIctDNrad1yipRVMHGbgq pafY4xaUq1LbNd0nievn9Bo0motx1tFFpPz/AOA1tbf3G9rX2M5Zbu/5CPYnT1v6exVkxW3oxPOo pF6Z7+PAPse46M7mabHbzODw+Fx9cZWXZFfJ2WOuCTe9SpitffbWl5M3xoZsGi9Lcvxmb0dnVvnr LaMXMya7r6cx3W1UPKsVblZuUowdaX6RtahuSktdyxS5nOp6X7sbKpeBbyfw9mVZydjx6sb0e99u e4OTTtXb6jW1Kx1x04wksj6eD57y/NcdhdHcJdZyVnGzfIUTq9fk7G7orKhG2SslLd1LrlKSb8Ot xel41kOscKjksajI4/lM/wCK5SFWHgSw+Rtqpi33zeQlCajNqvvs+Z6kqlFab8huQNJzeR463ruO J+f/AIXMx7a4zquz/T7nKCccerH2lZ3d+3ZOMn8/bF781bfTm4t+Xk4tGTTZk43b69MbE51d63Du Xutryt+4HOZXpb9u438X8jPknSfI5tt3Hvi8n848lbxjt5bHyc6ztpzO+n5JrU/h38+T+jjBJ9rW vl8fQujMnqCfUuHHO4ziqcZufdOnkbLJJdj1qLoin519UB4DAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/wDJ1yS47m7qKpcjTnZ9 KxMXN4yv1MvFtdtclKmHdBylJQdWlOL1bL3/AFXqBsvSNvEKPMYvNy9FZ2EsfFy3jq5Yt3r1TU5e e6MeyucXKClJKb1GXs9TyM/1h1B+d+mLKfzp1H1J2ZlM/wA4czR2fA/o7V6Vb9a3+t/Wa3D/ALuv EtfL891p6Zv3W/L8Dm0crj8ZDCcKeVdfDvGwlROvAgpr9NPtjKxz3R2uxzmvSs247+fQvGvxOkks QaaemcqcPUjKS+Xa2v8AM45b7tP3Xgj22jcy7bdT37+4WlLu9vZedCM9P9zRXe/HhFoLe/b95ccs rluXkbd0DyS4/nr661yNGbn0rExMzi6/Vy8W2Vlck6Yd0W5SUHVpTi+22Xv+q8l1h1B+eel51fnb qLqRQzKZ/nHmaO34H9Hb+irfrW/1u+5rcf8Au68S18vR/JrRDN57JxaMau3k8jHlHjndgyzaqr1O MpSnTGuxzXoxuS/Rz05J6Wu+OZ/KDjWYXTGFbysOPvzM26u/jcvjeEnx1Tx1CXq7bx6Fb3OeO4tK elGXmPd8zqc9S78b+X0Tw+a6cdN+U1/mcbJe9fgSvw9/OzGd3xAUH39r8PeiuvGyVtvxvZUzdeoJ jra37Hv4/P8AP0AOdvGlAYyjnuOv4Z8rC6xYalKvdlNkLO5WOtw9Nru7+5dqhrbfhJ7FfO8dPjbs /wBayNNU/TsjOmyu2M3rUHU0rO598NR1t90NJ7W4MmDGS5zBrwcTMt+Kqoyr440PVw7YTVkp9kVK DjutN+NySXlefKOvzfVPFcLfdVnzylKihZNzpwrro1VPuSnKVcWor9HL3f0YGbB1HyWNHl4cY5WL MsoeTGLql2utNRbUtdu05R2t78rx5O2AMr0t+3cb+L+Rmr8ZzmFyWZfjYfxUp0SshOc8O2FXdXPt klY4qMmpJrw37P7G0dLft3G/i/kYH51AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbL0Pyv5q6iouWBxudC9/DTpz66HXqfjaldGVdU k9NWNaWvmTj3J60br+TS/Mr5DlfzW7cfOnx840cjXfDHfHzVlbVnqzlFVqevRb74+L2l3NquVGP5 fneR5rip/F08NXTTdDfwnG4eJc5NT1/VQjZKPh794p9u/Licv5TMenE/KR1VjY1NVGPTy2VXVVVF RhCKumlFJeEkvobB1Fl50uhuax+X42yHMLlcCeZnq2Eq8n9BluqctP5rJqbl6sNxtSUn8zc7cH+V ZpflU6x7vb89Zm//AO+ZuznV4Rqf+15Jk968efqVOWMHPtjHbb+n4msZctyBGvu377S2yn6rLqbS lv6r/wAym9nTO9PUuPn/AGk2z3THIyofIcc667KuYx/gZ+pfGnsfq12Vy9SXyxSsqr33eO3uW477 o9vN6hzOT4DmXkxqsyOS5WGfnZE7a4zss7bexQqWmluy5yktrzWvk/2+1+Ta3MqzeV/Nfq4+dPAn Gnka8iGPLj5qyuSs9WcoKtT16Ll3x8XtLubUJZbqLMzLOhuaxuX422PLrlcCeZyELYSqyf8As+U6 7JafzWTjJy9WO42RSk/mbnbnHJWv/lMx6cX8o3VOLi01UY+PymVVVVXFRjXBXT1FJeEl4WjVfY2z 8qse78qnWCb1/wDTWZ5//fmas065/imSS2d1/mK+2miB43+ATMbVZJaTb+57hx+Ax+PseVgWchdl Vwk6oZfLZVlUpaaSmpSktfj2vXvraPDm/B7+GVnoax09h8/gcPm0X0cVXlPJuyqOzJsthZ6uRZbK uX6OLj4l2qa7vvrx2vGW9JZ1vF1OTrjl1cj8dHGhyF6bXoOnseYl6zflz7mm9ar/AFEmb0DmNR5P i+fs6e47BoWDl5EMmrJtsycyyHpqrIhdXUpenJ26UfT9SWm9dzTbaMvzODlcrx+FiXKmqmy2uefV GxyTrSc3XF6XcnJRg+5LdbktJsy4A1zNxeZn1jhZ9GJx0+PxqLcZzszLI2uFs6ZOfb6TW16TSXd5 37ozlMsp5eTG+mmGMu30LI3OcrPHzd8O1KOn7ab3+BzgDUOI6by4ZObHNn8Ng398ra8LkMj9PbKx WerBNp4/nvbrrm0/Vabfat7X0Z07g4fU2HkVX8rKdbm9XcplXR81teYzsafv9Uchlelv27jfxfyM D86gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAABm+E6T6i57EnlcHwHLcljQm65W4eFZdCM0k3FuMWt6aevxRsfEdIdecZHkK6ejefsoz sZ4t9VnFX6nHujNPaSacbK65rT94pPabTAo7n5g/KLZ0m+nbukOfswFk15NbnxNzsrcFalCMu3fp 7usfb7Jttacpd1etuj+r+c6z57lcTo3qiONyGfflVxt4u5TUbLHNJ6TW9P7sAsu9bGD/APZx1v8A 8HdSf4Xf/oORfk7611v+h3Uia9tcZd+H/wCEA1hnYiK/yd9bp/8Aub1H9vPF3f6SH+Trrdvx0b1J /hd/+kA1c7ce2+DTJ8P0f13xsORqq6M56dGdjPFvqs4u/Uo90Zp7STTjOuE1594pPabT7UunvyiT 6Tl09b0jz9vHrIryq3PibvUrcFalCMu3fp7usl2vwm21pyl3AXesZoV636N6u5zrPn+WwujuqFjZ +fflVRs4q5TUbLHNJ6TW9P7swa/J11v5/wDqb1L/AIXf/pAMb1eFF+Trrdf/AGN6ka//AEu//SQ/ yc9b/wDBvUn+F3/6QCXK60JX5Oett/8Aud1J/hl3+k9ffnyv/dXUn+AZ3/RAJb9mB+fK/wDdXUn+ AZ3/AER+fK/91dSf4Bnf9EAyH58r/wB1dSf4Bnf9Efnyv/dXUn+AZ3/RAAfnyv8A3V1J/gGd/wBE fnyv/dXUn+AZ3/RAAfnyv/dXUn+AZ3/RMz0jysLufxa1x/NVN9777+HzKIL5H7znUor97/AAD//Z --------------050800050900040804090502--