Return-Path: Received: from mtain-ma01.r1000.mx.aol.com (mtain-ma01.r1000.mx.aol.com [172.29.96.9]) by air-mb02.mail.aol.com (v129.4) with ESMTP id MAILINMB021-a18f4d8bc9bb194; Thu, 24 Mar 2011 18:46:19 -0400 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by mtain-ma01.r1000.mx.aol.com (Internet Inbound) with ESMTP id 7278A38000083; Thu, 24 Mar 2011 18:46:09 -0400 (EDT) Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1Q2tGT-0001TH-0e for rs_out_1@blacksheep.org; Thu, 24 Mar 2011 22:44:25 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1Q2tGR-0001T8-Vj for rsgb_lf_group@blacksheep.org; Thu, 24 Mar 2011 22:44:23 +0000 Received: from imr-db02.mx.aol.com ([205.188.91.96]) by relay1.thorcom.net with esmtp (Exim 4.63) (envelope-from ) id 1Q2tGO-0007RZ-NF for rsgb_lf_group@blacksheep.org; Thu, 24 Mar 2011 22:44:23 +0000 Received: from mtaout-ma01.r1000.mx.aol.com (mtaout-ma01.r1000.mx.aol.com [172.29.41.1]) by imr-db02.mx.aol.com (8.14.1/8.14.1) with ESMTP id p2OMhtmZ028073; Thu, 24 Mar 2011 18:43:55 -0400 Received: from White (nrbg-4d073bf3.pool.mediaWays.net [77.7.59.243]) by mtaout-ma01.r1000.mx.aol.com (MUA/Third Party Client Interface) with ESMTPA id 4FD8CE000096; Thu, 24 Mar 2011 18:43:51 -0400 (EDT) Message-ID: <4427E21AD3434A31B4CF500C93C98101@White> From: "Markus Vester" To: Cc: "Paul" References: <8CDB82718FF0CEC-B4C-BB65@webmail-d038.sysops.aol.com> <4D8B86E7.20602@iup.uni-heidelberg.de> Date: Thu, 24 Mar 2011 23:43:57 +0100 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal Importance: Normal X-Mailer: Microsoft Windows Live Mail 12.0.1606 X-MimeOLE: Produced By Microsoft MimeOLE V12.0.1606 X-AOL-VSS-INFO: 5400.1158/69579 X-AOL-VSS-CODE: clean X-Spam-Score: 0.0 (/) X-Spam-Report: autolearn=disabled,HTML_MESSAGE=0.001 Subject: VLF: Phase variations and FFT resolution Content-Type: multipart/mixed; boundary="----=_NextPart_000_0068_01CBEA7D.57DCC990" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: * X-Spam-Status: No, hits=1.2 required=5.0 tests=HTML_20_30, HTML_FONTCOLOR_UNKNOWN,HTML_MESSAGE,HTML_TITLE_EMPTY, MISSING_OUTLOOK_NAME autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false x-aol-global-disposition: G X-AOL-VSS-INFO: 5400.1158/69579 X-AOL-VSS-CODE: clean x-aol-sid: 3039ac1d60094d8bc9b11a84 X-AOL-IP: 195.171.43.25 X-AOL-SPF: domain : blacksheep.org SPF : none ------=_NextPart_000_0068_01CBEA7D.57DCC990 Content-Type: multipart/alternative; boundary="----=_NextPart_001_0069_01CBEA7D.57DCC990" ------=_NextPart_001_0069_01CBEA7D.57DCC990 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Hi Stefan and Paul, thank you for sharing the most interesting NAA phase plot. Yes I understand that variations of ionospheric height will Doppler-sp= read any spectral line especially during the dawn and dusk periods, an= d ultimately the signal might be smeared out so much that there is no= more benefit in higher resolution. But I do not think that a 47 uHz= FFT is beyond the limit. Though the signal is integrated over about= 6 hours, due to the usual windowing the tails are less heavily weight= ed, reducing the "effective" duration to about 4 hours. A perfectly linear phase slope would simply place the maximum in an ad= jacent bin. So the trace will wobble a bit, with a lower frequency whi= le the terminator moves across the path during the evening, and higher= in the morning period. Only the deviation from a linear fit will lead= to a loss of bin magnitude. The effect depends a bit on the probabili= ty distribution of the phase deviation, uniform distribution gives a= sin(x)/x behaviour. If all phases within a 90=C2=B0 interval (ie. +-4= 5=C2=B0) appear equally often, the degradation is only 0.9 dB. With 18= 0=C2=B0 you'd still have -3.9 dB left. To kill the signal completely,= you'd have to spread the phase across the whole 360=C2=B0. To illustrate this and to coarsely estimate the phase deviation, I hav= e sketched slant coloured boxes across the slopes in Paul's graph. The= slopes have a duration of about 6 hours (morning, +60 uHz) and 4 h= (evening, -40 uHz), and the vertical width of the boxes is on the ord= er of 90=C2=B0. (It looks as if the sign of the phase was opposite to= the usual convention, as the sunlit path (12 to 18 UT) should be shor= ter, with phase advancing towards more positive (up) rather than negat= ive values). Assuming that NAA is perfectly GPS synchronized, the systematic shift= of the daytime phase is astounding. A possible simple explanation is= that days are becoming longer during the spring season, and midday so= lar elevation is increasing from day to day. With a given absolute path length variation, phase deviation should sc= ale more or less proportional to frequency, so the adverse effect on= 9 kHz should be 2.5 times less than on 24 kHz. In essence, I expect= only little phase spreading loss across an intercontinental path at= 9 kHz and 47 uHz resolution.=20 On the other hand, a very much longer integration across day and night= (eg. 12 uHz) would not seem to make much sense, not only due to the= phase effects but also due to the variations in signal level and back= ground noise. Best 73, MArkus (DF6NM) From: Stefan Sch=C3=A4fer=20 Sent: Thursday, March 24, 2011 7:01 PM To: rsgb_lf_group@blacksheep.org=20 Subject: Re: LF: Wasilla Alaska VLF - offline Hi Laurence, Markus, VLF, Hmmmm, about the 60000 windows, Paul Nicholson means.... (see a part= of our emails below) Am 19.03.2011 09:41, schrieb Paul:=20 Hi Stefan,=20 > Well, you see people are running slower and slower windows,=20 > such as "DFCW-60000"=20 There is a limit set by the variability of the path length.=20 For example, see=20 http://abelian.org/vlf/tmp/110319a.gif=20 This shows the absolute phase of NAA at 24kHz over a great=20 circle distance of 4672km. The graph spans 5 and a bit days.=20 During the day the phase advances because the D-layer height=20 falls from about 90km to 70km. The pattern repeats each day=20 with the night-time phase (path length) pretty much the same=20 each night, but the daytime path varies.=20 The path change between day and night is almost a complete=20 cycle at 24kHz, so we might expect 100 to 120 degrees at 9kHz.=20 The value of a long coherent integration will be significantly=20 reduced if the phase changes by more than 30 or 40 deg.=20 If the phase changes by more than 90 deg, a long integration=20 will be worse than a shorter one. Maybe "60000" is better anyway, as seen between DJ8WX or OE5ODL and TF= 3HZ. Anyway i would start with a faster mode and go for a slower, if= nothing is visible. It's your dicision, Laurence :-) 73, Stefan/DK7FC Am 24.03.2011 11:40, schrieb Markus Vester:=20 Hi Laurence, if I had only one to choose from, I'd definitely opt for the slowest= "60000" window at 47 uHz. Depending on antenna orientation, this woul= d definitely give Scott a chance, or perhaps one of us over here. Woul= d an onnidirectional E-field work as well for you as the RX loops? Running the second FFT for the Alphas nearly doubles the CPU load,= so you may want to skip that. Thanks for the great work! Best 73,=20 Markus ------=_NextPart_001_0069_01CBEA7D.57DCC990 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi Stefan and Paul,
 
thank you for sharing the most intere= sting NAA=20 phase plot.
 
Yes I understand that variations= of=20 ionospheric height will Doppler-spread any spectral line esp= ecially=20 during the dawn and dusk periods, and ultimately the signal might be= smeared out=20 so much that there is no more benefit in higher resolution. But I do not think that a 47 uHz FFT=20 is beyond the limit. Though the signal is integrated over about= 6 hours,=20 due to the usual windowing the tails are less heavily weighted,=20 reducing the "effective" duration to about 4=20 hours.
 
A perfectly linear phase slope would= simply place=20 the maximum in an adjacent bin. So the trace will wobble a bit,&n= bsp;with a=20 lower frequency while the terminator moves across the path during= the=20 evening, and higher in the morning period. Only the deviation from a linear fit w= ill lead to a loss=20 of bin magnitude. The effect= depends a bit=20 on the probability distribution of the phase deviation, uniform= =20 distribution gives a sin(x)/x behaviour. If all phases within a 90=C2= =B0 interval=20 (ie. +-45=C2=B0) appear equally often, the degradation is only 0.= 9 dB. With=20 180=C2=B0 you'd still have -3.9 dB left. To kill the signal= completely,=20 you'd have to spread the phase across the whole 360=C2=B0.=
 
To illustrate this and to coarsely es= timate the=20 phase deviation, I have sketched slant coloured boxes across the= slopes in=20 Paul's graph. The slopes have a duration of  about 6 hours= (morning,=20 +60 uHz) and 4 h (evening, -40 uHz), and the vertical width = of the=20 boxes is on the order of 90=C2=B0. (It looks as=20 if the sign of the phase was opposite to the usual conventio= n, as the=20 sunlit path (12 to 18 UT) should be shorter, with phase adva= ncing=20 towards more positive (up) rather than negative values).
 
Assuming that NAA is perfectly GPS sy= nchronized,=20 the systematic shift of the daytime phase is astounding. A possib= le simple=20 explanation is that days are becoming longer during the spri= ng season,=20 and midday solar elevation is increasing from day to day.<= /DIV>
 
With a given absolute path length=20 variation, phase deviation should scale more or less proportional= to=20 frequency, so the adverse effect on 9 kHz should be 2.5 times less tha= n on 24=20 kHz. In essence, I expect only litt= le phase=20 spreading loss across an intercontinental path at 9 kHz and 47 uH= z=20 resolution.
 
On the other hand, a very much longer= integration=20 across day and night (eg. 12 uHz) would not seem to make much sen= se, not=20 only due to the phase effects but also due to the=20 variations in signal level and background noise.
 
Best 73,
MArkus (DF6NM)
 
 
 
Sent: Thursday, March 24, 2011 7:01 PM
Subject: Re: LF: Wasilla Alaska VLF - offline
<= /DIV>
=
Hi Laurence, Markus,=20 VLF,

Hmmmm, about the 60000 windows, Paul Nicholson means....= (see a part=20 of our emails below)

Am 19.03.2011 09:41, schrieb Paul:=20
Hi=20 Stefan,

> Well, you see people are running slower and slo= wer=20 windows,
> such as "DFCW-60000"

There is a limit set= by the=20 variability of the path length.

For example, see

&nb= sp;http://abelian.org/vlf/tmp/110319a.gif

This= =20 shows the absolute phase of NAA at 24kHz over a great
circle dis= tance of=20 4672km.   The graph spans 5 and a bit days.
During the= day the=20 phase advances because the D-layer height
falls from about 90km= to=20 70km.   The pattern repeats each day
with the night-ti= me phase=20 (path length) pretty much the same
each night, but the daytime= path=20 varies.

The path change between day and night is almost a co= mplete=20
cycle at 24kHz, so we might expect 100 to 120 degrees at 9kHz.=

The=20 value of a long coherent integration will be significantly
reduc= ed if the=20 phase changes by more than 30 or 40 deg.
If the phase changes by= more than=20 90 deg, a long integration
will be worse than a shorter=20 one.

Maybe "60000" is better anyway, as seen between= DJ8WX or=20 OE5ODL and TF3HZ. Anyway i would start with a faster mode and go for= a slower,=20 if nothing is visible. It's your dicision, Laurence :-)

73,=20 Stefan/DK7FC


Am 24.03.2011 11:40, schrieb Markus Vester:=20
Hi Laurence,
 
if I had only one to choose from, I'd definitely opt= for the=20 slowest "60000" window at 47 uHz. Depending on antenna orientation,= this would=20 definitely give Scott a chance, or perhaps one of us over=20 here. Would an onnidirectional E-field work as well for you as= the RX=20 loops?
 
Running the second FFT for the Alphas nearly doubles the CPU=20 load, so you may want to skip that.
 
Thanks for the great work!
 
Best 73, 
Markus
 <= /DIV>
------=_NextPart_001_0069_01CBEA7D.57DCC990-- ------=_NextPart_000_0068_01CBEA7D.57DCC990 Content-Type: image/jpeg; name="Paul_NAA_phasefit.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="Paul_NAA_phasefit.jpg" /9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQY GBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYa KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAAR CACiAjgDAREAAhEBAxEB/8QAHAABAAMAAwEBAAAAAAAAAAAAAAQFBgEDBwII/8QAWxAAAQMD AwEFBAQJBgkIBwkAAQIDBAAFEQYSITEHExRBUSJhcYEjMpHSFRYXNUJVkqGyJFKCk8HRMzRF YnJ0orHUJTZkc4OUpPAmN0NGY8LERFNWdYSztOHx/8QAGwEBAAIDAQEAAAAAAAAAAAAAAAQF AQMGAgf/xABCEQACAQIDBAgEAwUHAwUAAAAAAQIDEQQSIQUxQVETYXGBkaGxwQYi0fAUMuEj QlKishUkYnKCkvEzwuIWNENT0v/aAAwDAQACEQMRAD8A3l2gWK3RV7oEJT4jpWE7BuUSn0CM DnPnW1K5g5atlnZjx0G0RVK7holRQnklCSf0ffWVG6B9eAs/6mh/1aPu0yA48BZs/maJ8m0f crOQDwFmB/M0X9hH3axkQOfA2fys0X5oT92mRAeBs/6mh/1aPu0yAeAs2fzNE/q0fcpkA8BZ v1NF/YR92s5APA2b9TRPmhP3aZAPA2f9TxP2EfdrGQAwLN+ponybQP8A5KZAcGBZv1NFz/oI +7TIDnwNm/U0X9lP3aZAPA2fr+BoZ+KEfdpkAMCzHk2WH/Vo+5TIAYFmx+Zon7CPu0yAeAs3 6ni/sp+7TIB4Gzn/ACNDPxQg/wDy0yAeBsx62WH/AFaPuUyIDwFm/U0X9hH3aZAceBs2PzNF /YT92mQHPgbOf8jRMe9Cfu0yAeAs/nZYf9Wj7lMgOPAWb9TRf2EfdpkByINmH+Rov7Kfu0yA CDZ8cWaJj3oT92mQDwNn/U0P+rR92mQDwFm/U0T9hH3aZABBsw/yPE/YR92s5APA2fys8X9l P3aZQPA2fGPwNC/q0fdrGQDwFmH+Rog+DaPuUyACBZsj/kaL8kI+7TIDKRNU6XcCvE2Flna2 FlSEocSMp3BBJSPb4IxjGeM1iyBIZ1Dph5sqbsKVZwUjuW/aB285xj9L1I4+FLIGjMCzfqaJ 8m0Y/hrORA48DZs/meL+wj7tZyA58DZv1NE+aU/drGQDwNnz+ZYf9Wj7lMiA8BZv1NE+SEfd rOQDwNm6/gaL+wj7tYyAeBs36ni/sp+7WcgODAs+SfwPE545bR92sZAc+As36mh/Jtv7lMgO PAWb9TRP2EfdpkBz4GzY/M0X9lP3azkA8DZ8/maJ80I+7WMgHgLN+pYf9Wj7lMgOPAWb9TxP 2EfdpkBz4GzY/M0X9hP3aZAPA2fys8T9hP3aZAPAWf8AU0M/9mj7lMgOPAWYf5Gij+gj7tMg ORBs36mi/so+7WcgHgLP+pon7Cfu1jIB4GzZ/MsMf9mj7lMgHgLMP8jRf2EfdpkAEGzZ4s0U f0EfdpkA8DZ8cWiL+yn7tMgHgLPj8zxPk2j7lMgOPAWbP5mi5/0EfcpkA8BZv1NF/ZT92mRA 58DZ/wBTxP2E/dpkA8DZ/wBTRP2EfdpkA8BZs/maJ+wj7tMgOPAWb9TRf2EfdrOQHJg2fP5n iH4pT92mQHwqBalyoLSbVESH5LbSz3TZ9knkfV/85ry42B1u2+zOzLfHTaoYLkhkLUlpHAUS cfV64A+2jVlcHRqKLaYJgsxrZF756Uy0sqYRgJK07h08wSKWB6FH0XbLnAjyZL9wK32EFQRL WlP1AOADgcV4zMySH9CWp5Sl99cUHaEgIlrSlIAAGBnHQCmZoxYxd/0o/arPCHi303KZcI8J Dq33HG2gvalSykKTuOQogZGNw9KZ2LEgdl98x/zqY/7k9/xFM8hYiyezbUqJkZDGoojkdZV3 7ior4U2An2cJEj2snjqKZ5CxLHZhfAkj8aY/uzBkcfZKpnYsV7nZ3qZNx7n8YoZid1uL/hH9 3eZGE7PE9MZ5zVTiNrSoVJQy7uvqNip3VyUx2a3xe4HVTJx6wnf+IrZs/HzxLkpcLed+rqE4 2OuL2aalXIlJk6jitsocAZUmM+S6kpBKiBIG07ioYyemfPFWWdmuxK/JhfB11VGP/wChkD/d KFM7FirsOg9RXWI++9qFuIpEuTHShUF/2ktPLbCxmT0UEhQ+PU0zyFiz/JjfRz+NTBPX/Enh n/xFM8hYjW7s01I5CYcn6jiMSlNgutNxX1pQvzAV4gFQz54GaZ2LHM7s21KzCfchakiyJKW1 KZZVFkNpcWB7KSoSSUgnAJ8qZ2LHenswv2ATqqMD6CC/ge7/ABqmdixHn9mupUMBUPUcR97e gFK4ryAElQClZ8QeQncceeMcUzsWJI7L75z/AOlTGf8AUXv+JpnkLFLd9G3u23u0wfxgacbn KdC3UwpGGAlBUM/ynzIx1Fe4qc9xGrYqlQdpvrLdvs3vL3LerYhT6CC//bKNYk5x3m2lWp1l eDudJ7NNS+PDf4yRTE7kqL/hXtwc3DCdviDxjJznrivOeRssSfyYXzqdVMfDwT3+/wARTPIW IbfZxqTxclD+pYTbCQnuXRGfKlkg7sp8Txg4xzzz0rRPGU6ek5pd5lRuS09mV8UMo1XG2+gg yP7ZRr1SxMa0c0HdBxtvI8Ps01K4X/FajiNBLpS1sivL3oGMKP8AKOCeePL1Nbc8jFiSOy++ bgTqpnGfKE9/xFM7Fir01oPUN4srE1+/Mw3VqcQplyDIJG1xSQeZI6hIPzpnYsWEjsz1CmOt UfU8VToSShBhSAFHHAz4ogc+eKZ2LHzF7M9RLjMqk6mitvKQkuNphvrCVYGQFGRyM55xTOxY +J3ZrqVtgKh6jivvb0DY5GeQNpUAo5EjqE5PTkgDimeQsST2Y3znGqY4Pvgvn/6kCmdixHld m2pUOxUxtRw3G1u4fcXGkJLSNijuSPEkKO4JGOOFE54wWdixI/Jhfeg1XHx/qL5P/wDJpnkL FTN0Pf4t+g2/8PtqYkR331yRCfw0Wy2An/D49rvD1P6PHnWU5N2R4qTjTi5y3Ims9nt2d+pq 2OFfzVQnx+7xIr3KNSO8j0cdQraRevJ6Mz+m7JN1FfLnb7TquI8xDbaX4kRJH0ilFW4BPihw MJ58yT6DMSni41ZOMHexf47Y+JwFGnVxCtnvpxVrb+25p0dl99Q2ltGqoyUJAASIDwGB5AeJ 48q352Vdjoj9mupVPykv6jitMoWAw4mM8oup2pJUoeIGDu3DGT0B91YdRpGbEkdmF7wT+NTB 484b+P3SRWI1cyumLEa39m2pHIiFztRQ2JJ3BTaIshxI9o7TnxI6jBxjqa9Z2YsLj2c36Jb5 MlOpmnlstLcDYhPgrIBISP5SevTzpnkLHXaez2/TrTDlvalZjuvsNuraVDey2pSQSk/ygHgn FM8hY7J3ZpqVqI6uDqOLIkpHsNORn0JUfQqEgkf+elM8hYknsyve4lOqoyQeAPBSOP8AxX7q Z2LEab2a6lQGvDakiPFTqUubor6AhsnlQ/lJyQPLjPqKZ2LEkdl9889VMZ/1J4f/AFFM8jNi I92caiTLipZ1JCcjqKu/cVHfSpACcpKR4g5ycA8jjmmeRixM/Jle0gk6rjbRznwL/T/vVM7F imGir6vUrdrRqSOuMqEqV4pMR8pBDgQEcyT1yT18jTOxYth2Y3wnH42RzzxiE918/wD7TTPI WIqeznUCZr7cnU8FqONgYX3D5U4og7sgyOMcY5OeelM8hYlL7NLyj62rIyR1O6E/yP8AvXFM 7Fjohdm2pHWlGXqSHHX3rgSlEaQvcgLUEKJMkclO0kY4JIyaZpCxI/JffMZ/Gpgj0EJ7kfHx FM7FiPb+zTUrkCO5P1JFYlqbBeaRFfcShZHICvEDIB88CmdixH1JoHUNo07c7jH1CzLdhxXZ CI4hSMuqQgqCARJ4zjHQ9aZ2LE5vszvi2WydVR0KUMkGDIz8OZVM8hYizOzrUIihy36nhSVl aBtVGdSkIKwFKz4gjhO44xyQBxTPIWJh7ML2Ouq2E+XMJ7n/AMTTPIWI7/ZrqVMqMhnUkRbC yrvnFxZALYCfZwkScKyeD0pnYsSPyZXwjA1XG464gv8A/FYFM7FiMezbUv4RDQ1LD8L3RV33 hXt/eZGE7PEdMc5zTPIWJX5L75/+KmAP9Se/4mmeQsVkDQmoJF+ulvcvzSGoiGVoeVCkbXS4 FE4/lI6bcHk9aZ2LFgvs0vaSlK9XRQpXTMF8E+ZwPFelM7FiNG7ONRlx5MzU0Jg98UMbYzyu 8TjIUf5QME4V7PPTrTPIWJKuzS9Bew6sjhZGQDDe6dOniPePtpnkLEaD2dahcZaE7U0OPLWF ksIjvrAAVwf8ZBPBTn3qx6UzyFiRJ7M9QoYdUxqaK46EkoQqHISFHyBPiuPj+6mdiwg9muod sSRI1HDTJQEuFswnnEtuY5wfEc4J4NHJsWIGoNF3nTVnevTt+jzRAIf7hUR1IUc469+cHB64 PIpmZk1N90DZIsJ2agTFSG3EOJUuStXtb04PvOefjRSYNvZPzLA/1dv+EV54gm0Bje0lxDMS xOurShtu8w1KUo4AG/qTRu2rMxi5PLFXbPt/XljReo9pZlIkTHnEtBLRBwokDB+Rz8K0/iae fo09S1jsPGPDyxMoWik3r1GuScjJGK3FScnpQFepxt4JdZUFIWMgjzrmdrRSrKS4o3qLjeMt 6OyMfpce6myZ2r5eafsYqbiZXTGkUAoBQCgFAKAUAPSgPP8AX+pGrBaZdxUnvXEkNsMjOXXC cJSMc8mpU5qhSzMoMPhZbVx/RRdo31fJLezzq03HtKtpXfpURLpmqEcQdp2tISA4FhIOBxvT k/Pyqmr1cXGWdq/V5n0rZWz9gVaDoQna2ubS7/dtft1tuN9pbtNtF0EWHcVmBd3HO6XGWkpC FYUQMn3ADPHJFe6ONhPSWkiPtD4ZxWFzVaKz0krpritOC7b25Jm/akNvJQptaFBwbkFKshQ9 R6jmpbOdcZJtNbjod/wqsetclj4ZcRO3H6I3Q3HdFP1h55qy2PK8JLk/W30PFQk1eGsUAoBQ CgFAKAUAoDNa1vsOwWnxNwcU2wXEIJSnccqUAOB7yP317hKMP2kty9yHiqNXFtYWh+Z3fdFX Z4/ck6n1pqN5OmLgtOnHZKYMlSFgbUoSkuLQcee9SePNPPlWmvKrVk3Sfy7iz2ZQ2fgaUKeN p/trZl3vc1zVk9eDNPqazHQ7VnkaWhEQ4veOTlgkuLaRtXtJHGVYI546e+oNan+HUXTWi392 p1WAxi2y6tPHz+aVlBaWTd47uq5stB6gGpNOIlKKES0qUh9ocFtWTgEf6OK2Kq61CTi7Mo9r 7P8A7PxTpL8ujT58/O5ecnBJz8a5OU5T1m79pDJMY5QR6Gui2RK9Frk/oaam876tzwKAqrnb BIUlyOoNOh0OqyPZcIGBuHnjqPQgGgKBrTt4TbH0qvUhcxe0Nq75YShIIJ58ySOuORx0oDou 2l7zNUnubuWSiQ88hSXFAo3FZGBjBOFgZOdoSMZoC/slvmxG3EzZ7knchKUk8lBAwTnzJPOf 7KA6oFmnxL6qWq8SJELuu7EV7nnj2s8DPXy86AybfZxLbeUpm+ONtKcQrug0lQCcYcSCoE4U ST+45HFAbO32hyPaLfEfnSFripSlbiNqe+wMYUMdD6DFAYu86RcTFjRG3IbCG2UoC2kFJURn O5IwCMkKTzwUj1NSMPG7zFRtavlgqS469yPLF6/nWvUTzFntztxhRHZLBkMbydzigogKI6jY efPk9KiVcXFzahG659Zf4HYNWOGjUxGIUG9cr1+X6mhc0V2g3ZpyVc50ePJYUl9CEuA98s5V 1T5p4AyOh4qvdLFybea1vPwOwp7Q+H6EYxjRzZt7a/Lbir+OhMRf7RfLYZtyuMWJLWhEctSn Sp9D6FrwopAGUjvCR8B8a2rGwlTbbs/cqcV8M4yjXdKjFzildSto1Y206yy79IYkPyGmUNYS gNuF0OoBzycAALzhQGeEjmufo15urCUpN6re2U0k1eLVjT2aHKhwREkuoWhtCUNuIBCj7PtK OeByTgeQHnXXEYprjpq4SXx3d4kKYQW1tpcdWCVIcQsBRSRwdpyepCiOlAWum7fOt7UpFyuD s9xx9TiVrx7CTj2QABgeeOcZxk0BC1Bpx+5v943cpDZ2OI2KV7IC9oIAGOMA8EnqKAp0aGf7 oJNwShKc7W0IJSkdEpzkZCR7Q/zueAAKA0N4tD89LDTU1bKGEjYpJIXvyAVEjz2bgP8ASJ8h QFU9p6//AIWekRNQONQzsSiO6kuAJTjPJOcnABOeeT50B3L09cW3FeFuCg2pCCoLWr2ne+Di 14HTd7Q+BA4AoCXp+yPQJM2TOkCVIed3NuEqUUpKUgjk8ZIzgYA4oDoes96Xd0yE3bENEhLq WfaBKdyiUnBwRggAe7JPlQFNcbHqGHZyqPeHVyENBvYlagknCQCCSP0gVE5zzjkcH1GLk7I1 V60aEHOW5EnWAhTYTTc27RIffxH4W6QvYCtaUncORkjuzxnoTWKidL8+hnB1FjW1h05NatW1 M6bvZbDHnIdvNsd8K7GkLEdX0qi0gIICRxuUpsJwOiVGo88VShe8txdUNhY6u4JUmlJ72tO1 9RNg2trWOlwuBc2FJeYjtqc3rkFpbTqnCDvIJJC+Qr0HBFbKdSNWOaLIWMwVfA1XRxEbNefW uo0dn05KgXLv3ZokpM12YpZTtWdzKWw3jpt4zxj6qeK9kYunYUlbqlIuMltB6IShsgfDKSa8 NNu9/Q3QqU4xs6affL6nz+D5f61lf1bX3Kxlf8Xp9D301P8A+peMvqUPackp7OrylaytXcAF ZAyfaTyccV7WhHk03dKxd6o/Mcn4o/jFekYJVkGLLAH/AEdv+EVjiCl1REvL/dqt7wKG3QtL LQU2pfsKGHFhxPs7iDwPLoaAxXaNZ7rdNCw7XcnkeMlXeI2lxw7gMqSCo7fIqCyAOgIHGK8V KaqRcXxJOCxM8HXhXgruLvqfUHsyhWDSkmQ33UjUTUdTiZas7Q4n2gUgk7egGfKof4GFODcf zc2dG/ibE47FQhW0pNpOK5PTv5no7d0iGF4pUllMfAJcLgCRkAjnp0IqcpJq9zl/w9VT6PK3 LXS3Iwetu0e1RocmJbZinpL0R0IVHGShw5QjB8juB469KhV8XBLLF3bTOm2T8OYmpUjVrwtF Sjv4rRvusWeibtD/ABR09GVIT4nuxDKTnPfNo9tJ942nr1qrx9pUKclw09PoQ9q4Wr+NrzUf lvmv/hk9H33Na2rC0n31AwU8mIg+teenuVMtUTwc12Cd0RxWQKAUAoBQCgFARJ7vcxXFJ64w Pia2Uo5pJEPHVuhoSkt/1PLI7SNTa/eLzAMWwFLcZR5DkhwAqV/QAAHoSa93VSq3LdD1ImWW B2fCnSl8+I39UU7Lxd32K3WesMpShpLaeiRgVpbu7lnTpqnBQjuWhk9V6Cs2ou/ckMBmYtpT aZDSRuSSoK3e8gp+wkedRq2Fp1dWtS82bt3F7PtGErxunZ7tE1bs19OR5+1pvtCiKYhxpbPh ralUeG4kgd425hGVHIPsDCgCPLjyqEqWJhZJ6Ld36eR0ktpbDq5q04vNU1kuTWunVJ6F5ou3 am09qQw9RXFFxYnMrcS8VFR7xBSAMnn6nP8A/lVW0KM6VSLqO7a9CBtPE7Ox2F6XB08jg0rd Urvs3npcY/SEeordsidqzjzXocxU3EuukNIoBQCgFAKAUAoAelAeMXVyTr3WlyhOgI0zaS5E cKVAmRIKNp8+id+RxwR69M0ouvJxf5V5v9Dzja0Nl0Y14P8Abzs1/hinv/1O636rkb3RFji2 G1MwoDe2PHQG0EgZUfNRwBknjJrbUiqUVTjuK3C16uOxFTGVneT+9OxWRpXW0PNKQtKVIUMF KhkEehFad5aJuLut5kGbVEtXaJ4yOlaXLrDWlxIwEbmlIIPvJCj8k1G6NQrZlxXpb6lzLF1c Tszop6qlJW52kpeWnizQoUlQJQpKk5Iyk5HHFcjUhkm48m14OxX9pJin2lD4VcbGl8049j9T XUJVX5qFAKAUAoBQCgFAFdKA8T1w7d9banm2SxTzb7dbijxM1CTvL3JDaSMdBgnB8xSUalX9 lB2S3vrMQrYXZy/G4qn0k53UI8Mq0bfa727TZ6P09DskKLbYKAlhrkk9VnjKlHzJNTMsaFLL E514irtTGdLWd23fsS4I3GOMVDOjMVqXs70/qCc5OnRSmUpstlbZ25JGAojoVDyNRquEpVXm ktS6wPxDjsBTVKlP5U72evcuSZ96LQiJZVW1vfi3vuxAVq3HalR2Enz9kprkqlPJOUOTa82Y 2pKVWv07/wDkSlpza180zYIO5IPrXYUZ9JCM+av4lO9GfdbjAoBQCgFAKAUAoBQGD7StaWvS bMMXRwjv1KwhGCogJUc49MgD4qFelWhQWeXE0T2ZidqS6HDr8tm+W+yV/F9iPNbPpuZ2kTHL 1qxhxi1PN7LbBDpBbyf8IcY5OM588+mK8xpPFN1Kv5eCN+I2hDYSjgdnSTqp/PK298Euxm/s HZNpe1RoCVxTLkRTuLrxyHFYA9pPTHGQKiRwNFO7V2dDW+KNo1IyhGeWLVrLglye+/WUeouz O526RMn6EurltW8AFQULLaFDAzhWeD1PI+YrRUwU4Nyw8rX4FngviXD14QobVpZ7fvb2u79f E9O05N/Cdgts49ZMdt08Y5KQTxU+nPPBS5nKY2h+GxFSj/C2vMta9kYUB552wi8fircTEXbh a+5R36XkLLxO8Z2kHb6dQfOgNZqf8xSvX2f4xWUCVZfzPBxj/AN9P9EVgE2gMj2if4DT+f13 D8v/AIlAah5pLrS23EhSFjaoHzB6ij10Ck4tSW9Hg8rRl5bm/iNEccdsTr6Lg7NWn6iORs9B 9VOMY591U0sNUv8Ah4/l33PotPbOEdP+2KmlVJwUVxemvm/+TW6W7K7dZ1oddJdUHUSEgk7k qSEEJJ6EBQWenQ1MpYCFN3KPaPxViMUnGOmjj1Wd03bfqrceBT6v0A5b7tcdSw3v5JEdTc24 aXClIWkpU77sqCVc8eXWoWPwmWE6ienLv/UsNl/EEa1Kns+pH5pJwcrcHdR8Gzf6VvTOobFF uUdpxlDuctufWQUqIIPzFUSllafI5raGBlgcRLDyd7cVxur+5qU8iu1jLMrlWc16AoBQCgFA KAUBj+0G7m02CfLb295GYW6gK5BcxhA+asD51ug8lOU+JWVoLGY2jhHubV+zj4Ig9mNlftdi iNT/AG5xCpMpZ5KnnCVK+PJI+QooulRUXve8zKrDHbRnWpr9nHSPYlZeOrN9WkshQCgMprN5 MR+xzdjRLc5LKlLONqXEqQSD8SKpdtR+SE+T9U/oWmy49LGtRvvi3pzi0y7YVlxKhgiqrAzy YiL++K9yFPc0WFdeaBQCgFAKAUAoBQFFrK7LsmmLjcGWu9eZZPdN5A3uH2UJ59VECsSbSujZ Rgp1FGTsuZmNHWf8A6agQFqSt5lsd84n9Nw8qP2k1PoU+jpqHI5LaeN/G4ueIW5vTqXDy3m7 hN9zHQg4zjJ+NRKks0my/wAHR6GjGD38e0k14JRjO0mNdFWpiZp9lT11iuK7lCcA4cbU2Tzx xvCv6NRcVGWW9Peve69y42JVwyrypYyVqclr/pal52t3lBoaaiyXmRoxbD58GXHGZbqwQ8Dt WQT/ADh3o49Oa5rF0XRquH3uLLa1F4yjHaqa+eycUt2+K7vlZ6LHOHR7+K3bKnlxCXNW9/Y5 ya0JtdSaBQCgFAKAUAoBQFDrS7mw6VudybTuejsKU0n+c4eED5qIrDdlc904dJNQva7Mnoaw DTen2oa3A7KUtT0l7zcdUcqUf3D5VNoUeigo72cvtjaH4/FSqpWitIrlFbja2dobVuK6k4Hw rxiJapErY9G0ZVXx07i1qMXZwvoaGHuMnblBnUt+iA9XGpYG0ABK2wnj15aUc+prltpQyYiX XZ+xb1o5sNQq/wCaPg7/APcjTx1ZaH2VdbOnnw8eq68HYrJqzO6p54FAKAUAoBQCgFAcK+qa A8ZhwWNb6ou17u8Jty2sOphW5Lqc7ktOEqcweMKWB8QnHrn1QpKs3Oa03IjbSx89nwhRw07T l80mv8StFd0XfvuejWiOkPpASAhoDAHAHkBUuvK0bIodl0ulr5pcNe80IqEdOfKvqmgM5olA i2lyCCCIcp5gAeSQslOf6Kknj1rVQWWOXkWO1ZOpXVb+OMX32180zS1tK4UBke1j/wBXt75x 9En+NNAW+qPzDLz/AJv8Yogd1t3ixRO5Cd/hkbQvgZ2jGfdQGanyNS/hCU3FQo7UMqTtbAa3 bXchKlYJG7ud3njOKAptWLvo03ZzKQy5che4fcokK7tKzlOQpSAcDfvwQD7O3zoD0O1rmLgs quDTDUsp+kQw4XEJPuUQCfmBQHDcXZPfk7s962hG3HTaVHP+1+6vKjq2bJVL0407bm342+hN r0ayPJaQ/HcadSlaFpKVJUMgg+RFaMRDpKUoc0zMG4yUlvRm9Ostxl3KOyoFtuYragYAbCkI VtAHllRrjIu7faWmMbn0dSS1cVrzs2r+Rp2OWk/CutwMs2Hg+peWhWS3nbU08igFAKAUAoD5 UQEknpQw2krs8o1ktV+1fZrKhKVx0L/CUxJ5BbRw2gjzBXg4/wA2t045pRpcFq/vtKrCVuio YjaD/NL5Idst/hFebPSrUzsipUcZWdx/srFaV5dht2ZR6OgpPfLX6eRPrUWIoBQGe1tZhqDT FwtqlBCn28JUf0VA5SftAqBtJZsPK3Cz8GT9l4x4LF08QlfK/LiV2hH316WgpmEGZGCoz+P5 7Sig/wAPWuXjLo5KfLXwZL2xCEcXN0vyy+ZdklmXqbFPSu2RSnNZAoBQCgFAKAUBh9euJm3b T9oBUUuSDOeSBwW2RkZP/WKaPyr1COaSX3p+tiNiqzo0Ks1wVu+Tt/Spltb2g9KbGOAdx+VT a0ssTm8BR6avFcFqaIDFQDrRQCgMF2mael6ghwWLc74Z3xALshB2rQ3tIVjzOfZ491c7tqFq kZ2vp6X+pf7B2jSwE5zrLMraLg3dW8NS50vJ8VYLXJKy4XY7ais9VEpGTVdhp5asJPmvUg4+ n0WIq07WtJq3eaQdK7MrhQCgFAKAUAoBQHn3aFIVMv2nrE20paHH/HyVJOAhtkgpz8XCj7DS Ec0lFfaX628DRWqKlRq1r2yqy63O68o5r9qLcZPA5yeBVmcbq3ZGkjtd0whv+aMVXSlmbZ2e HpKjTjTXA7q8m4UB5h2rSrjZpsK42JK1TJbSoZCQDylSXUnkEfVDqf6furntsRUakanU14P9 fI6n4eo0MZTnQxLtGDUvFOL83FvsPQ7esOshQ6HCh7sipGx5XpSi+D9Ujm6qyysTKuTUKAUA oBQCgFAKAyfaZdnrNo64PQ1ATn0iLE5wS84QhGPgTn5V5m2lpvN2HhGdRKf5Vq+xavyRBsFt as9mhQGMbI7SW8+pA5PzOTVlThkgo8jicZiZYvETry3yf/C7lojVWhrZG3nqs5+XlUWvK8rc i92VR6Ohm/i1LCtJZnCuhoDNx7gzF1LMt8g7HJTjbrGSPby0c4HXjuT9taVNRqOD4/T9CwqY eVXCwrw3RTT6tf8AyRpa3FeKA897YnrynSdzbhxYC7aWU9867IWl1J3jISgIIPGOqh1oDVao GbDMHqEj4e0KIEuxjFlgDp/J2/4RQE2gMl2iD6HT/wD+dw/46A1ifqigOaAUBwr6poDMQC0m 93hCNodDja1gdcFsAE/Zj5VxVSnkqzjyZZVszoUm91nbx19S0tFxjz2XjFWlYZeWwsg5wtJw R9tX+yJqVFrk/p9SLiaE6EkqitdJ9zLSrYjigFAKAUAoCDdXe7iqA+sv2RW2jHNIrtp1ujoN Le9DBaSiiZfL1cVBJXIl+FQsdQ0yAjb+2HD862wsnOp96ELFJzhh8HG9rJvtlrf/AG2PSUjC QB0FRS9SSVkfVDIoBQHw4nLah7q01qfSU5Q5qxlPUwVyvarFpu+zvDlx6JIXtbz9dSyko6Z6 701xcUmm3x9zoKGD/G4qjRzWU0teSV099v4WbC0S2rhbYkxhaVtPtJcSpPQggHNdhg556MJd XnxKTE0ZUK0qU1ZxbRYVKNIoBQCgFAKAHpQGClOCVrV53eSWIQSlGOAFuHn590Kl04ZZJckc 7i67q0JSS0lPR9UV/wCV+81Fna2tqcIGVHA+ArxiJXeUk7Io5YOo+Pov1LWo5cigFARpn1Un 31TbXjeEJcn6pnunvKHTCQixxmkoS2GtzO1PQFCinj3cVzsfyoscc82IlK972fik/c0iDuSD 6812tGfSQU+av4lY9HY+63GBQCgFAKAUBwo4STQw3Y84hFU3W1+nuE93HDUFlJGAkbQ4oj49 4j9mpNKDU2+Vl7soto11LDU1H99yk+55I+Ci2u1mptjXey056IG4/wBlbK0ssSHs2j0tdX3L X6F+BioR1QoBQFZe4yZUB5tW3lJAJGdpIIz++qjbEM1G/J+qsb8LUdOqpL71OnTjxetcFxeN zkdtZx6lI/vqHsWp+0cea9LfU2Y2KhWnFcG/Uua6MiCgFAKAUAoBQA8CgPPtbhu56usFtcTv ajFy5LT5b0AJbJ+BXkf6Ne4QTnFPrfhb6kPF4mVHD1pQdnpD/ddvyj5suWmy44lsfpHH76ny llV2ctSpurNQXFmkbSEpCQMAcCq292dnGKiklwOyh6FAYbWdl36hs+oUqUV29bbIbR1PePIS SfcEKX9tRa9P541eX1LzZeNthq2B4TTd3/hi2vNI3COlSijOaAyHawN3Z5fB/wDAH8SaAuNU fmKX/R/jFED7tanBp+GphCVuCKgpStW0E7BgE4OPjg04gy94ul/ROdQwhae47lxTTDClBeUu 7mkuFshRJDRzhIGeooCv1dNu69P2d6TDS5PTe4fdMLUGt53AkZ5wArcAcchIPOaA9Atjsp6C y5PjIiyVD6RlDvehB9N2Bn7KAmUAoAelAY6/y/wVMvk3Ge7twk4A5y33h+fl+6uS2hDJip24 2ZcYOl+JhRo855f91iD2YQ1WeNMszxCn2Cy+4sEncpxsFR/bSv5YqdsSdnUh2P29LEj4grfi 5wxcdFLMkuSi3bya7zf1fnPigFAKAUAoDN3Oah6c/HTnMYAL+JAVx8iKl4dKxzu2JSdSK4WK 3s0jKb09DeeSUuuoL6wSDhbpK1cjryrGa0t2pRjz19yyhFVMdVqrdH5V/pSj6JG2rUWAoBQC gOFdDQw9xgJQLl+mwkvKx+EYzyk7RgJLQ9n3g91++uJxNNRrTg/4joqWmHhVa/cmu/Nv/mLn QLhOmY7CkbVRXHYu307takj9wFdDsipmwyvwdvvxIO2o/wB7lNO+ZKXik/U09WpWCgFAKAUA oCHcXe7iuEdT7I+dbKUbySIO0K3RUJNb3oYW0I72/wB9eCHUqLrUcbzlKglsKBT83CPjUqL+ aT+9xTYhPoKFNcVJ+La18PPqPQWGw0yhA/RGKhSeZ3Oio01SpqC4HbWDaKAUB0Skgsq+2q/a ML4eXVZ+DX0Pcd5nLNJbbtT7jqu7bakyd6nPZAAeXk8+WOc+lcso5Vblf1ZYYqEpVYqOraha 2u+KNDDcS9HQ42pKkKGQpJyCPI11Wz5ZsPHq08GV9ROMmmSanngUAoBQCgFAQbm4G4i+mVey K20Y3kiBtGr0dCXXp99xjNPfSC4vl4O95OdGRj2dmEY+WypMHe+vEo8csvRwta0V53lf+Y2F pZCY+/zWc/KtFeV5W5Frsmjko5/4vQsa0FsKAUB0TE7ozg/zTULH08+Hmke6btNFFo+T4nT1 pf2FHeRmztV1Hsiue2bPJXh4E/adPo8TVhfdJ+ppK64rRQCgFAKAUAoDrcUEoUonAAyTWTzK SinJ8DzuEXZes79McBS002xFRnoSAXFY+TiR8vdUqnG031WXq/c5/G1VLC0+cnKT72or+nTv NbaGsvKcI4SMD4mmIlZKI2RSzVHVfD1Zd1EOiFAKApNVrcasUt5lsuraCXNmcbglQJ5+ANeK rtDQl7Pip4mMZOyel+1Ne5dDpXsiHNAeedsUu5t6UubEa2tPwFsJ76SqUEKbysZARtO7Aweo 60BrNUfmOV/QP+2KygSrJ+ZYH/UN/wAIrD3gm0Bke0X/ABewdT/y3D4/7SgNangYoDmgFAKA 887RENpujAdcLbVxiKt5VkZyt5kAAeeQpX2Vzu2o2qRfNW8Hc6PYspdFLKrunJT8Iy9LLxLe 2tpY1nN2qbCZMJlQQDyShbgKsfAoFadmTyYpJcV9+hArydTAwv8Auylr2qLXndmsrqCrFAKA UAoDrecS22pauiRk1lK7sa6tRU4OctyPG9baggQhfbbIlBN0uiCxFZbSVLUtbYQnp05UPTpW 2tUhBOm3q9F4ELZuCxGKnSxajeEG5Sb3fmv9rU9S07AFus0OIFlfctJRuPXgAf2Vrk1e3LQk 0E3HO1Zybk+93t3bi2rySBQCgFAD0oDBXu3yD2j2qQ0pfhHIzi5CQPZ3NghBJ/7Y8Hrj3Vym 0oZcU3zs/Jl9hsRD+y6tOX5k1bslv/pX2y70y4BLvMYOFZYmc5GMb20Lx7/rVN2NLL0kHzT8 SDj4vJRqNb4+ja9jRVfFeKAUAoBQA8UBSXh0F5LYxhPJ+NS8PGyvzOd2vWzVFTXDXv8A+Ci0 Q13sm4vF4OpVOdVkfo7cNhPy2H7K8SlaMtd7JFGjnr0k1ZQgn46r1NwBio5dCgFAKA+HE7kK T6jFaa1PpIShzTXiEee3tlybp+625eGkyLimMopVypt1xBVg+R2rP2Vxad/H78DpMJUVLE0q 61ywcu+MXbzRa9nLgasrlrU4tx62SHIiys5JAOUHP+gU10GxamalKL3p+v8AwyHtuLliFiLW VRKSt1rX+ZM2FXRTigFAKAUAPFAUV5c3yA2MewOfif8AyKmYeNo5jm9rVekqqmv3fV/oZzSY 8TZozyS2TKWt8KR0PeLKs+/63WvVOVoXNWOpuWLdJb1aOvUkn53N42gIQlKegGBUJu7udNCC hFRXA7KwexQCgPleNpz0rzKKksr4gzemHEmxwikghKcHHqCQR9oIriaMuicZP92z8GWePX94 nf7uaYdK7dFYKyBQCgFAKAUBX3Z3ZEKcjK/Z+XnW6hG8uwq9qVujoOPGWn1MZpttAbuLqCol 2c8pRP8AOSrYce4bMfKpMLa25lVj5SvTjLhCPpf3NtbWg1GSD1VyaiVZZpMu9n0eioRT3vUm 1rJwoBQHRKjtyY7jDydzbiSlSfUHrWGk9GeoTlTkpx3o7wMCsnkUBku1bns/vQxn6JPn/npo C21R+Y5XPmj+MVlA7LcpTdhiKQgurTGQUoBAKjtHGTxzWOIM3Pv91anvNx4qHSggLj7CVIJR lKdw4VuOElXQbh1waAqdWXO5SNO2iXJtzi5TV8h7I7W1CneUkpG8gAhRUjJIB2Z6GgPQrbJe lQmXpMR2E8sZUw6pKlNn0JSSk/ImgJdAKAUBRX+zxrnItr8gHfBkiS1j+dtUOfdzn5CqbbEL 04yXB/foiZhMZPDqpCG6cbPxT9vUp5zjcbXVkUpSUGRFktZPG8hTSkp95xvOPcapsPLJWhLr J9KMp7PrJK+WUX2aSTfovA2o6V2RSCgFAKAUBSaonsW+1PPSnkssJSVuOKPCUpGSa20rK8pb kV+OzzyUKSvKbSseFaE043qu72TVtzKnN0xDTDBOUoZabWkEn1K0g/L31EjBSSxEupJd1v1O hr4uWElPZNFWtFyk+bk03prplvHrv1a/o9HArcVxzQCgFAKAUBEmfWHvGK5/bEfnjLqft9Tb T3MzlnKmdcXhgEFt6NHk4xjCiXEH48Np591adlVMuIy80/YscVFTwFKfFSku75X7s11dMVIo BQCgFARDLa8U5HKh3qEBxQ9EkkA/uNE03YzKLhDpZfl18rfUo3nC64tw9VHNWUYZY5TiKtV1 ajqPiz50AyEafS/3XdeJkPvhJxnCnVqB49Qc/Oq+Ur+fqdhToum/md3aK8IpfU1NeTcKAUAo DhX1TQGFlpb/AA8/HdcDilXJl5CDj2foOP8A9snNcVioZK04/wCIvqbl+GjUirfJJX/1fqi2 sQS1qG9Nhko7wsv7yc7yUbOB5Y2VZ7FnarOHNJkPFvPhqMr3tmVuVnf3NLXRFaKAUAoBQHWt YQhSlcADJNZSu7I8zmoRcpbkYXVV2/BtnmzVArd2kNNpGVLcUdqEAeZKikfOplR9HTdjl8JR ljsWlLRN3d+C1bv2JFro+3CDAhxgBsiMIa4GBkJA/srxU+SmoE3CXxWMqYmXNvvbNTUUvRQC gFAcL+qaA82v064MaZuMezKBuvj3mWwlW0glxTuPiW+nxFcdjIdFWnDrfnr7nT4OjQqYunPE f9PJFvjwUf6vQ3NklCfaIUzaEmQyh4pByAVJBxmuqw1TpKMJ80vQ57E0egrTpXvlbXhoWNbz SKAUAoBQA9KAobo53knaBwjA+dTaEbRvzOY2nW6SvlX7uhQaKUJ9uZcQCEOyH14PkO+WcV4h P9lm7fVmzEYZyxqo8lHyjE3ielRTozmgFAKAUAoBQHnfbJcJbGlbjFZs0yRFcYSVzW3WUts/ SDIUlSws4wD7KT1+NAa3VJxYZh44Cf4hRAlWQ5s0A+sdv+EUBNoDI9oh+h09773D/joDWp+q KA5oBQCgOqQMtmoG0IZ8PJfe9HqO8yOp20G56ckKCfobhjef0QplxP7yU1yj4JcS42fJ9HiI LjD0lF+iZr21hSU+RIziu0pT6SEZ81fxKZo7K3GBQCgB6UB452zTp0yVB07bmu8/DCXYyyMf RpSUKUvn0BUPnnyFK6lkVKK/N+nseNmug8RUx1aVlQcbdb+ZW/3W8OvTa6WsEaBa4EeMktMw ikNJBz0SQck+uf3VtrQUYxpx3IhbOxFStUq4urrKenmm/ReBrhWosBQCgFAKAUBHlJylJ9DV TteN6Klyfs17nuG8ot6GtVxuUBb8Vec9TsWnGP6w/bVJhJ5MTB/fL3ZPcXLCSfCMl5p/Q0or sEVorIFAKAUB5j2jXSVbLlK/Bfdm6S4TcSIFkY7xx7GfgBk/KtPzKq3HfbTxLLLSqYFQr3yZ m5W/hjG78d3a0eZrb7UICm7cH2Z7k8fTnak+G3nuxyMYA4VxwMHyBrM3iqas3e/lwPFCn8PY 2WaMXDK7Les1vmbtr5u7R+hNM21Nn09bralYcEOO3HC9u3dsSE5x5dK9045IqPIj4uusRXnW SspNu3K/Atq9GgUAoBQA8igMLce5jdokRsltLsttLyQEncru0PJUSen6aP31ym1IOGKvwevk 0XuHUp7NnLhF28XFr0ZcQVpTqqYjPteFYOMeW54f2V42dPo8TFvjp6+9iJWjfCQf+KXpA0Vd cVooBQCgFAZnXl2VZ9MzZLW0yNm1lB/TcOAlPvyogfOvUXlTny9SPWgq04Yd7pPX/KtZPwPI 9P6AvVyvka/a2uqnZjDqXURGcbE7TlOSOMZ5wB5VinhJzmqleWvI9434hwmGw8sFsylaLVnJ 79Vr6nudsa7qKgnGVe0f7P3VsqyzSImzqPRUE3vev33E+tRYCgFAKAEZFAYOVZpSO0dM4N5t qmfEKXu6SAnugMe9B6+73VzG06eXE5nyX09i+hjab2Y6Lfzp2/03zf1epY9npfasHgZbQacg PuREpHTu0nLePX2CmrTZc3PDpPhdffiRts5JYnpqbuppS73+b+ZM1dWZVCgFAKAUBEnSW4jC nXlBKQQkE+ZJAA+ZIFZSu0jxOTjGUkr2TfgigUrOVKIznJ+OasbWRxTblLM97fncruyMd7pC JILa2+8LhShYwpILijz9oquUv2cY9vqdhOhlxtWbd7ZV/Krm7rBIFAKAUAoBQCgMj2sDPZ7e +v8AgR/GmgLfVPFil/0f4hWUDstbikWGGtCFulMdBCEYyr2RwMkDPxNYe8GUu2rZkS4FplqG lhtaUyG3FJMhgFAUE7A4NyjngJ6ApxuJIAEHVt9elacs9wfgPlbN8h4Yjp3LXyk4SDjJBUUn 3pNAegWyWZsFmQqLIilwZ7mQkJcR7lAEgfbQEygFAKA+VDKSPWtdSGeLjzCPO+1eVKhaXbkW 0AzW5bBZyMjdu4riGlZZna30On+HaVKtjHCt+VxlfwPN49r7S7tMiTm5LjSFtpQ06h4be7c5 3cZ8lZOeenoKucLDEThF027LQ6eeJ+H8LCdFxTad2rO948PKxeP3TtI0hKQu4tC8W5sBbzzT e/2ScqAxggjJGcY4HkBU1zxdB/N8yK6GF2DtSLVB9FUeiTduznvJOoO2G2qtlrXbQoPSHgqU 2frMNJVyCR+kR0xWau0Y5U472a8F8GV41aqr7or5X/E7adyfMvdDdpluvz04T34sFKXkIjIc cAUsFOTwfQg81uoY2NVvM7cit2v8M18BGHRRc9HdpaLXTyO9vtV0yuJc5JmJSIZVhBSd7qQB hSRjnJyPsrbTxlGo3ruIeN+G9oYaEXku5LmrJvg/IyPZ3fpGstSyL6Yio8NuOqGwCrdk70qU rPkVZTx/m+eKmYWr083VtZWscxtvAR2Vho4NTzTlLM7acGku7Xxeh7ZEaDLCGx+iOfjWJyzS bNuGoqjSjTXA768m8UAoBQCgFAdT4BZV8M1Bx8c2Hn2X8NfY9R3mYuAYRqizur4dU3IZb9+Q hRH2IzXKNuMk11+RaUM7wlaK3Xi35r38zVJORmu2hLNFS5lSz6r2BQCgBoDyfVhTN7Y7NFSp JEWCqWtJ6jBWgH7XB9nupThetHx9fqeMZXtsys+GZR73lk/JI3VnjoVML5SnchO0Kxzz5f8A n1qXiHpbiUGyabnNze6Pq/0L6oh0QoBQCgFAKAqZkCO5cmJym0mS02tpC/MJUUkj/ZFUG2Yr PCXU16ezZJpV6ipSop/K2m11q/1ISD/6SOH0io/jVVPTqZKilys/BkmS/uy/zP0Rox0rtkVo rIFAKAHpQHl3avGVdJem4yFhOy8MqBPT2EOLI/2cV6nTvGCXO/qQ8LjVCviW1dKnKPi4ryv5 Grjtl15DY/SIz8POp85ZYtnMYek61SMOf2zSJGBjGKrjskrKyPqhkUAoBQCgIssfVPyqh2xD 8k+1GynxKjT+5NyvSXFpUnxCFpAGCkFpAwfsz86zsZpupDrT8U17EvGWdKi0raNfzP6mhq9I AoBQCgFAY3tPuzNm00qZKKksMyI7rmwZO0PIzXpNQi6kuFvU0uE8TVjhKX5pqX9L97GK1br2 2w7AlEV0PXO4MARY7CgtW9xKthPI43DGfWttfFQjCyer3EDZ2wMRWxDlKNqdNtyb0VovXva1 R6bpG1KsenYNuW53rjCMLX6qJyf3k1HV0kmXFSanNzStcuqyeBQCgFAKAUAoDzztkuq4+k7r ATbLi8l9hOZbLaSy1lYHtkqB4xk4B4IoDV6o5sUoeu0f7YrKBKsf5lgf6u3/AAiscQTdoznA zQGS7RR9Dp/jpe4f8dAa1PSgOaAUAoAelAUVziB9xs7gO5d73GM7uCMe7rXG4uGWtOPJt+/u TaFTImuat6fQ7NK/837cPSO1/AKuNiyvRceVvRfQbQ/9zUfW/VlyRkYq6IR4/wBoPZRbJkC4 T7Ky61cEoLqGW+Q6vKlEcnqokD3bRgVXYnAQknKG87LYvxZiKNSFHEyThe13wWiXctfHXcZf S3Y2uZNmM3t6VFQ200ppTQGFLUFBQ5HOCkenBqNR2dmbU7oudofGapQhLCpSbbve+iVrePsb PU3ZnYJE23OMsJSWHW1rbWNyXGkNhCW8Hy9kHnPO714t6Oz6Tkppbj55tH4uxtOjLDOV86b5 NNtu/m9NNy5GssFujRCzHiMNsx2RkIQnAGOlWFS0IWRyOEz4zFdJVd3vbf3zNSBgVCOmFAKA UAoBQCgOFDIIrxKOaLXMHnnaZ4yNa4V2t7feSLZKS+oBG4logpcGP9FWflXFNW07UdHsF0qt aeGquyqRtvtro15mvgXWFJgQ5DUlotSkBbBUoJ7wEZGAa6zA1FPDwb7PDQo62Gq0qk4Si7xe vUfca6wJIR3EyO5vJ27XAc4JBx68g/ZUtTi9zMTwtandTg1bqfaSlSGkJUpTiAlJ2klXQ+n7 xWTUoybskdAuUQu92mXGLvtewHRu9n63Hu8/SsZo3tc9uhVUc2V27Hx3EeFfLdPbkqgTY0oR jtd7l0L2H0OOnQ0pyjUdoO5jG0K2BhnxEHFNXV1a/YectKTI7VZckbFLYgIjFXmFFSnFfDgp 4qSrPEdisUlSUlshKf703L0X/wCj1C3Nd1FRnG5XtGtdWWaRJ2fR6Kgr73r99xNrWTxQCgFA KAUB0Sk5QD6Gqna0L0VLk/W69zZT3mfDjY1OtrcO8VDSoJ9wWRn94rm977ifkf4RS4ZvZfQ0 jZygH3V2eHn0lKMuaRWvefdbzAoBQHVIcDTS1noBXqMczsaq9VUqbm+B55qIh696cbUrDgmr f6ZyEsOgj3crFSqiWeC6/ZnPYOUuhxFRq/ypPvnH6GwszX0i3T5eyP7a84iWiib9j0rylVfD QuKil+KAUAoBQCgI8sZa+BFVm1IZqF+TX09z3Ap7KtJvV0RkEhTZIz09gY/3GqvZMrYiUea+ n0ZLxK/Y032/1M0FdOQRQCgFAD0oDy7tia/C+nJNqbdSh6dIjxWifIl1PJ93B+ytlWjmoZOd iv2bi8m1PxVvlpqT8Iv3ZT9mnZNbdO3uPcXX3Js1pAKSsAIbVjBUke89M9BWuGCjh1nbuyfi fiXEbXmsOoqML3fNpbkz2kcChkUAoBQCgFAKAUBke1bB7Pr0CcfQjn+mmgLbVH5jlefKP4xW UDuti+6sMNZSohMZB2oSVE+yOAPOscQZ656wcgXEsqhFTJa71IVuQ5wCpSSnH1uAAPMrT60B Tavv6JmnbPcHY8hKWb1CKm2G1PLVyleEpSMqPtYIAOFAjyoD0C2TW7hCaktNyW0uDcESGVMu Dy9pCgFD5igJlAKAUAPIoCFIT9IQecjmuW2pDLiG+dn5W9jfB6HzBSlrDbaQlASAkAYAA8hW 7Y87VZQ5r0t9TFW7+Z7yfXRmkUAPSgKOfHfU8pzYVI8tvPFTKM4KNrnN7QwteVV1Mt11Em0t BDRWoYKzxn0/85rVXleVkTtk0clJze+XoizrQWwoBQCgFAKAUAPSgK2S2lfetrAKFZBB8wet cfjKeSvOPC789fckQk42kt6PEZ3ZBNlIjKevThdD/h2kFKnEssDOwg5z0SOMAZqVgsM60L3s 07e9/G531L4wo05SUaKta7eiblpfzb5kyb2LOwlOS7JenvEs+3GS4kA5AzgqHqr4DmrCWzHF 3hLXgaKXxtCslSxVFZXpK3Xpu6kQLf2banuaJEGVfm46YLyt2zeS464hLilE8Z6pGeeh+fmG DrTWWUrW9d5JrfEuzqDjXhQzZ0t9tFFuKVtbcXbrLhrsQjqWXJF+mlxYTv2IGSSPpOSedxz/ AG5rZ/ZceMiDL45qJZYUI2W7X/b4fdinv/Y7Ot9uaRp6+uMy3BskfWQlxOB0weOc/wD9Vto7 LcXmpy1K7aXxzSqR6LF0LpvTc7W7e41PZTpmba4Dr16X3t4uD3fyTwdgAACOOOAPL19wq2oU 5UablN/M95we18ZS2njIUMMrUoaLxu2esjpWgs0c0AoBQCgFAKA6nwC0r4ZqFj458PNdV/DX 2PUXZmPfdSjtBjIIO5dscAPlw6k1yXG3V9S7jG+zZS5TX9LNfGP0YHpXT7Mnmw66m/qU01qd 1WZrFAKAqry7hCGh1Ucn4CpGHjq5FLtitaEaS46+BkLito6rs7K0bl9xJeSr+bt7tJ/c4K2y d6kV2+31IFBSWDrTT0vFPvzP/tRuoDXcxkJV9bqr41FqSzSbL7BUOhoxg9/HtJVeCWKAUAoB QCgOp7lpY91RMZHPQmup+R6jvRQQEoRqWcpKUhSmI4UQOT7TvWuawM8mIj2peqfqWFVt4Wmn zl6RNIK69FaKyBQCgI8x3uY61+YHHxr3COaViPiq3Q0pTPEtdSnHO0vSVrY2HvXRKdyfaAa3 kfaCr7BWa7f4iCX3a/1NeyKUY7JxeInfROK/1Wv6I9hs7W1pThxlZwPgK2V5XllImyaOWEqj 4vyX6lpUctxQCgFAKAUAoBQHnnbBemIulrjb3Y9xU8+ygpcahPLZTlwD23UpKE9OQT0+NAaz VHFjlH02fxisoEqzfmeDxj6Bv+EVgHd4dnvFO9033isblbRk46ZPuoDL9oSEpi2BKQkD8Nwy BjA/wlAa8dKAUAoBQCgIsocpNUG2Yawn2r3NtNnWydroqDs6eTERfPQ9TWhOrrTQKAUAoBQC gFAKAUAoBQCgFAQ5GA78q5fasMuIvzV/X6G6G4+opw4oe7Nb9jytOcepP1MVCUa6E1HyEgEk AZPXjrQH0enFAUVyQ8p8rUhRQOARyKmUHFRtfU5radOrKq5uLy8DtszftLdOP5o/t/srziJb om/Y9G+aq+xFxUUvhQCgFAKAUAoDgjIIrzKOZNPiDDa3YdaFtuzLyWTbpaFubvqqaWe7Xk5G AEqKvlXEyjl38NC92XUUukw8o36SLS7V8y8Wrd5lLzqS+6rnybPoJTBioUO/uZ4SnKTlIyD5 p6gHyq0wM6zjKlT7e4uMNsvB7MpRxe1E82tocd+/z3PrI8azdqVsaQ6zdYskrUFrYcKTsJCl nPH84kce7yHFj0eNhrmubamN+HMTJxnSceF1fqS48tdfUDtfuCIjbMjTslF0BJdbIUAltIBU vBA67XOPLb50/tCSVnDX7/XwMv4PoubnDELo+D03vcuO7TtuWJ7bbMFJQq2XRB3DvNzacoQc e0Rn0INentOnyZG/9E4tptVYPlq9Xy3Fhbe0HTmo55bt9yaU8SEIZXlCz06JPXk9RVxhsRSl FKL1PnG29j4+hVlUq03lWl1qrJ283quonQnBK183CDS8R4Hfrc/Rwt0BI+P0Rr1VnaduS9X+ hGwWE6TDxk3o57v8qvf+ZI3wqMXwoBQCgFAKAUAPSsMHn15nzLPriA6oJ/A81pMV5asANOpL ikHPvGQflXEyXQTvy9josNQo4rZ84r/qweZLnF5U9Orf4mekr1hr2QuXYZqbLYW1lMZ7cd8o BWCo48sp93XzrpW62JeaDyx4dZZU1svYkVSxcOlrP8y4R6vBkzTnaOi3PGy66UYV4jbu8kKS A07yCkgj1B9McdecV7pYxRfR19GuPA0Y74beIj+L2Us9KVrLiue/r676l8ntJ0yuZEYRcWSZ S3Epc3jYnYcZUf0Qeoz1+dbfxlHMlfeVz+HNoKEpum/lSduOvJcbceRrXJbDTSnXHmkNpG5S 1LAAHqTUm6SuUqpzk8qTv2FVOuMaWykw32n2gSVKaWFJ48sj51JwtpXkncpNudJScaE4tPe0 9OzeeQMvwtRdstrmMFRVEirZSM8bgt9G73g4yPjWhyjUxKlyX1LXoMRgthzoP9+S81B+Tdn1 nvbDYbaShPRIxSTu7ilTVKCguB2Vg2CgFAKAUAoBQCgMj2s/+ry94/8Aukj/AG00Bb6p/MUv +j/EKygdlsWliww1kKwiMgnakqOAkdAOT8BWOIKC6awXCuSGk25Soy0hzvne+bKUAErUUFrO E45xnG5OcbhkCm1jqOJKsVnuTiXWI8e9Qy5wVnadqwQE5J9lacgdDkc4oDf2yczcoDMyGpSm HRuQpSFIJGfRQBHzFATKAUB4VqjUuqrd2fX51qdGbalTb7CiPHvVyWe5VOeDveb07cIjqaQg A7fYXuIHdUBbNai1VZr5cYcy7WSS7O1MzaW3ZLDrDMffa0vZQkvL6rDeGgRuWVjckugoAv5W proOz+9XwiEudCTKiRo6WVgPzWH3mE4G8kh5aGwloe0CrbvWSCK/aNFVYRvuur9mqfgme4ux j5N/vNjmzmLRMcnIhp8K2/NUJAXGhMtd9JV3jzDZX30laHXe9BBaSnuztWpFTTjBuNSStqnp zbdlom7WV0rcd+6/tsl6Q19dbg9cbulcH8HPXC0FdudfW9IaRPjQkJCDkBptC3VrztV3p7wY bIKj0qNJ1R9c6nvNrtMm4QPwZCur1smw3EONNOBpc+GlTQ2yHFvJUh/ClltkAYBT9JtTkCxd pV4RD0o6YkZy1yfwXb5B3FSvEymWV47558OlSUvpXtDT+5Kcl0FS+6A1fZ/qe+XP8XPw8u2v /h6ym7teCirj+G2+H3Nq3Oud5nxIwobMbDwd3sgVOpdfXy02SffGm7a5CU9dYUSIphfeNOw2 pag6473mHEqMNXsBCCA6PaOzKgO7WutNR6etl9fJ0+1JstpRc5CJHed08t9chDTLbm4EFBZA yU/TKUAAznIA7ZWq51q1Ne7xJakzdPIeVammoiVOFTrTCXUKbBIQVLeXKjKIOVOpjNgAhRoC qYnaqd1LDgzLrGZU5qZiNcGWUurbOyzsylNsK7xKkNFxtw7f0isbsp3ocAqbRqXVUbUurr0x OjT4k562i3W+T3qY6Gnrk7CaW0sLUEpcaa70rSghRdSoAhOFgWEvtH1HZraXrovT8hx2VIab cLbkJhlEa6MQXC6tTjmAtL+/dx3e05DlAXcy93y5y2dNiZGau7F68O/MhsrQlTTUREwO9z3h UlrvHIzDgKyFBwjckuJ2gV9wevaew3U78e/zkToK72VT1hKpLiGZEoICVDCWz7CBlKfZSCEB B2qQBL7R5UsStZSGp05hzT+nGrpbxHkuMoRIJmEqcQghLw/k7XsOBSfZIx7Ssgfd6blRdYWq Vabs443c5MmGZLs1yU0X0tSFdwYgKGm22yyMuIUHSprYrla3KqtqU06eZrd9Vx9t3Hgj3ArI C7m9pG3sOzrlclfh64xpLbc5MadPabflhDbTgU0EqSUNrISpsd20sD2fYMTB5YYu6W+Md25X S++1nqX5Spc7Sr7YtLPS24nfR7P4p2a1NU24+hlM6Swwy48p9ASopj92HEGStagSUk7e96A1 Hper79Ott1hQbe5bY+6FKub8i4lQZ7qOpkKbKgR3e7vwe9O4ICD7C88Aef6d1TqDU50y+mXG gtT71EE5ptDyu9SbOzN2oJe+jTvSobU8HKSoKHeJdA9qNAfKUhPQAUMJJbj6oZFAKAUAoBQC gB6VhgqZ8dqUzIjPpC2nUlC0noQocj99chjIZK849frr7kmlUlBxnHRrVdxE0vZINhiiFbGQ zHzv2ZJ9rABOT8Kl7Inau433p+Onsbsfi62NqdNXleX/AD9TQ10pAIy47S3S4ptsrUnaVEDJ HPGfTk/bSyMqckrJ6ff6EO6RIqobyX47DiVpCSFoBB9AR516hBTlZo04jG1MLTdWEmmt2r3s 8fv/AGYWRi3yZ1kaXAusdsuxn23VJDa05UMjpjy6eVequBppOUNGjRgvijGVKkaGKeenLRpp O99DQdjar3Ln3m4apjoj3JTceOkIxtU0nvFBQwSOVLV9lR4yqSbdTfp9+ZcV8PgqFCH4GV4N zeu+/wAqfoeq1sIYoBQCgFAKAUAPSsMGZ1jY2NRWaZa5K1Ntv49tIyUkEEEfMVyePjlxMrc7 +SLPZmOlga8cRBXcf+C0scCPbLVFgw2w3HYQEIT7h6+89a6LAyzYaDXIh4uvUxNaVao7yk7s g6j0tZ9RMobu8Np8NqC0kjCgQem4c4PmPOt1WjCr+dG/A7SxWAk3hpuN/Dw3Hnl+7FbRMu7S 7Y67BhlCi6hKt/t5TtA3dBjd6+VQqmzISleOiOnwfxriqVGUa6U53Vnu0s73tv4eJEb7E/5Q tLt+krhKQrLYGFKUScZ5IwAEeuceVeVszXWTsbn8bSypxoJTvv5Ly6/Ez980DqDS0h1zRNxc EeWe5kMvHBG5RQhScD9EKznqME+6p0cHUw8UqEtHvOUq/E2D2xWk9rUrSjrFrkldrvy7uvxt +wvTdwt18el3jYZamXe8AUFbfpdiQMcdUOn51mjTlS1lva9zztPFUcZKMaH5INPvy/S3gj3c VtIIoBQCgFAKAUAoBQHnnbFfoEPStytj7riZkhlJbQGHFJOXABlQSUjoepFAavVX/N+Z8E/x CiBKsfNlgeX8nb/hFAfL9pt78lT70KMt5RSS4ppJUdvTnrxQGd16y3Hi6fbYQhtP4ciHalOB kuZNAbFPQUBzQCgK+RZLVJi+FkWyC7G3uud05HQpG90LDisEYysOOBR896s53GgKqVobTj78 RxNpgsJYWFLbYjNpRJQmM7GS06NvttpaeWkJ8uB0yCBYrslqbjBtu2wkNttstoSlhACUMq3M pAxwEKJKR+iTkYqJjE3h52fC/hqeo7yG7ZbZIbYbdtsJ1tiSZrSVMJIbf3FXepGOF7lKO4c5 UTnmuVpurO/R3d1bRX05dhvtbed8LTlkjPQ5EezW1mRFB7hxuKhKmctpaOwgZT9GhCOP0UpH QAV11CUpU4uWjsvQjvedkfTljjPTHo1mtrLsx5EmStuKhKn3UL3ocWQPaUlftBR5B5HNbzAT pyxpejvJs1tDsdluMysRUbmmm1hbbaTjhKVpSpKRwCkEcigO1VktSorcVVsgmM3FVCQ0Y6Ni Y6gkKZAxgNkIQCnodo44FAdTunLG7PnTnbNbVzZzJjS5CoqC5IaIALbisZUkhKRtORgD0oCq 1domHqqfHfuUySI7TLkcxkMRilTbgKXQHFtKeb7xB2KLbiDgDGDzQGg/BsHw3h/BRvD994nu u6Tt73vO97zGMbu89vd13c9eaAfg2D4nxHgo3iO+8T3vdJ3d73fdd5nGd3d+xu67eOnFARE6 csaXo7ybNbQ7HZbjMrEVG5pptYW22k44SlaUqSkcApBHIoDquumLVcWGG1RWmFMSkS0OMNoS sLTJbkqGcdFutIUv+d164IAlW2yWq1txm7ZbIMNuMhxthMeOhsNIWoKWlISBtClJSogdSAT0 oDuVbYKoEiCqFGMKR3nfRy0nu3e8JLm5OMHcVKKs9So560B03KyWq6SoUq52yDMkwV95FdkR 0OLjryDubJBKTlKTkY6D0oDpNitbd2fu8e2wm7u+kNvTUMID7iBtwlTmNxHsp4J/RHpVftGh LEUssN6a+/M9RdmdcnT9tmW523zLdBft7zhcdiusJW04or7wqUgjBJWdxJH1uetQMPs+tCpG pKSVmus9uaO2RpuxyWYjMmzW15qGyuNGQ5FQpLDS0bFtoBHspUj2SkcEcHir5Gor9TaQjX1y O4iW7bnGZQmlUaJEcLkhKUpQ8S+y5hxCUhKVJwQOM8DGQWFp07Z7RDhxbfbozLUPYWPYClIU hkMJVuOVFQaAb3E528ZxQFrQCgFAKAUAoBQCgFAKAhyRh341zG1oZa9+a+/Q3Q3Hwg4dSffi ouCnkxEH128dPc9SV0TxyK7BEcVkEGfGVISkJUE4OcEda20pqDu0QMdhJYmKjF2t5lJcbc85 FeYWghLqC3uTz1GKldJCaauUX4XEYepGbjezXZvLa3wEw3lLDhILLbW0jpt3c59+791QHrJy Orp2hQhRS/Ld+NvoWdDIoBQCgFAKAUAoCLIbUpwFIzxVDtLCVatZSpq+n1+pshJJanYylSUY VjrU7Z9GpQpZKnM8zabO6rA8igFAdTzaHUEOJSoe8VmLad0zXVpQqxtNXRmtMxBEuklPdlsq Ste1XoZDpBHxBz861KTb15e5OqUaVKiui3Nr+iOnd9TVVsIooBQCgFAKAUAoBQGQ7WeOzu+e f0I4/pJoC41R+Y5R96P4xWUDttTqGbBCdcUENojIUpSvIBIrD3gqJes7UxLcYQtT/dtpdWpo AgJKVqP2JbUo/IdTQFFrjUEF+xWe4uOCPDj3qGp1x8hIQnKV7iegG1ST86At/wApGi0j2tUW YcZyZaBgfbQHRI7UNGMSozB1HbF98VDvESUFDeBn21Z4z0HqaAkflI0XjP402bGM58Wjp9tA Rz2n6N/CAijUNuOWi733fp7scgbd2frc5x6CgJA7SdFkZGqbNj1MtAH++gI8ftO0Y9KlsfjF bGzHcDZU5JQEuZSlWUHPtD2sE+oI8qAkflH0Xt41RZinrkS0Ef76Aq9O9qGm5sN9y43y1RnU S5DKE+IHttIdUlC+f5yQFenPHFAWo7SdGHpqiz/96R/fQES3dqeipsFiSNR2xjvUBfdPyUIc R7lJzwR5jyoD6ndqGi4kKTJ/GS2PhhtThbYkoccXgE4SkHknHA86AkI7SdGKSD+M1oB9DKRk fvoCLP7UdFxY/e/jFbn/AKRDexiQlSvaUE5xnoM5J8gCfKgJR7SNFg4OqbLnrjxref8AfQFX cO1LTLN6tUeLfrM9EfU6JTwlJPcBKCpPQ4GVDHNAWn5R9GZwNUWcn/W0/wB9ARldqOjRcERP xht2S0Xe979PdjBA27s/W5zj0BoCT+UnReM/jVZPgZiAfszQEVntS0W7Mfj/AIxW1JaCT3ip CAhzcCcIOfaIxz6ZFASvyj6Mzj8aLPn0MpP99ARovajo2Qp8HUFvZLTpa+mfSnfgA7k88p56 +40BJPaRovZk6qsgHvmIH9tAVmm+1LTM6zMSLrf7LEmLU4Fs+LSNoC1AcE55SAfnQFg92laN aZW4dS2pe1JVtRJSVHAzgDPJoD4Y7TdGvRmXlaktbPeIC9jshKVpyM4UM8EeYoD4n9qOi4rA dOo7Y8CtCNrMhCle0tKc4z0G7JPkAT5UBI/KXonbk6qsuP8AXEf30B0Su0/Rsd2Kg6ht7vfu 91uafSoN+ypW5Zz7KfZxn1KR50BIPaPowAE6os+D/wBKT/fQFZJ7UdNI1Jb4jV/syre9HkOP yDKT9G4hTQbRnOBuC3Dz12cdDQFke0rRSeuqrJ8RNQR/voCOntQ0Yqc7H/GG3Du20OF4vp7s 7iobQrOCobSSPLI9aAk/lI0bj/nPZ/X/ABtHT7aAjx+0/Rjz8lr8Yra33Lgb3uSEJS4SlKso OeR7WM+oI8qAkHtI0WCR+NVk4/6aj++gIkLtM0XOjIkHUFuayVAIffShQwSORnjOM/DFaKuG p1mnUjexlNrccze0rSEeBJei6itDrrbSloQJKfaUASBx616hRhT/ACJLsQbufNm7T9KyrTBe m6is0eY6whx5nxSR3aykFSeTxgnHNbTB93DtS0VCiPP/AIx2yR3QBLceShxasnGAAeTQEkdp OiySBqizHHXEtB/toCPL7T9GxgyRqG3Pd46lrDL6Vbdx+srnhI6k+VAd/wCUnRYBzqizjGc/ ypHH76Aju9qOjG5sZgajtjheKk70SEFLeBn2zn2c4wPU0BJT2laKV9XVNmPwlo/voCsV2o6a /GdEFN8tBt5hqfVJ8SOHQtICM5x0JOOvFAWZ7StFj/3os/8A3tH99ARmu1DRjsx+ONR2xBZC TvXJQlC9wPCTn2sY5x0zQEn8pWiycDVNmJxnAloz/voCPD7T9GSUOLOobexsdca2vPpQpWxR TuAz9U4yD5jBoCQe0jRg66ntAPoZSf76AjQO1HRcuFHkq1Ha43fICu6kSUIcRkZ2qTngjzFA R9R9qOl4On7pLtmoLNKnR4rjzEfxSSXXEpJSnAOTkgDj1oCe12kaPLSC7qazpWRkp8Ung+fn QHRcO1DRkON3ytQ250b0I2svpUr2lBOcZ6DOSfIAnyoCV+UjRe0qOqbKB75iB/bQEV/tR0Y1 JitfjFbVh8qHeIkoKEYTn2jnjPQepoDrTrzR6bq5LOqLL3a2EoA8UnOQonPw5FYtrc2uouiV Pje/kl7HYe1HRouCYv4w27BaLvfd+nuxggbd2frc5x6CsmokjtK0Uf8A3psw+MtA/toCrh9q GmV3y6RpF+srcOOlkx3/ABacOlQUVjOcHaQOnTNAWo7SNGFO4aos+318Uj++gI0TtP0dJL4/ GG3NBp0tZdfSkLwAdyeeU84z7jQEj8pOiyQPxpsoz6zED+2gI0DtS0XMipfGo7YzkqGx6ShK xtJHIzx0z8CDQHa52l6MQyt0amtKwhJVhuSlRIA8gDyaA+Yvabo2RFaf/GO2Nd4gL7t2SgLR kZwoZ4I8xQFB2h660pctG3SFb9Q2yVLeQlDbLUhKlrJWnASAck+lAbzU/wCY5XxR/GKygSbL +ZoH/UN/wiscQV9/gRBHlTUW6M/N2pG9TQUSAeCfNQGScefSgM9br7cIjSkG0R43eOJShpZU 1vUpKjgHB3KOwHHGAoAnigLLTd4us65JZmw+7Y2KIc7pSNwBG1fPTOSNp59nNAazFAcbBnOO fWgHdpznaPsoDnaM586AEevNAY29X2VFvEuI07FQW+47orZUrJX3m4KV0H1U5PkPIkigOmVq S5KdSYsFlTBWptTrYU6lCQ64hTmcDO0IQSjGSVnBwnJA11vW6/AiuyWe4fcaStxrOdiiASnP uPFASttACkHqAfjQHGwHqB9lAc7RQFNqWZJgQA7CYLy94BG0q2jB/RHJyQE/FQPlQFE3qS6l oIfgNNSVd4UpWVbk7QgkBODu27zk5GdvHWgLLS1zuFxcfTcYRjpSlKkgpIIJJ9fUYV7s48qA 0m0fKgGPfQHG0Yx5UA2JxjAoBtCUkADHoBQGOk3+SL09CbkQ0qRObZQkoUdyFIQVAqzgHlfP rgUBEc1TdnWmXoluaWy60HMtBTqRxkEKwM5V7HQYPPIoDcMDc0lSkBCiAVJ9D5igOwIA6DHw oDnFANvOaA4DafQfZQFLqebLt0Rpy3Ru/dU5tUAknjaogcdNyglGfLdnyoCjZ1Jc1MpbdhsN SFIK/wBPehIUyFK7rGVBBccBORy309rgC10rcrlckvm5wlRFJ2qCcEbSSoFGT9YgJSrPT28e VAaHYM5wM/CgGwZzgZ+FAc4oBtBoDhSEnnAJoDCK1PMTJcO+EosuSgpCm1NpKG9xSS4c44Ce gPmegoDsGorw5cG227ekxVuN7VpQtQwSOArzyk793AABBGaA2+M0AKAcZAOOlAChJHIH2UBz toAUgjBoCg1Pcp9vQx+DYRlrUTlGCdxGMIHpnJ9o8DaaApl6kuXhu7TCYU+EBz6q95TvUnPd Yzg7QAc9VZxgcgXml5824Rn13GL4Z1Lu0JwRjgEjnrg5GfPFAXmKA42DGMcUA7tPoKA5CQBx xQHBGAcdfsoDAtarl9yp/vISyyzJdW0tC2UEIccSg78KIB2o6A8ZPoCBOavd2VehHNtCYvf7 N/dq6d5tCc9P8H9Ju6fo++gNglI6gAGgOcUBxsGc+dAcd2nOcDPwoDkIA6CgMzqW73K3TWGo ETvWloytZSVY5OVcfzQAcee4AUBWvaluymD3Ftbckthvc0lSlLUpTaVBChgbCdx5yeE84zQG k0/JfnW5L8xpKHSpQCggp3AHAVg8jNAWmweg+ygOce+gOCkE5NAC2knJAJ+FAfDu1DalnaNo zkjpQGDgasmOtsPvOQFDwza3m1pWxtWpxKMhR3Z+srjb/NGeaA+LpfbvIbejyLeG46lhO8IU PPJ5PA2EAE+ZUMYxRA1UC4NRYdkiuJdLkppKGyEEgFLe47j5cA0YI9x1RBgXB+JLQ6hTTaXV LG0jaQo5wFbhgIWeQPqnGTxQEV/W1ubSFpakONlpT5UFNo2oSEqJIWsEeytCunRQ8zigJh1b ZUMhT1wYbd5BZKwXEqCCtSCkE+0ADx7qA+7VqODdLg7Cjd6H20FSgtIHQgKHXPBUBnpnOCcG gJ14uDdrt0ia+hSmWEb1hKkpIT5nKiBx8aAhS7/HjvW9ksuqkzmlvMsBTaVkJCSR7SgCfaSO CevpzQENOroymULNvuCd6UqSkoRkhRCQR7WCMqSOM5zxnBwBb2m5xrrFU/FUooCtvtDB6BQP wKVJPwNAWOKACgFAKAUAoBQCgGOaAUAoBQCgFAKAUAoBQCgFAKAUAoBjmgFAKAUAoBQCgGKA UAoBQCgFAKAUAoBQCgFAKAUAoARmgAoBQCgFAKAUAoBigFAKAUAoBQCgBFAU+rBnT80ZI9lP I6/WFEDIX+Q805pHunXEcq+qoj/2KqPeCktTi5ztsM1SpJ8HD/wx3/XQ3v6/zvP186A+Jy1R WoPhlKZ43fRnbzvUjPH+aAn4DHSgLbR8WP8AgC6juGsNhzYNg9n6Nzp6dT9tARIrzqZTG1xY +jj9FH9KQ1u+3z9aA22rXnWtOPuNOrQsbcKSog/WHnQHmLbzrjsZtbq1IbldyhJUSEt+Ghq2 AeSd3OOmeaAvbe84dbqYLi+4EiJhvcdv+Ljy6UBsNHIS3aF7EhP0vkMeg/3AD5UBfJJ9TQHO Tg80B85OOpoDnJz1NAAT6mgPoE+tAcZOepoD5BPqaA+kk56mgAJ3dTQAk+poD53Kz1P20B9A nPU0ABPqaAKJz1oD5JPqaAEnjk0B9An1NAcqJ9TQHzk+tAfO4+poD7BOOpoAScdTQHzk8cms AZOOprIPsE46mgBJx1NAcEn1NAfG446n7aA+0k+poAScHk0B85OOpoBk+poACfU0B9AnB5PW gGTnqaA+cn1NAcpJ3dTQHOT6mgOCTk80Ayc9TQHAJyOTQH2SfWgPlROepoDjJ9TQDJx1NAfQ Jx1NAFE+poDjJ9aA5ycdTQH0KA+CTgcmgGT60Bxk7etAfaSdvWgBJx1NAfGT6mgOQT6mgGTt 6mgOcnB5oDjJz1NAVWpifwHK5PRP8QrKB//Z ------=_NextPart_000_0068_01CBEA7D.57DCC990--