Return-Path: Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by mtain-db01.r1000.mx.aol.com (Internet Inbound) with ESMTP id 24BE238000171; Sun, 9 Jun 2013 07:17:23 -0400 (EDT) Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1UldbO-0002Ge-2x for rs_out_1@blacksheep.org; Sun, 09 Jun 2013 12:16:02 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1UldbN-0002GV-2o for rsgb_lf_group@blacksheep.org; Sun, 09 Jun 2013 12:16:01 +0100 Received: from omr-m01.mx.aol.com ([64.12.143.75]) by relay1.thorcom.net with esmtp (Exim 4.77) (envelope-from ) id 1UldbJ-0007of-9n for rsgb_lf_group@blacksheep.org; Sun, 09 Jun 2013 12:15:59 +0100 Received: from mtaout-mb05.r1000.mx.aol.com (mtaout-mb05.r1000.mx.aol.com [172.29.41.69]) by omr-m01.mx.aol.com (Outbound Mail Relay) with ESMTP id 6331A700000AE; Sun, 9 Jun 2013 07:15:55 -0400 (EDT) Received: from White (188-195-246-26-dynip.superkabel.de [188.195.246.26]) by mtaout-mb05.r1000.mx.aol.com (MUA/Third Party Client Interface) with ESMTPA id DDD41E000099; Sun, 9 Jun 2013 07:15:49 -0400 (EDT) Message-ID: <40A4DFBB54EE4044B3B35506177510F3@White> From: "Markus Vester" To: , Date: Sun, 9 Jun 2013 13:15:38 +0200 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal Importance: Normal X-Mailer: Microsoft Windows Live Mail 12.0.1606 X-MimeOLE: Produced By Microsoft MimeOLE V12.0.1606 X-AOL-VSS-INFO: 5400.1158/91304 X-AOL-VSS-CODE: clean DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=mx.aol.com; s=20121107; t=1370776555; bh=2vB77XEPntanUABx27Suoc02m1+NTxh4FJX/B6tDzhQ=; h=From:To:Subject:Message-ID:Date:MIME-Version:Content-Type; b=yDjJSaLizBiAbJSsgh81l9A7gqOIMdKQdevrSHD0LvPDm5mdNZcWONpcs05fIctrq etQjleYxi6+OgMRhnE6D9cH/3yT34D5PhVD1XCrIu7krbc1c7JK8JD3tecNJogyRix yuIMHshVBbM4bI79kS9h8HlUGf0l+RnyFhxBdU7Y= X-AOL-SCOLL-SCORE: 0:2:471723808:93952408 X-AOL-SCOLL-URL_COUNT: 0 X-Spam-Score: -0.1 (/) X-Spam-Report: Spam detection software, running on the system "relay1.thorcom.net", has identified this incoming email as possible spam. The original message has been attached to this so you can view it (if it isn't spam) or label similar future email. If you have any questions, see the administrator of that system for details. Content preview: Roger, attached beneath are a couple of mails on the subject which I had posted on blacksheep in 2010. Here's a summary of the formulas: - An earth antenna forms a magnetic loop antenna between the wire and the subsurface return currents: Aearth = length * effective depth = length * skin depth in ground / sqrt(2). Thus the depth scales inversely with the squareroots of frequency and ground conductivity, and is usually a few tens of meters at VLF. Somewhat surprisingly, this still holds true if the wire length is much shorter than the ground skin depth. [...] Content analysis details: (-0.1 points, 5.0 required) pts rule name description ---- ---------------------- -------------------------------------------------- -0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no trust [64.12.143.75 listed in list.dnswl.org] 0.0 FREEMAIL_FROM Sender email is commonly abused enduser mail provider (markusvester[at]aol.com) -0.0 SPF_PASS SPF: sender matches SPF record -0.1 RP_MATCHES_RCVD Envelope sender domain matches handover relay domain 0.0 HTML_MESSAGE BODY: HTML included in message 0.0 T_DKIM_INVALID DKIM-Signature header exists but is not valid X-Scan-Signature: d4c215c7e9a8f7482f4d187e5f30c8ab Subject: LF: Re: ELF antenna ERP calculations - request for resend of information Content-Type: multipart/mixed; boundary="----=_NextPart_000_001D_01CE6513.6F579D80" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.7 required=5.0 tests=HTML_20_30, HTML_FONTCOLOR_UNKNOWN,HTML_MESSAGE,MISSING_OUTLOOK_NAME autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false x-aol-global-disposition: G X-AOL-VSS-INFO: 5400.1158/91304 X-AOL-VSS-CODE: clean X-AOL-SCOLL-AUTHENTICATION: mtain-db01.r1000.mx.aol.com ; domain : mx.aol.com DKIM : fail x-aol-sid: 3039ac1d405551b4644322d1 X-AOL-IP: 195.171.43.25 X-AOL-SPF: domain : blacksheep.org SPF : none Dies ist eine mehrteilige Nachricht im MIME-Format. ------=_NextPart_000_001D_01CE6513.6F579D80 Content-Type: multipart/alternative; boundary="----=_NextPart_001_001E_01CE6513.6F579D80" ------=_NextPart_001_001E_01CE6513.6F579D80 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Roger, attached beneath are a couple of mails on the subject which I had posted = on blacksheep in 2010. Here's a summary of the formulas: - An earth antenna forms a magnetic loop antenna between the wire and = the subsurface return currents:=20 Aearth =3D length * effective depth =3D length * skin depth in ground / = sqrt(2). Thus the depth scales inversely with the squareroots of frequency and = ground conductivity, and is usually a few tens of meters at VLF. = Somewhat surprisingly, this still holds true if the wire length is much = shorter than the ground skin depth. - The radiation resistance of the loop is=20 Rrad =3D 31171 ohm * area^2 / lambda^4, allowing you to calculate the radiated power in the main lobes as EMRP =3D current^2 * Rrad=20 - The effective area of the earth antenna can be measured simply by = comparing the received voltage from a distant transmitter to that from a = small nonresonant wire loop: Uearth / Uloop =3D Aearth / Aloop Alternatively, using a signal of known fieldstrength E, the loop area = can be calculated by Uearth =3D E * Aearth / (lambda / 2pi) If the loop antenna is not optimally aligned with the wire towards the = other station, a cosine directivity factor should be taken into account. = Best 73, Markus (DF6NM) =20 From: Roger Lapthorn=20 Sent: Saturday, June 08, 2013 6:15 PM To: sub9khz@yahoogroups.com ; rsgb_lf_group@yahoogroups.co.uk ; = rsgb_lf_group@blacksheep.org=20 Subject: LF: ELF antenna ERP calculations - request for resend of = information Some months ago - time flies, so it may have been last year - someone = kindly sent me a copy of a paper, or at least a formula, to work out the = radiated power (as opposed to other forms of signal transmission) from = an earth-electrode pair "antenna" at ELF. I think it was based on some = of the Project Sanguine work at 76Hz back in the 1970s. I thought I'd = saved this, but cannot locate it anywhere. =20 If you remember sending me this data, please would you resend it? Thanks. 73s Roger G3XBM ___________________________________________ From: Markus Vester=20 Sent: Thursday, September 02, 2010 7:22 PM To: rsgb_lf_group@blacksheep.org=20 Subject: Re: LF: Earth loop depth Dear LF, I recently discovered that I had a misconception regarding the effective = area of an earth antenna, which may be interesting to other = experimenters as well. It seems that short earth antennas are much more = efficient than I had intuitively anticipated. For small electrode spacing, most of the current returns through the = ground in the vicinity of the wire. My understanding was that the = effective loop area would then look similar to the a half-circle beneath = the baseline, as depicted by the red area in the sketch. This means that = for small baselines, effective loop area would scale quadratically with = baseline length. This would hold until the baseline is made so long that = penetration becomes limited by skin effect in the ground, and one enters = a regime of linear scaling of area vs length. Then I tried to calculate the magnetic moment for the non-skin effect = case based on DC current densities in homogeneous halfspace. The current = field is similar to the electrical nearfield of a dipole. Integrating = depth-weighted current densities over the halfspace volume should then = give the total magnetic moment. But this integral did not converge to an = asymptotic limit, but appeared to grow monotonically with integration = volume. This implies an infinite effective depth of a DC ground loop! At first I looked for an error in the integral calculations, but then I = noticed that the divergence can be explained by a simple scaling = argument along the following lines. At a distance r from the dipole = (current Iq times length l), current density J in the ground scales as=20 J(r) ~ Iq l r^-3. A large half-shell (green) around the dipole has a perimeter pi r around = its equator, so there the total current would be I(r) ~ Iq l r^-2 dr The contribution to the magnetic moment of the shell is proportional to = its broadside area A ~ r^2, which gives dM(r) =3D I A ~ Iq l dr ~ constant. This means that each additional shell will add the same amount of = magnetic moment, and the total moment would indeed grow to infinity if r = is not bounded by skin effect. Even though the outer fieldlines (blue) = carry only a small part of the current, due to their large cross section = they still contribute significantly to the loop area. This reasoning also falls in line with a much easier analysis for the = receive case. Vertically polarized groundwaves have transverse magnetic = fields, which must be bounded by radial ground currents (ie in the = direction of wave propagation). The finite surface resistance of the = ground creates an additional radial electric field, which can simply be = tapped by the electrode baseline. The induced voltage (and thus = effective loop area) will depend linearly on the baseline length, no = matter how short it is. Solving the equations for equivalent depth is = straightforward and gives=20 d_eff =3D (omega mu0 conductivity)^-0.5 =3D skindepth / sqrt(2) . For a crude experimental test, I took a battery operated notebook to the = garden, stuck the two leads of the soundcard input into the soil, and = measured the induced voltage from the DHO signal. When going from 1.5 m = to 3 m electrode spacing, it went up by 6 dB (and not 12 dB), showing = that pickup area scaled linearly and not quadratically with baseline. Kind regards, Markus (DF6NM) =20 From: Markus Vester=20 Sent: Thursday, September 02, 2010 7:07 PM To: rsgb_lf_group@blacksheep.org=20 Subject: Re: LF: ERP calculation (revised) Dear Roger, thanks for sharing your results!=20 The directional dependence should be a simple cosine law, so going from = 45=B0 to 0=B0 would give you another 3 dB, or 3.8 uW ERP. Thus your = total radiated power was 2.0 uW (EMRP). At 62 km, this gives -14 dBuV/m, = which should indeed be well readable in QRSS 3 under quiet conditions.=20 Taking a loss resistance of 60 ohms, 4 watts would have given you an = antenna current of 0.26 A. The radiation resistance is then=20 Rrad =3D EMRP / Iq^2 =3D 30 microohms.=20 A standard formula for loops is=20 Rrad =3D 31171 ohm * A^2 / lambda^4, resulting in an effective loop area A =3D 155m^2. Note this is using the radiation resistance for a loop in free space, as = the effect of ground is already included in the earth antenna picture. = For an above-ground loop with a mirror image beneath it, radiation = resistance would be doubled.=20 Best wishes, Markus (DF6NM) -----Urspr=FCngliche Mitteilung-----=20 Von: Roger Lapthorn An: rsgb_lf_group@blacksheep.org Verschickt: Mi., 1. Sept. 2010, 13:41 Thema: LF: ERP calculation (revised) Today I managed, I believe, for the first time to accurately measure the = ERP of my QRPp system on 137kHz. This is the method used: a.. Using the E-field probe, FT817 (AGC off, gain backed off as far as = possible and a 10dB pad between the EFP and the FT817) and Spectran I = went to my usual test site 1.5km away from the QTH, 45 degrees off the = main lobe of the TX loop/earth electrode antenna.=20 b.. Measured the signal level of DCF39 on 138.83kHz c.. Measured the signal level of G3XBM on 137.675kHz d.. Repeated this three times to reduce errors.=20 e.. Noted the difference in FS level. Difference in signal level =3D 44dB . I feel pretty confident this is an = accurate figure now and not effected by AGC and overload. Assuming DCF39 = is 1mV/m here (info from Alan Melia) then my FS at the test site is = 6.4uV/m. Using the formula ERP =3D (E*d)^2/49 where E =3D 6.4*10E-6 and = d=3D1.5*10E3 gives an ERP =3D 1.9uW giving an antenna efficiency of = -63dB using the earth electrode antenna with the elevated feed and 4W = from the PA. =20 The test site is about 45 degrees off the main line of fire of the = antenna, so in the best direction it could be 10dB (?) stronger, i.e. = 20uW ERP giving an antenna efficiency of -53dB in the best directions. = Frankly I'm amazed that anyone can copy this signal at any distance, so = full marks to G3XIZ (48km) and G3XDV (62km). Next stage is to try this arrangement for a few more days using QRSS3 = and WSPR before swapping to a full "in the air" loop and repeating these = tests. Great fun and I'm leaning as I go, which is the whole point of ham = radio. 73s Roger G3XBM ------=_NextPart_001_001E_01CE6513.6F579D80 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Roger,
 
attached beneath are a couple of mails = on the=20 subject which I had posted on blacksheep in 2010. Here's a summary of = the=20 formulas:
 
- An earth = antenna forms a magnetic=20 loop antenna between the wire and the subsurface return=20 currents: 
 Aearth =3D length * effective = depth =3D length * skin depth in ground / = sqrt(2).
Thus the depth scales inversely = with the=20 squareroots of frequency and ground conductivity, and is usually a = few tens=20 of meters at VLF. Somewhat=20 surprisingly, this still holds true if the wire length is=20 much shorter than the ground skin depth.
 
- The radiation resistance of the loop = is=20
 Rrad =3D 31171 ohm * area^2 /=20 lambda^4,
allowing you to calculate the radiated = power in the=20 main lobes as
 EMRP =3D current^2 * Rrad =
 
- The effective area of the = earth=20 antenna can be measured simply by comparing the received = voltage=20 from a distant transmitter to that from a small nonresonant = wire=20 loop:
 Uearth / Uloop =3D Aearth / = Aloop
Alternatively, using a signal of = known=20 fieldstrength E, the loop area can be calculated by
  Uearth =3D E * Aearth / (lambda = /=20 2pi)
If the loop antenna is not = optimally aligned=20 with the wire towards the other station, a cosine=20 directivity factor should be taken into account. 
 
Best 73,
Markus (DF6NM)
 
   
From:=20 Roger Lapthorn=20
Sent: Saturday, June 08, = 2013 6:15=20 PM
Subject: LF: ELF antenna = ERP=20 calculations - request for resend of information

Some months ago - time flies, = so it may=20 have been last year - someone kindly sent me a copy of a paper, or at = least a=20 formula, to work out the radiated power (as opposed to other forms of = signal=20 transmission) from an earth-electrode pair "antenna" at ELF. I think it = was=20 based on some of the Project Sanguine work at 76Hz back in the 1970s. I = thought=20 I'd saved this, but cannot locate it anywhere.

 
If you remember sending me = this data,=20 please would you resend it?

Thanks.

73s
Roger G3XBM
___________________________________________
=
From: Markus Vester
Sent: Thursday, September 02, 2010 7:22 PM
To: rsgb_lf_group@blacksheep.org= =20
Subject: Re: LF: Earth loop depth

Dear LF,
 
I recently discovered that I had a misconception regarding the = effective=20 area of an earth antenna, which may be interesting to other = experimenters as=20 well. It seems that short earth antennas are much more efficient than I = had=20 intuitively anticipated.
 
For small electrode spacing, most of the current returns through = the ground=20 in the vicinity of the wire. My understanding was that the effective = loop area=20 would then look similar to the a half-circle beneath the baseline, as = depicted=20 by the red area in the sketch. This means that for small baselines, = effective=20 loop area would scale quadratically with baseline length. This would = hold until=20 the baseline is made so long that penetration becomes limited by skin = effect in=20 the ground, and one enters a regime of linear scaling of area vs = length.
 
Then I tried to calculate the magnetic moment for the non-skin = effect case=20 based on DC current densities in homogeneous halfspace. The current = field is=20 similar to the electrical nearfield of a dipole. Integrating = depth-weighted=20 current densities over the halfspace volume should then give the total = magnetic=20 moment. But this integral did not converge to an asymptotic limit, but = appeared=20 to grow monotonically with integration volume. This implies an infinite=20 effective depth of a DC ground loop!
 
At first I looked for an error in the integral calculations, but = then I=20 noticed that the divergence can be explained by a simple scaling = argument along=20 the following lines. At a distance r from the dipole (current Iq times = length=20 l), current density J in the ground scales as
 J(r) ~ Iq l = r^-3.
A=20 large half-shell (green) around the dipole has a perimeter pi r around = its=20 equator, so there the total current would be
 I(r) ~ Iq l r^-2 = dr
The=20 contribution to the magnetic moment of the shell is proportional to its=20 broadside area A ~ r^2, which gives
 dM(r) =3D I A ~ Iq l dr ~=20 constant.
This means that each additional shell will add the same = amount of=20 magnetic moment, and the total moment would indeed grow to infinity if r = is not=20 bounded by skin effect. Even though the outer fieldlines (blue) carry = only a=20 small part of the current, due to their large cross section they still=20 contribute significantly to the loop area.
 
This reasoning also falls in line with a much easier analysis for = the=20 receive case. Vertically polarized groundwaves have transverse magnetic = fields,=20 which must be bounded by radial ground currents (ie in the direction of = wave=20 propagation). The finite surface resistance of the ground creates an = additional=20 radial electric field, which can simply be tapped  by the electrode = baseline. The induced voltage (and thus effective loop area) will depend = linearly on the baseline length, no matter how short it is. Solving the=20 equations for equivalent depth is straightforward and gives
 d_eff =3D (omega mu0 conductivity)^-0.5 =3D skindepth / = sqrt(2) .
 
For a crude experimental test, I took a battery operated notebook = to the=20 garden, stuck the two leads of the soundcard input into the soil, and = measured=20 the induced voltage from the DHO signal. When going from 1.5 m to 3 m = electrode=20 spacing, it went up by 6 dB (and not 12 dB), showing that pickup area = scaled=20 linearly and not quadratically with baseline.
 
Kind regards,
Markus (DF6NM)
 
 =20
Sent: Thursday, September 02, 2010 7:07 PM
To: rsgb_lf_group@blacksheep.org
Subject: Re: LF: ERP calculation (revised)

Dear Roger,
 
thanks for sharing your results!
 
The directional dependence should be a simple cosine law, so going = from 45=B0=20 to 0=B0 would give you another 3 dB, or 3.8 uW ERP. Thus your total = radiated power=20 was 2.0 uW (EMRP). At 62 km, this gives -14 dBuV/m, which should indeed = be well=20 readable in QRSS 3 under quiet conditions.
 
Taking a loss resistance of 60 ohms, 4 watts would have given you = an=20 antenna current of 0.26 A. The radiation resistance is then =
 Rrad =3D=20 EMRP / Iq^2 =3D 30 microohms.
A standard formula for loops is =
 Rrad =3D=20 31171 ohm * A^2 / lambda^4,
resulting in an effective loop = area
 A =3D=20 155m^2.
Note this is using the radiation resistance for a loop in free = space, as=20 the effect of ground is already included in the earth antenna picture. = For an=20 above-ground loop with a mirror image beneath it, radiation resistance = would be=20 doubled.
 
Best wishes,
Markus (DF6NM)
 


-----Urspr=FCngliche=20 Mitteilung-----
Von: Roger Lapthorn = <rogerlapthorn@gmail.com>
An:=20 rsgb_lf_group@blacksheep.org
Verschickt: Mi., 1. Sept. 2010, = 13:41
Thema:=20 LF: ERP calculation (revised)

Today I = managed, I=20 believe, for the first time to accurately measure the ERP of my = QRPp=20 system on 137kHz.

This is the method used:
  • Using the E-field probe, FT817 (AGC off, gain backed off as far as = possible and a 10dB pad between the EFP and the FT817) and Spectran I = went to=20 my usual test site 1.5km away from the QTH, 45 degrees off the main = lobe of=20 the TX loop/earth electrode antenna.=20
  • Measured the signal level of DCF39 on 138.83kHz
  • Measured the signal level of G3XBM on 137.675kHz
  • Repeated this three times to reduce errors.=20
  • Noted the difference in FS level.
Difference in = signal level =3D=20 44dB . I feel pretty confident this is an accurate figure now and = not effected by AGC and overload. Assuming DCF39 is 1mV/m here = (info from=20 Alan Melia)  then my FS at the test site is 6.4uV/m.  = Using the=20 formula ERP =3D (E*d)^2/49 where E =3D 6.4*10E-6 and d=3D1.5*10E3 gives = an ERP =3D=20 1.9uW giving an antenna efficiency of -63dB using the earth = electrode=20 antenna with the elevated feed and 4W from the PA. 

The = test site=20 is about 45 degrees off the main line of fire of the antenna, so in the = best=20 direction it could be 10dB (?) stronger, i.e. 20uW ERP giving an = antenna=20 efficiency of -53dB in the best directions. Frankly I'm amazed = that=20 anyone can copy this signal at any distance, so full marks to G3XIZ = (48km) and=20 G3XDV (62km).

Next stage is to try this arrangement for a few = more days=20 using QRSS3 and WSPR before swapping to a full "in the air" loop and = repeating=20 these tests.

Great fun and I'm leaning as I go, which is the = whole point=20 of ham radio.

73s
Roger=20 G3XBM

------=_NextPart_001_001E_01CE6513.6F579D80-- ------=_NextPart_000_001D_01CE6513.6F579D80 Content-Type: image/jpeg; name="earthloop.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="earthloop.jpg" /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAA0JCgsKCA0LCgsODg0PEyAVExISEyccHhcgLikxMC4p LSwzOko+MzZGNywtQFdBRkxOUlNSMj5aYVpQYEpRUk//2wBDAQ4ODhMREyYVFSZPNS01T09PT09P T09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT0//wAARCAF4AiADAREA AhEBAxEB/8QAHAABAAIDAQEBAAAAAAAAAAAAAAQFAQMGAgcI/8QARxAAAQMDAgQDBgIIBAUDAwUA AQACAwQFESExBhJBURNhcRQiMoGRobHBBxUjQlLR4fAWM3LxJFNikrKCosI0c9I2Y2SD4v/EABoB AQADAQEBAAAAAAAAAAAAAAABAgMEBQb/xAA1EQEAAgECAwYFAwQDAQADAAAAAQIRAyEEEjFBUWFx gfATIpGhsTLB0QUUQuEjM/EVUlPS/9oADAMBAAIRAxEAPwD6MrAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgwXAOwSBnbXdBlAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE BAQR62rioqZ087g1rQcZ3PXHmSgi2errqlsrbjTthla4FrWnPukaZ316FJiIFkgICAgICAgICAgI CAgICAgICAgICAgICAgICDBB6IGDjXH0Qa6qdtNTvldrytOB1J7fMpHUc9A2aovlJU1D3md+ZGxB xDYY8HGR1JOM+nktJxiSHTdFmCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIBQUlZ4F 3vDKIlxbQObO/B0L+jfoSSgsItLlOM5yxpA+qkSMP8U5LSzAxpqCoHtA6ICAgICAgICAgICAgICA gICAgYOd0DICYEWpuVBSHFVWQQkkAB8gbqdtymO0SsgoCBlQGVIaJgDsg5XiW4zm80Nsoml84xMW Yzno3PYZ1PoFNcZFxaaF1K2Sepdz1k55pXZ0HZo7ABJmSIWWdMqBrZKHEgsc3B/eAGf6Jge+Yd0G cgoCDBOmiCjreLbRb6yppa6Z8EsHLo5pPiAjILcZzjY9kwhZ0lxoq0E0lVFNgDPI8EjPkDomJSlI CAgICAgICAgICAgICAgICAgICAgICAgICCNcaxlDb56uT4YWFxxucbfUpAquEGPFo8Wqj5KueR0s wO+XHI+2PRBP8eEXjwg9pkfFqAckAH+qnfA9/rCP9bi3cr/EMPi5x7oGcfVQJXO0v5eYFwGo7BBo pK6nrPFNPIJBE8scQNiEElAQEBAQEBAQEBAQEBAQEBAQUd+q+Iop2R2O3QTxluXSSyAcp7cpIO2v VBydVBx9XykVVOYo9cNhqGMH/tOVaswl7ZaLpAA6XhSlqX9XSzmRx/7iVOYlC8tl8vNfWupJrYKK Vrebmla7B2zsMHdRNYxkXXJdSfdnpAP/ALbif/IKoOiujgcVVODjTEJ/MqcwPD6W5vOlwjZprywj f5kpEwNUlprZ4yyW81TQesTWsI+eFPNHclNpKWSlo2we0yzOaCBJLguOumcYUTKFDDbZrHcf1k9s 9wlqGFlRI0AvGoIwP4caHCjsFvbamqqZZn1MBgYSPCY4+8W9zjbX6JOMCbPE2eB8Ty4Ne0tPK4tP bQgjHyQc5S8C2Wmc9wFUeZxLc1DhyDsOXGg80iRJPClBu2or2Y25al+n1KnI9DhyNgIbdbq3P/8A J/mCmR4bwu1un66vBB35qka/PlUTI11XDrYKSeZtwu0z2RucGNqDl+BkAef80iR84j4V4kvcj6t9 FO0E8o9pfyOwNh72CdDvhT16odXwdwS6kbJLe6XkqWStdC+OoOoHQhpxjICiUu/A0QEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEFFxVaau9UUFJTTsiiM7XTh2ffYM6DHXOuNNkEyvs9NcAzxH1ERYMA wzOjJHnynVBhtnp4BAaMeE+F2Q85cXDqCTqVPNMwlrMEjeJm1BYfDfTlgcBkAg9/REPd0pJi9lZR Rh1VGCAMgc4PT0zrqogerFb3261xwSkOlJLpCNi46n8UkWKAgICAgICAgICAgICAgICAgICAoSKU CAgIGyDBc0HHMBgajOyYEOnutuq5zBT11NLK0nMbJGlwxvoCkxIm46oOc4yqLzSWs1VpqYYI4QXT FzCXkdA3QjvukD1w/SyuttPc624Vk80sQkc2R4DG6a+6Bj65TtEKHjiMS08NXQywzVU4ZC3O8ZOO fOO/QKZrgdU5j3PY4Pw0E8w5c83bXpqoGxAIJGM480GGjAxkn1QZQEBAQEBAQEBAQEBAQEBAQEBA QEBAQEBAQEBAQEBA0QEBAQEBAQEBAQEBAQEBAQEBAQEBAygZQEBAQEFfeLm22Ufi8jpJHHljjGMu cdlNYzI464WGumgquI62rmpq8M5oI4HY5MDABJ3HkMK0bzhCiobbDBZ5rpVSPhqnPwyoa8+4/c/U K0xG52vqlsmfNbqeWUjnfG0kg5z/ALrKUuV4ir76aC4UM9kkmEriymlpf2gc0n94bjA641PpkhZ8 PG9z07Y7nQw0VNHEI2xh4c55xjOmw+6nI4ni9tTbeIrW24vYLdTvBpzGMnkBBdkb5/l6pMjtbLxh ab1XyUdG6UOY3ma6RmA8eWufqAoHQ5BGhCYSZA6phBzNzgOH1QZyNgQgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIKTiu41FvtOaJ4bVzSMihJAOpPnodEwN FPQcURtzJfaaYkZIfSAY+YIygy+38TSafrqmi78lMD+JKDx+qeJW6t4iY7bR1K3CkevYOKWjAvVI 7sTTAKBj2fi6Nvu1tsmI6PicM/RSPbpOLOUNbT2wEbu53nPyTYVtwpL8K2nr7jXUMUFOcktjJaw7 a537dMJkSrteILlbJrfa+auqpWcuYGnlae+ToB81MZyKamo6m40kPDjrVVU0IIfVVEzRguH8ON8n t9EmZHSt4cihjayjraynY0ABrZSR9DlVyNrbEeUNkuVc/HXxMH7BB5k4fZI/mfX12Bs0TYH0AU5k QK7ge21tVBPPNUvER95kkhcHj56j5KMiwj4XskcRjjt8TA7flJB+oOU8Rq/wvSN0hrK+JpOrWVDg Crc8jbFw7SMdzOmqX6fvzOP5pN5mBsfw/b3Hm5JA7+ISOB+qRaY6Dn6Wntlr42qnVFWyNradnJ48 2vMT5nXQfdRPQdmMFoIOQdj3UDKAgICAgICAgICAgICAgICAgICAgICAgICAgIGQSgIGUDIQY5hn GdQgzogaICAgZQEBAQEBAQEBAQYUZGmsq4aKklqqh/LFEwucewxlPQfH75xbfJbxFPIRCyF4mghL BgA7Z76HurdJH1Dhm8i92SCuc0RvdlsjRsHDQqDda+Iwa87fqEwnEvBqYBvNGPVwQxLW6vo2ZLqq BuN8yAYRGJaxdbcTgV1MfSRv80TiXsXGhJwKuA+jwkRKHk3S3daynwf/ANwKcT3JaBdLNTAtZV0k eTkhr26n5JiUPUl9tUTeZ9dCB/q/kmE4l5HEFpOAK+E5OnvJgiJnsZdfrU3V1bEMeZOftqomDDLL 7a355Ktjsdgf5KMwmK2mejDr9a2jLqtjcb5B/NMx3rTo6kdktX+JLP0rWHG+Af5Kdj4WpjpIeJrO Dj2sZ7Bjjn7IfDv3S8Hii1AZ8V5xviNxP4ITo37mqo4utVPE6RxnLWjUiJ3r1Udqs0nMvkQuktfx H7fWwMrHyyH9jITynOQB5AdFPaq+q2S9W63WqKlq61rJYgQ5rjks8u+OgVpjeE4xGXms48tFM/lZ 402DjmY3T6lT8K0RvE/RXmhHd+kG3tbzexVmh/hGvzynw53MvDP0h0T5ORtBU69y0fbKjlz0leKy kDjeB83hx0MzsfFqMj5BW+Ht1V2SBxbCQSadw1wAXAZ+uEikGYy2t4niJwYMeZlYPxKj4acPJ4qp 2uIdBoOrZWOz9CSp+HI8DjGiOT7NUEA78gOqj4coe/8AF9BkgwVOQMkBn9U+HIf4xtYbzPFQ3TYx lOSRth4rtMoBErwT0cwhV5ZyPZ4otLTg1Dh/6Ck1kem8TWp3w1BPmGOKcsjWeK7MOYGqI5d/2bsD 7JyyNFPxnZp+fM728riBmM6j6KZqJLOKLQ5pd7UQBvljv5Ko3019tlUznhqmloPUEa/MIPUtzpQW FtUwAuGddwpiEZhuiuNFNIYoqqJ0n8IcMpulJ52/xD6qAyO4+qDDHAjIO/mg9ZHdAQEBBrqGSSU8 jIpPDkc0hr8A8p6HXfBQUMfDdY5v/FcQ3KRxGpY4MGfQA4QeJuFZi39hfLmHaavnJGPQBIkeP8K1 pbj/ABDcQQdDz5VswNdRw3d2QHweJ6wEDQFu/wA85VJyicolNZOLoeZ0HEoeD/zYg7/yBwsea/ZH 3n+Gfz9kfeW4W7jRoBN8gJJ1zA0Y+g1UfE1P/wAfuiband9/9IVZScTNuMUFTf8Ak5xkOjjA/DCx txM1ty2j7stXiPhTEW7em7p6Shu8LCJrqybI93MAyPmDquqkWjq6axON5b5IroYyI6qn5i3QuhOh 6HQrXZZQtt3G0bg79cUU2Ds6INDseg0ygnxS8VDLZaa2PONHNkeB9DkoJDKm/ZxJb6MgDUtnOv1a mIHoVt2Bw+1NIxu2cH8QE2Hr9YVwxz2qXU4JbI04TYeHXWuBwLJVuPT34/xymwG43J2jLS8ZH78z QR9Mp8mOqcTlX3PiKstkTXVkVFT5GR4lQSSPIAZP5LbS0fiTiv7Rv55Ra1I2jdzrOOr9Xz+BarbD M7PxBriMfUAfNb24P4U/8m/rt5Z338GXPt3flMZV8d1bPf8AZaLPUQlzh9chZU+BFpiZ+0/vNUZt /jn7R/tDuv60gh5rxxk+md/y46fke7PYNIz67LTRpnPJGY79vzOfsXme7fwcbUxV9xqeWKW4V0ZO Wula4uIHXAJ/FdGtoxo0ze3y7dsfjt+kFZjrjdCrRLFPLFM8SvGGl2ToBpjVefq2ibT2+P8AprXo +jWzh2kbaIYWmohq2sDp4HScpfk6kb67479e4zmNm+nqcvZle0fCVjMPM2KWQO1PPK7OfQLOsQi9 57kmPhSxtcXCgYc4zzOcRp6q6k2lu/w5ZuXlFvgA/wBIyhzS3Ms1vZo2li9OUIiZe22yjZq2miH/ AKAkTKBlupAS4U0IJO/IFObd6XsUVOCCIIgQNwwbJmUHs0Y08KPH+kKq2YePZI5H8xjjLR8PuBMy tzTEYb/Z2HQgD0GFMSpzTDWKKnAxyDU651UYiVuezHsVIASYI9urQVHJCY1L56y8Q0VI55lFNHrt 7gSKREptq6nTMt4pqduogiGudGgaq6vPftn7vE5paWJ80rWRtAy4kDX+aiZRzXtiHN08reJa148A GigcWtBb7ufPufwUdZdGa6UeKttv6P6KKtqJYqyXxIXjwchpDHYyCRjXdVrbdnq1rEVmO1qv3D92 vMJpg6kZUU7veZE3lDuxOucEbfNdNLTXaJmInt8e777ue1YzzQ4u4WCvsxP60opWNIIjkY4FpPTX /ZdmhyRE7ZmM758O2OsK2mZwv7bw1ZKyzNrX8QiEloDgcAROOmDk66rS/E3raYrWZjsnmnePfZKn LOd5j91h/g3iCkAfaLzFPEBzN5yWl3yII+6wnidK0YtE57cxH5xladPmj+Jx+7Y248cUEYZNZoqg j97ww8n/ALHY+ytGnw+pEzE/fEfeMk2tHaN49FPM2G+WB0Mn7xAwf+0j81W3B1iMxbH3j6x/BFpn piVtQ8VcJXA8rvBp3HpURBo+uoXPbQtXeJift9pw1+LaN913QTWWoc5tuloZS0ZcIHMOPPRZW+JE fNnyJvEzGZ+qw8OPGOQemAq5nPUzIYIXbxMPq0FB49ipdT7NDrv7gU80j37PANPCZpt7oUB7NB1h jP8A6Qg8+yU2c+zx5/0hBqltlBK0iSjgfkagxg5+yncQ6a12toDBQ045s4xGNVna0Vvyqc8c2EOj EE15q6Z9FS+zxkNiIblxO7s+WdlS+tFdSNPt6q21Yi/J6rZ1st7Wkuo4MAa+4MYWlrRETMtMwgvt dqkuELW0UJywuOGDbYLKNSLXjHdlSJib+jf/AIetIl8ZtGxrwDggkY+hW+ZaPLuHbc55cWzZduBM /X7pka38MWx2pFRoNB7RJgf+5BHl4TpzHmirq+klI0cyoeR9CTlTIkcP2y6241LbndDXNe4GIluC 3G+fX6aKBdFBD/WlALl+rjVRe18vN4XMASPT8t8IJiAgICAg8SjMZGNwg8U4DYcZ66qkdERMTDOc zcvQDJ+eyTPzxHgrnNsOf4gPNXROaSCwLyeOt/zQ8f8AqdvmjzdIzVoPcBey9qOjKJEBAQYzooyK 653y2Wpv/H1kUTiMhhdlxHoMrSmne+9f2Vm8R4uedxvPXvMfD1lqq055fFcOVgPQnpj1IW39ty72 tGPPH02/n1U55zt79Btu4wvAzcbpHa4usdK33yR5g/mfRW59DTn5fm9P5z+Exm3v390+m4KskUnj VEUtZOTkyVMheT98H5ql+K1LRGJxjpjs8p3+yY06x5fRbSSUNpo+d5gpaeMYzo0en9FhEampPWZ+ 621dsdXNS3W68RyFnDcJp6QfFX1DSGu1/caQc9enlouitdOkZ1N/fpn7eGVOaZ2htpODLfTyeLWF 9yrnDJlnJ5QfTP45SeKvnNdvf29IhMUx79y3Xe2iGg9loCIXSkNe5gw6QdQMfDpv5LKuJtm0Z8F5 mY6RCg4h4cp6Lhq3yxwRmWObnmfjBcHakeY2xnt9aWtGei9Im04drD7HerfDUxHLXtBY4HDmntp2 OirtMFomlt1PW/ruzVntNOz26jIzKxoAeB+fy3VIpMTs6OampXE9V1bLvR3OIPpZATj3mH4mnzG4 V4tu576dq9YWGc/7KVDRB5J5jgfNB6wEBBpe/nf4bDqPi8klaIxGZbWgNbgDGNkV7WUBBpfmR/KB 7oPvFRK0bQ25DRrphSqpq/iCFjjBa2G41X8EB5mx+bnDRvpui1YjtV36lul1qmTXiq8OPAxBC7b8 semvmq4bReta7Ojggp6GlEcEbY4mZIAGAOp+amGE5mWqja5tTOSNX8rj64VI/XPvva6k5pX1/L3V xFp9phZmZg1wBl7e2fv64WmZYlRHS1tGWVDWPhlbghw0IOiRmJzBPR874h/R6I4ZZ7TI4FjS4QPP MHeh6adDnK6Pi89eXGP39+G35VmMbx0QOGLzdOGQWXGlrGUUrw0OmY4MjOCdNNMg5OOgW9dGdXa0 7x27T9d+nZHZnuUzHNs+g2fiW23Y8kFQwyBuS3UHz3wuW+jeudvx/tf4lO3bz/not3xQ1EfLKxkj HDUOAII9FlW0xvE7rTiexUV3CPD9dgzW2FhHWIeHn/twtfj6k7TOfP8AnqiYhTz/AKNrM7Jgmq4S dgHhzR9Rn7ro0uOvp9I+8/vMx9leRDdZuKuHcS2i4m4QsGTTyDoOzSf/ABIK2+Pw+vnnjE++3+Ym FYravSMLGy8c09VUmiu8Bt9WDj9po0nzz8J8j9Vlq8FiM6U599nf72TGp3uuDs6hcDTsyypBAQeX 6NJ20QVQkDK2FgGjIyT1wV53FakRxUeU/u4tS8V4iKz2RlXWJ7GvmkIJqJqlxIA2G35KkasTaJ62 zH0Z01I5qzP6p/DoKtw9imcDoI3a+gXbrzE6NvL9nZrzHwrT4T+FRZZhVXJz2uOIYGMIxuc5XFwU zbHl9nHwd/iTE90RC/XqPREA/CfRBhuwQZQeJXiOJzz+6MoKC22SlniFxraWN9dLKJxK5uXRkH3Q DuMAKbRGR0Qz1UAgIGUBBrncGQudgnA2UTO0onoon1r2X63U/iOEdRFLlnQkYI/D7rDRtNtPfvY0 xyryMkmRxGx0PdXpvMzPe0rO8yobs0SCJ4yHPcTg/ZeRxXzctu+Z+04h4/HxzUifHLoY8+GPQL2+ x7Vf0vSlIkSlrlnihbzSva0eZAU1rMzspNoiN5+rmbxxxbqA+HSg1dQ7RrGHr548/wDZdVOC1Z/V GPz7+yvxI7FdFT8Y8RHmqZv1NSkDDWZ5z9DnPzC2i3D6MfpzPnE/fGI+kq4m2/Va0HBFlpHiWaB1 ZNnJkqHF2T6bH6Fc9+K1LTmuI8uv16rxpxDo2RtjYGRtDWgYa0AAD6bLlnM5ntXiIjsCWtblxAwN fJRGcGXJ3vjNkNR+r7HCa6ucce4CWNPy3Pou/R4PM51sxGM++73szm+Y+Ut/C9XcZY67iuoNVM3V lKD+yj9caH+85TV4mlI5dCMd/X9/tn0iJIpPa6V8jafw4IIgTgBrWgANA/DC4us5s0jDZyiOMve7 zcUERkZqXmR4I5wQP+ln9VbOIG6vpo6iFsUrGvYXDQjp/sqL6dpjLmbS/wDwvfP1JLl1DWOMlJIT 8DurT8/y7qkbWnLW0c9OaPfvr9e5141+a0c6ruVhpax4mjBp6hpyJYjyuz8t/mqzE9jWurMdd0On rq+2ziluRMgd/lylpw4DzAwD6/VK22+aV7Urfei3huFPPgB4a4/uuOP91ZjNLR2JDcfuu666orMq +pv9opKp1NVXGmimZ8THyAY/r5INMnFNgaM/rej+UoP4JhLmqzj+lt17dTxxRVNE4NPjxSZcSdz2 ONsJiITa02dpQXCkuFO2eiqGTRkbtO3y6FMShKyAMk49VCEWe4UkLuR9TE13UF40+6lPLKPLXSua WW6mdM87OflrB8zv8gUJyj1VmnuQY2510phHxwQZjbJ3DjnJG+miIWVLS09DSx01LE2KKMcrGt6f 3v5oltYOp3KYQ1T5klbC0ZbnmefIbff81MEPMLf+Nndk6ho+n+6yrnnt6NbT8lfVKOy0ZK2rpyyQ nGYZCCRn4Hg5Bx6jVIEtzRKzGeU9fIpvkVbfFfWTW+7Mgnp5iDFzsGMADTHXYnurRPL81ZxPqjGe qvuXAVkrWuMEb6SU6h0TjjP+n+WF0RxmpP69/tP1/nKnw8dJ9+/FRys4l4Le2Xx3XO1gYcDnMYHr kt+Wi0zp689Oz1/aJ8e1GJr0dhYeIrffacSUco8QD34nYDm/zHoubU0bU36x3rReM4nr76LbKxzC 7y6MOxkbbHspzKVTfOH6O9QCKsi94Y5ZmjD2+We32+y6NDitTRn5end7/Ktqxbdyslwv3BUrIKpr rhaRhrJCMFg9enzyMbY6dWpGjxfz1jFpneI+8z3+e3jLKuay7O0XajvFE2qoZedmzmn4mHGx7FcO ro20rctvSe/xhrFuZYZCzSINVQSIyNRnqkCnpz4k1VKR/lxkDzwvHtM31r2nsiXmZi2rqW8MfZG4 bge+eSpeAAHHAB2zoE4Sk21Yt3QrwmnNr8/gubg8C3VRJ0ETs/Qru1v+q3lLs4i2dG0eEqjg5oNP PMAf2rs5PX+wufgI3tEuX+m1mItHlDpF6T0xBh3wn0QBt8kGUEav96n5Nuchp9DoUHuV7KanL3NJ bGNmjVO0QZL5BDJCyqp56cTO5WvlaOXJ8xsfVMD3Lc3QVU8M1M+OOOMvZOXNLZOp0zkfTumBFqqm vqLVR1NFMyB8rmueXM5hyn1TtG2mvDH0lNUShoZJkPfn3Wkb77jI0UzUTBcKQ0bavx2ezuAxITga 6fJQNFxutNS2aW4NJnha3LRGQS87afMphE9HB0XEDLjxrbXGOSGOJr2ckgwWvIOmVzUpNImZc9Kz WJ5vTD6HI4xUZcRrjX1U25q6OVrW5NPMqy7tDamiDh1x815/F1nnp5OLja76ceP8LtpGN+i9fsen HRrqKqCnYXSyNbgd8Y/krVrNpxCcxDkLpxlLNVi38PU/ttU44JYOZo767H66d1204SKxza306fWe z8z3MbXtO0fy1w8IXS7/ALXia4yBh95tPTu+H1O2emx9Va3F6ejE10I9d/5zP28iunPWff8ADqbZ ZrdaohHQUcUWBjmDcuPqdyuG+pa8YlrFYjf7p4GBsqbLM501UoQLpdaa20sk079IxkgDPp9futNH RtrX5K9VbW5XFMnvPGVWWQGSktWQHyjTmxuB3J7dF63w9HgKxN97+/p5/Rl82ps7CzWG3WaMtoac NeR70rvee7Tv99F5evxerrzm8/T3/ttWkQnzzCMBoBL3fCB1WMJYgh5MvecyO3Kkapc1FR4Gvhs1 f5noEEoNAOQMKBqqR7gOdjrlRPRak7qziG2G6W0GA8tTCfEhcDggj8Mql4mYzHVro6k0tjveeG7y 25U3hTAsq4TyzRu3BGhVomJhGvpclpx07F30VmLDg0jBAOe4TEJiZRzRU5OfCaM74CZTzT2yjm0x Ny6KWWPJyeV51RMXjuh8x47Nkiq2tt3hS1TnF08rXcw9D0yTnOuiEzGHHE8ziRH8h0RRtooqeapa yqnNPEd38pdy/IJEGzv/ANGFDWc1ZUxu5KY4Y15B9465x9vqpzOMLREYd4+gYWH2mWSfOwc4gHPk MZ+aiZyiI3e6a20cB52U0bXHchoBRM2lM5QNtEVZ2CDW087ubGg2yETLEsnhgADLnHAClDMTAxuX HLifePcqJGim9+onk1A5gAPQLKkfNMttSMVrHhlL2C1YvLmh7SHDQjVBGpy7mfDISZI/hdj4mnz8 tj6IMVVP7RDluBKw5Y/GoIQbqWYzQhzmlrv3mncFBsc0EYIBz0IUGNnKXngahraj2u3SyW2qGvNA MNJ9AR9j8l06fFWj9WfPOJ/eJ9YUnTjG33V8fE954dmbScT0XiQ/CyriHxAdexP0K3nhtLVrN6T7 8usfeFIm1duvm7SmraeqpWVNNK2WF+rXN/v5eS4bUtScTDWJy3F4AyfqohLXNHFUQmOVjZoXjDgR kEHdTEzWcxODGXE1/Ddy4frH3ThR+Yt5KM68w8u438x0XdTiNLVp8PVj6Yjr2+E/ae1jNcb93v6L bhzjGiu7xS1DfY64aeDIdHHyPfyOvqsdbhLaW9d4+/vy2Xi8TG7p1zLtNSfcGvXVOxE9FBQyNFvq i0nLyQCeuq8Kt45dS3e8bT1I+HqT6LO3Qew0JHL7zjk67r0dGJ0tCJ8Ho6NJ0tKGi6vk/UdUOX3n s5R89Mqk2n4MzLPUtMaMzL1w5AYaAEn4gMfJV/p9Z5Jt3yr/AE+mNObd+63Xou8QeX/D6oMj8kGU GqoYXx6DJacgdykCBNd2sBYaCte8jVjYTjPbJ0+6CFdoamtpo5KuNsVMyRrjCTlzteuNB8lMCwvF sFztclK2Qxuc33HgZ5T/AC6KI6jdFQxttkdDKPEjbEI3Z05hjCSNVRZqKeiho3RlkERBa1pI2/Ed +6RO42G20rrf7CYgYMYDcbDdJ6iLU2t5sZoaXkZIwfsuYEtyNRnyzupzuTCgtPCkIhnjurWyVZmE 7pI3EYdrt5arhnmnUvE90RH7uSOab2ifKPJ1dWQ2Brc7uaFrrzEUiPGIaa/6YjyVfEFTCyCOXBeW O3bs31J0WPG6XNSPBlxtM0icbxMKKXim43MmlsFI+pkA5XSNbiOM67v76enmvW4XQiunFtecZj37 jdel9S9YzGPDtbabgZ1YRPxDcJamUuyYoiGxj+/LH5reeOrSOXRjbx9/mZ/Zeujjpt+XVW+20Vui 8OhpY4W415WjJ9TufuuPV1tTUnN5z77msVivRMyqJEDOEwOa4l4ppbRGY2vDp3D3WjUn+X97rr4X hZ1piZ2jOPfera/LOMZ2VVp4brb3M24cRveISS+OjyW+nN8vnr02XVq8Vp8NnT4aN46299fxHZDO tObeXbxRxwxNjiY1jGjDWtGAAvKmZmczOWzEjznlbgu6+SQPMMIa90jyS525J2/kpyPU8ohjLsA9 hnfsoHmmjcyLMhy92ru2Sg3IPEjeZuMZyk9JTEzmHmnJMfKRjlOMKlc4TfqobtbXUlf+tqBpEx0k aP3vks5iaWzHTtduhqV1aTpX9Fra7i2vp+csMcjTh7HbgraLRPRyamnNJxKYDzZ8lLN6QYcAQQdi NQg5iTgbhyVzWtoCwM35JXa/Mk5RPRJp+DeHqfJZbozn+NznfiURKhvfBouV7pqejt8NHb4hzTTM wDJk6gDfQD7plDt6anho6WOnp4xHFE0Na0DQBEssBe7nJ93oEWmYw2oqINchJw0HGUlLJc2NmSdE iENHixx8887w0NH7xwGqZynEvcMhmb4mC1h+EHqFEjzRgcsjwc8zzr9llpztM+LTVmcxHgk50ytW TA2QR6hha5s7eYmPdoO46+vdIG1hDhzsOQ4IPE0bmnxYjhw+Ifxf1SBsjkD2BwOchB7QaKykgraW SnqomyRSDDmn+9D59FNbTSeaqJjPVwNbT1nA9e2ekfJLZp3++xxyYz/fXrjXUZXq01NPjKcttrRH vHh3x2dY7YZ70s7e21sVdRsqKd7ZGO6j+9/JeZqad9O3LaML1vF942TBg6YwqSsxgg5B07BBznEn CNHfD7REfZa5u0zB8R6Z2+u/4Lo0uImmObs6d8e+5SaxOcdqqtPFFZZa5lm4oaWOacR1ech46Enq D3+vUrp1eGpqx8TR7ezv/jy+nZCtbTG09HYVL+ZrSCC0tyDnOV53ZMdrScYlWWelE1PzO0DX6jGh Xj8Pw0auZ7MvM4TRi0TPj9VxIAY+UDcr09SI5cPRvG2FLf5T7MIWg6uGSDpgarh4u8V0uWPCHm8f q8ulNY78La2M5KCEf9I6YXVwkTGjXydvC15dGseEJS6XQIPLwTgeaD0gICBgIIV3AdQPGQMkfipp 1Slx/APRQh6QEBA6IKqWqip7o6OQ+89oLWjUuXHaca+MdjltaI1sT3Ofv/FEbamOkoozW1XN/wDT w+9gj+Ij8PLovSjg5tNZvOK++/33GrNr2iaziI3RKnhq53GkFZxDWENBy2hhOI2Dtpp5aa+az4zi KaWnjSr659597I1p1K0m8dfH9nbW2GOC3QRwxtjY1gw1owAufh7WtpxNurfSnNIlKWzQQPVBgkAZ Jxga56ION4k4nlFQ22WmN01XKcNDRnfr+J/vX0OD4OLx8XVnFP3/AIZ2v1jtSeHOFI6N36wu+Ku4 vIdzP1ER8s6E+fTphRxXG8//AB6W1ff0jw+pWmOrqsAbBcGGjTUyujj/AGbeZ5OGjukeIU8bmRgS ODnn4jjdTOMjcoETkNRV8ziDFF8IGuXdfogl4QEDGUGgEMqMZ+IbdFTOLL9atzmhww4ZB7q2NlYm VHdbZVl4mtdR7PL193mBHosppaJ2l06erS0YvDbQXcCdtFXsFPUke7k+7J3wei2joy1KY3hcadEZ PEhIHKAST9kIhljQ1uFA9Kcgg18wc7A6boNgGNAkJEQwTjzQaZpo6eIyyuDQNySpiMyK32iur5cw RPgiBxzyN1cPIdB6/RTMRCUmO3whzXSgzSAg5ec4PptlRM5EmqkbBTPeRsNgq2nELadZteIZo2Bl MwAYyNfxVNOMUhOrbN20notGbIGiDxK7kjc7lLuUZwBnOEFVT1pp6tjalrKaKpGY43OGQ7+Zz0yn YLjdBDYfZqvwjkskOWnsVM9BMUAmw0VtJBW0slNVRCSGRuHNP97/AIK1L2paLVnEwTGXBinquBLp G8TPns1S/ldkHMTvl1x2317L1qzTjtPE7Wjp77v9bst6T0d02RtRC18bxh7QWPac5HdeRMTWcT6t YmG2J5Puu0cN/NRI9kD0QV15s1DeqM0tdEHA/A4fEw9wf7B65Wmnq2052+iJrEy4WnuNw4NuAtd4 e6ooHNIgmH7ozoRnXTqOn49mtFNbR56RvHb+09fSe38ZTmue2Xd2VzZKISMOWvOQQvB4L9Ez4+rL gv8Arz4ykTPPO1jei11dSObDXUmeaIUl6LXyRsBy4u2AyvO4yIxEeLzP6lETFfPo6CFvLExuMYaN F62lGKRHk9esfLHk2LRYQedS/wBEHpAQEBBBu1vNxpfCbM6JzXhzXDuDnXyQTWgtaAegQZQEDYII F0ulNbKYzVMrWjYAkDVTSlrzise/FFp5Yz18HAkXPiy8+LSzTUVE5vKJ3N96QdeXy3G/r2TWpThO IrGrvM9Jj/2fr69N3JaazqdN5+zs7VYqCyRNioYsEj35HHLn+v8ATRRxPEX1b/NPv32tpri0SnXF gdQSNxs38Fx8TSPgzCOIjOnPk9W94fRQu1+EK/CTnRqtoTE6ceSTqulqzjqgHRQOH4q4jmnqW2ay Ay1cri0lozj+Xz9dl6nB8JHLOrq7REdvv/1na+/yrnhnhuCzQmWU+NXSj9tM7U5O4B7fc/QDn4vj LcROI2rHSP58Vq1xvK/wuRZhxDW8zjgDUoNLAXv8R3X4R2CnOw37BQNcxIjPKPeO3qgU8LIIWxsG g6nXJP8AVBsQEBBoqQWgSNBJb0HVVt0yvTGcNkbw+MOHUbKYnMKzGJegOpUoRq+gp7hTmCdpIJyC NC09wehRatprKvjZdLf7rZW1dO0HHi6SDHmND88Ivmtp6JVPcoXxB9QDA450lwMfkmFLV5Zwjf4p sLTg3ak36SAphVs/xNYgM/reh228dufpnKYFbaeOLPdHOjM3s0vPytbKQObsc7fdTEZHRxlgGGnO DrjuowTOWzKDzI/lYXDoDjXAKCgk4jhgld7ZyMYB7ojd4hPrjZWmkpmNk6GF9wkjqqnLYW6xw75P Rx/vRVnZCeXBjSTjA2whEZliIOILz+8dPJQm0o9c0zPigGuXczh5BUvGcQ30ZisTbwxHqmABowNM LRzg7oMoGMoKjiGmMtEJWRRSPhcHgP0wPyPVWr1gWFHIZaSKRwALmgnBzj59VFoxIzVxF8JLdHt1 aexCgYo5xUU7X51x7w7HqpmMDeoBBEuVBBcqCWjqm80UowcfY/I/grUvOnbmjqiYzGHH2Kum4eu5 4buz8wO1opyehOgJ6ZIPodNV6WvT+5p8fTjft8f9x+N+rKJ5J3di7PMATiQfCe68yGzdFIHtwRhw 3HZRMD25udEHOcVUcNwo5aepjBa1mWvxkg+Spq6ltLTm9Z9OyWHE2mmlzx1j393OcNXup4aqo7Le mFtM85gqDoA0/l+H4dejw8a2hGrTaZ+/h59vl966V4xzdM/l3kJZM50rHczehBzleZWsWva3ovSY tPMppAZ7vG1jQeV2p7Lz9SJ1NasR5+jzNbN+JrWOzq6MAgL24h7LKAg8tBG/VB6QEBAQEBAQEFTe 7zBbKZ7nysa5oyeY55R6d9DhaaOlOpfliETaK4mc+jlLDZKriK4m8Xtj/Ycl1PBIc8+diR1H4+mi 9HX1o4aPhU2t4dn8z3d3myrTO/v0ddWNLLjSGMAAZBGNML53iL2rrUmJ6zux16z8Wkx3ylTH9qwd 1pqx88S3vPzYe6gF0bmD95pWt4zHL4J1N648ESyyeJQAHdhwfJcvAW/45juc/A35tP7LBuoyu52M 7BBxHGXENYK2OxWMGSsmBbIWalmdgPPGSey7uF0Ix8S8dPpHj/r8qTfshZ8KcLxWOHx5j41fKP2s vQa6hvl+Kz4rira3yZ2jf3+0dE1pyzl0g0XIsKRrlw73P4t/RIGWA/F9PIJI9oNLXF87wD7rAAfU /wB/dSN3RQCAgIMHBGCMqMJaICWyuid01Hoq16zC1t4ykK6h0QeCA/QjTqgj3CCmfQze1ReJEI3c wDcnGOw1zjskD8/zUlRG/D4nNPYtwfum41OhkaMuY4DvhB7paapqphHSQyzSnUNjaXH7IPqHAlnv 9PRGaqrJKaKRxIp5YyX5/iOdRnsmZHWGlumzbhEBncwZP4gfZWjGEtctrdNHyVtVLU5/dIDW/QD8 0icShmks0FK6VsbI2RSNwWNYAc989Um0kzOFjFG2GJscYw1owPIDZVHlzRI/B1a0/UqFo2hsGgUq odO8TV07+U8rMNDuhPVZVmZvLe9eXTrHqmLVgzsEBAQeXta5ha4ZaRgjG4QQbPiKnlptvAlcwDPT dv2IU265FgdlArWB9LM4NaOQP970KtmJgWWcqoIBQUvE9ghv1v8ABdysqI8uhlI+E9u+Dp9l08Jx M8PfPYrasTCu4Uu0twopbZcSWXShPJIHHVwBwD59jjPfqtOL0YpMatP02+kT1+/Xy8kUnO3v3Do3 Nc3lkZ8QHvD+ILjmYyu3tIc3IOchQIF0g8aDDXBriRg4zjVc3FxNtOaufiozTGe2EHiGyU16s5pJ 8CaNuYpMfA7+XcLp0NW3D0jG8dsd/l+V7RikOY4Wvk9jqJLJe8s8NvNC87OHYHqP6hdWvXT1qfH0 Y6dfHx847fqzrfljPZP1dDw5mtqpq8j3STy/Pb7LweHrOprzqT2OLgqTqa99SfL1dIvUesIG4QEB AQEBAQEBBpq6mKkppJ53hkbG5c5x2HqprWbW5axknGHz+0Ru4wv7qiohJtdK4vIcP815+EH+9Mea 9XVrXgtGK1n5p97ev38mNYmZ3/8AH0VrcDAG2i8iIbYQbmRG6GZxwGP1PYLj4zERW/dMZc/EzFYr bxh6kLXV8bSdQMgd1a8xOtEeGVbWj40R4JJ1lxnZp0W/+fo3n9XoqbG0x1FXHgjEhwCuHhazTWtV xcHSaXvHj0XIwAvSeg5PjfiOS2U7aG3nmrqk8o5Rqwfz2wuvhOG+LPNPTPv6QracRhK4Q4dbZaAy VHv19QeeZ51I7NB8snPckqnE69b25afp/PjP7eBWMRu6PoueFhBgkBpJOMboNTcuPM4/Ft5BBu2C DDjhuewSBGt7hJE+UDAkeTr1A0H1xlTMbiUoBAQEBBGqo3kskiPvMO2cZHVUtE7YaadojaYbopBI 3mGncdirR0VmsxJLII4y44029UmdkRGZgjBDBzbka47qYROMveNMINcsEUrS2WNkgI1D2ggpkU9y 4ZtNVRzNjtdH4zmO5D4YZ7x21b59d0iR54S4dj4ftYgcWyVL3F8sgHXA0Hlp/eUF9hAQYGupQZ2C Dy49BudkGQ3lGEGqpl8OPDfjdo0d1ne2IXpXMlLC2nhbG3pue+VatYrGDUvN7ZbcaqyjKAgIHRBX 0pLbvWsAHKWxuJ7uwR+DQpnpAsN91Ah3CKR8Lnwuw9rTgEaOU1mMj1bak1VDFM4APIw8A5DXA4I+ oUCUgICSOM4xtc9FUt4ntR5ammANQ0DSRnfTsN/LthehwWvpzE6Ov0mMR+fz0nv2Z2rPWPfvtdRb K2K426nrID+zmYHAZGQeoOOx0K4tXTnSvNLdi9ZzDc0lknKfhd8PkqJaqgCR8bO7sk+iw1q8+K90 sNXe0Q9VWRCeT4gRv2U6tpiuy+rM8uzkuPrbHX2wTActXA79kQd89Pw+fzUW4mdL5eyfezn1b107 Raenb78P5bP0fXKGe1mleSyqhcGyRuOo6bb9Cr6fDxp1nUicxP299i/D6cafNyz1n6uxytHSICAg ICAgICAgEoPn9+qqri2+/qG2uLaGmePapwDjPX17AdT9V6XDxThqTq2/V/PZH793TrOGUzNp2dxQ 0cFBRxUtNGGRRN5QB/ev5rz9TUtqWm1pzMtIjHRIVUod1aDQyEjYZ06Ln4qnPpTDHXpF9OY97NcD DJNBP3jGvdc+nWbalNTwZ0rzXrfwTBrM7Touyv65b/5eipZ/wl8eMANnwScbrkvzU4iLR0lhqWim tE9+0tvEF5p7HbH1c+p2Yzq89v5+S9LT051LY6R+HTM4cnwRa57tcpeIrs0Py4+ztdnHN/EB2Gw3 69l6PGWjh9OOHpP/AJ4+MzvPpDOm85fQcLy4aiAgi1D3PqI6duzsl/kP91MdBvjAOSPkoke0EG6V Xs1MQDiSRzYo89XOOApgS4WNihbG3RrG4A8hoozmR7QEBAQEDCCFOXUshma1zmH4gPxwqfpltTF4 5Znybw9k7WuactJ7KcxMM5iaziW4bKygUS8OcS7lA9Sg9AYCDKAg8uJzy990HpAOMalB5bknm+iD LnBjeZxAA6lROMJiJaI2eJL47gRpho7earEZtmVptiuIb8aK6jI2QEBAQDsggW9pNRWTuGskvKPQ aD+/NWt0Sn5wqoYI5hjoQgoLC4U13uFvaTyMd4gBHU7+q0t0iR0CzBAQeZGNkYWPaHNcMEEZyD5d kjMbwOI4XnmsPElTwzUhxp5HOlo3ZJwNTj0IB9CD3Xo8TT4+jHER2fj/AFP2wzrOLYdpOAYXOxkt GRr21C86OrVFopm1UhlafdAHKO2Vzadptq27oc1Zi2pPhtCXguDwR5BaYzEtd5hzN75qqWjpwPeL 8nzA0Xk62pa8VrPXeI+uHk8VM25a+f5wgcU2iottXFxHZmEywNxVRDGHsA+Ij037YBGMZX0/A/Cm saNo7MR/HvrvG+0PTivJERXo6ezXWnu9BHV0ziWOyNdw7sfMfdYa2hfRtNbe/FrE5jKy6LJLGdUG UBAQEBAQEFBxfeXWq0ltMc11S7wqdg1cSdMgdcZ+pA6ro4TRjU1IzG0dffvbKl5xD3wlZG2SzMhe B7TL+0nd3d2+X9eqcVrxrakzHTs/kpGN5Xi51xBprI/FpZGH95uFS9c1mFdSM1mPBFtbi6hga74m DlPyWOhMTWI9GOj+mv0Smk+0P3+FaV/7J8oaR+ufJRcX1D6CkgubAT7NJ7w7g6fiqa1JtEY72XEa c3iJjvcZRuquOuKGGpJFDTjJYBo1vbPcnH9he7o2rwuh8aJzM7evf6NJmbTiX1OKKOGJscTAxjG4 a0DAA/ILypmZnM7tex7QEGCUEOmJfNPOfe97lafT+qtMbQJjRgYVRlBzvFJikltET5Q2QV8cjWg6 uDdT+KRA6IICAgICAgIMEZ3CSIdRTzsJkonNDifeadnfyKzmsxvDfTvXpqR5T3FPcIpH+FIfDmG7 Xfz6pF4zi3UtoWiMxvHemEjGQVowlhowPVB6ygIB2QeGDGSc6oPaDBGdEGHObG0uccADUnoomYiC ImZxDU3FQA455M6Duq4i0Lz8st2wxhXUZQEBAQEDTGqCPTtDHSBoOryT69VMiR6qAQUFR/w/FkDw QBPEQdNyNlp1qlfhZoEBAQcnx5b5XUUN3ohirtz/ABObH7m59cHB+q7+A1YradK3S3v79PozvHSV zQ3OG62WOup9GTN2P7pzgj6/VcetpTo3ms9i0W2zKNw5JziraBhscxDRjBxv+a4eGj9U+Ln4WJxa 3iudmkldPSJdMdFPTsFVeXycvuwjDdNydV5tKRqa/hDztOI1dfOOi3e0EHIBBGo6EL1Iy9KXA88n BfEb2TBxste4uaW7Qu9MbjbHUY3xhevOOO0c5+avv7/nPTLHHJLvYZWSxtcx4e1zctcDkOHfI3Xk TGJxMNtm0BAQEBAQEBAJA1J2QcLbWO4l44lupwaC2nw4TnIe7oR031+i9PVpHC6EVn9Vo+nTP8Mo +ad3dYC8xqICDBAIwUECm9yskjxuSQOy49PFNWa+vo5qbak19UiWVkBllkdhrWZcT0AXTWvzzDXa Lz5PmHEd4qeJ6+K028uEb36N5hg41yQP7C7+H4es6Nr26x9I/wDexlF5iOafo7bgykp6OyNhgiax zXYkcN3kdSvO0dW2pXNp8kcLf4lZmeuXQrV1CAg1VLxHA92dhokRmRqoI+SljHcZPmSpt1EpQCCt ulJDNLTTyNjEkTzyPcASM9u2cKa9Up8Tg+MOByCFE9UPaAgICAgICAUEeqpIqmMtkaNRoRuPmqWr W3Vrp61qTsjQU9VRt5GzOmbnTmOwVK0tWerS+rp6k5xjySHVJj/zI3AdwMhaZntZRTmjaW2OWORu WPaQeoIKnMd6k1tHV7ypA6jCIZ6IGiG7W+VjDjOp6DdRMp5ZeAwyuzLgt6Nxp6+aiYytzYjZuGmm NApU6s4UggICAgIME4GeyDXD8Bdj4iUmRsGUGUHP30mO726Vo2eQTnZaUj5ZHQDUZWYICAg8Sxsm idHI0OY8YcCM5GyRMxMTBth8zp6mp4avFZw60OfHVStNKSfh5tj9MA+YXfx9662lXVifm7u7v++c ebDE4mId7R0zbfFDGDjLcOPcrya1ilUxWNOqZUPDYCc4yDur3mOWVrz8qDY4iylc8u5i9xy7uuXg Yiazbxc/B0jlm3jK06LudiBd7bBdbfNRVLcskb7p6tPQrTS1baN4vX1jvRMZc1wLXTx+02C4lzaq icTGHfwdh5AnTyIXof1HSrPLr6fSfz3+v5hTTnsdjG4OGu4OvkvLlo9oCAgICAg5fj67m32T2WAn 2uuPhRBo1xs77HHfVdPCUi2pzT2T9+z+Vb9MLPhu1Ms1lp6NoHO1vNIcfE47/wAh5AKnFasaurNu zpHl76+JWMQtVisICAgr5T4VzjfnR45Vyavy61bejlv8utE+nq5n9IF79jo5KKDBfMzle7+EH891 16OlOrrcvZjOfwtfPxI7mP0cWD2G3uuNUwGoqccmd2s/r+AC6de81r8COkTPr/5+ctKYtmV1bXCm v9ZRcuGvaJWYG68rSmY1bU9+92GlimtavrC9XY6zRA0QRa/LouUHcFWr1G+FvLG0dgFWeo9oCCvv EYkpm5B913MMdwrUndLfQO5qZozsEt1QkqoICAgICAgICAgwWgjBA16FQdESa208juZodG47lhIy qTpw3rxF4/3uwKWdgwyqdoNOYAqeW3ej4tZner0IKrlwakE/6P6pi3eTfTmdo+7IgqMgmqOm+GgZ SItndTmr3NngZ+J7jnfJV0czY2NgGjfnjVMIzL1jHVECAgICAgICDXUP5Y8DdxAHzUj0xvK0AdAo HpAQUnEEbi6mlaB+zeCSey0pOwumHmYCOoCzkZQEBAJ0QfJuLKyWt4mlu9A0vjtMkcTyQMcwcftn yXRwul8XVjTznb3/ACzvOJx3vocNwgudvp6yleHMkwcAjLT2ONsbELm4jSnSvNJ7/cqXtzRhuuJd 7NytGSQuXiZn4eGfEzaNOcJFBF4FKxhzkDXPdacNpxp6cQ04ek004jtSFu3Ydr8kHF8Z0Utur6bi agafEgcG1DR+83YfbQ+o7L1f6damrFuH1O3p78Ov1ZXzExZ1FDVwVsUVVSvD4p2ZaR/ei82+nfTt NLxjEtImJjZNVEiAgICAdkHz+vcL7+k2kgiJdFbhl5GDhzTzH7kN+S9OlJ0eFm8x1ifvtH2zLOcT Z9AC8xoICAgIKq/NeKJ0sRw6L3x8lycZSbUjHY5OMrM0zHWN3A3R8N2vlitTCJBkS1Ts5Li45IJ8 mgn5r1OBxXT+J27/AFiNvvK+lbnpE+/F9Ike6ngnkjidIY2ktjYBl2BnA8+y4azbNsy1rtMqa4uk ZdbZc42OjbLhkok90tB1GfPPRZWrEanP3sNTTn4kank6MHIyup1KXjCuntvDdXVUzzHM0AMfgEtJ IHX1SBIs9aZaGjirJm+3vp2yPjc5oeehPKOmfJBXRXl9fdqynipyaencIzKXaOcDrp/ey0rGyXRt 0HyWaGUBB4laCzBGg3SBDpHNjmcxrsgHBHbt9le3QT1QEBAQEBAQEBAQEAoCgzIEDVSCAgICAgIC AgICDS7L6gDGjRknzUwNwOigEBBX3YDwHEgkNYSVenVKZT6wM/0qk9UNiAgIOf4uvDrbbPCpgXVl S7woGjfmOn9+eFna++IY3vPNFYYpbDG3ht1ql1dLCQ8kk++dc58jg/JNC9tLUi8d+cft9Nlfhzmf fk5T9HxqaWpuVmqGmOSMiQMIw4OGh/L+yuri9OZxNekT6+Hoi85mMe8e5dtNOJJIIznmkd9Mbrze Itm1aeLPXt81ad8rUDAx2XZHR2xDKAdkGqeGOohkgmYHxyNLXNOxB/opraazFo80TETEuKsgn4Y4 hfZJXOfR1R8SkkedAR09enyHdetrxXitCNev6q9ff3+qkTy2w7eOQPYHA+vkvI3aPaAgdEBBFuc0 1PbKqeljMs0cTnRsAJ5nAaDA1OvZTSIm0Z6E9rluBLRVxSVl6ukLoausecRuaWua0nmOh2yenl5r s4viK3pXTp6793T7T9/BnSuJy7NcTQQEBAQQ7tj9W1BOwjcSqXpN4msdZU1IiaTHg+d8B0zK3iip ujnHkicWQ+emP/HH1VY1I0axoT195+7lpbktTS8Mz79X0zH7U+bVP+Uun/L0aqimjq6YwzNBaeh7 jZTjNZhMRmuHuMllPkjVrcHXsrRGy0Pl96dV3Rwo6GtqqqV4dUVkReXRsYMOGPr06q+N0u2EdFxF ZmV9vaGVQjc2nnI5XxPAI3GuM9t9VWR4tNE+3WqGnqWtbUBjPF5TnLzqdeuqvHSB0TdvkqDKAgHU IK9v7Ovcx45RIMjHQjzVp3qlYbBVQICAgICAgICAgICAgICAgICAgICAgIGUHiR4awuJ0A1KmBpp C90fM53NzHIyMYH9FNhJVQQDsggXhp/V1Q4HGIypgSqYg08ZBzlowonqNqAg1zzMghfK92Gsbk56 BVvaK1mZVtaK1mXKWRn+JLwb7MAaOmJZRgtIJd+8767f0WdKz+qWWlW29rdXVho5856aq+I5msRu 4q/uZZuOLfcGMIbXMMEvKNzkAH7j6Lt06fF0bUz0x0+sZ8OrK0Rz+EL+0OFXVyVGCGRfs25HUbn6 ryqxz6827toZaURqa037toXWF1uwQEGDpqg5nj2hlqLF7ZTZFRQyCdrm/EB19Oh+S9D+masU1ZpP S22O/wB/uz1IzutbPcIrhaKe4R5xKwF3k4aH7rk1tOdPUmk+nkvHRZAgjIO+yySICAgwN0GUBAQE BAQc9x1W+xcJ1r2n35GiJo6nmOD9sn5LbQ/7InHTu+33wiyp4FpmP4eop4w6J0b3tk0wXEknP00+ S5v6lw1v7mupjGIjMd3Z95zPk4raMW1I1Inp/GzsnYY5hznOmepUWmImMuydpj6OBvHH1fQVtVQw 2lrZopCAXvLtM7kADprurRE5Ih0nClbcbnY46m6xxtfLktLBjLemnTr8sK22FomE61WWgtMb20cO C/43OOXO+Z3GuiZEihoKW3QGGihbFEXl/K3O59UyIda5wq3jGc8uFevQWfM1jOZxDQBkknYKgqqS 6T3C4ltBFG6gicWy1DycvdrowYwQD1O6C3BBGmqAgj1UTXgPxq3bXb+9/kpicD3BLztIIw5p1H4f JRgbUBAQEBAQEBAQEBAQEBAQEBAQEBAQED1QaSWk82QI25yO5QbGDAyRjOqZHpAQOiCsvkjordVu aC7EDsAKYE2jBFHDnfkGVHaNyAg5Diu5S1tXHw3bCDUVjcSybiKPJ5iflp6HzWO158GOee3hH5dN QUcFuoYaSmYGQws5WgeXXzPfutexrPRtYcuJ8tVWvVETvLkeP2t/VTKwaGiqmSkjfGQMD6/Zb8Hq xS9s9MMb7zt27e/o6GxReFbI2uOSSTrucnT7Li4aJjT37UcJXGlHjlYrpdIgIMEZ07oPEsbJoHxy sD2PbyuaRuDonNNZiY6mMw5PgqR1vrblw5UfFSyeJCTu+M9fu0/+pejx8xqxXXjt29/f6KU2zDqR II5WxHZ49w+Y3C87qu350QOiAgwO6DKAgICAgIPn36WZiLdQU+dHzF/0GP8A5LfRrmszntj16/wp PWPL+FlwRaobNw2a98srjVRCaRrj7rQMnQdyDrv0U8XFa6k6cdI799ytebeXP0vFN4u7qmntplkq qh/MPdAjpIxpodyddSeu2SuLUiOXM9nci+YjMuutHDNLQwSxzE1MtVGW1EshJMhO++w/kFaM8yY5 ubPgtGQClofBhAYIh7oGwA2Wd81pOFMTFMZb6eYTxNcDjI1HZaad4vWJXpaLVy3K66jvlZDbqiOe dwDHtwB3I206q9cYwMRw1V6a2SvaaagLdKbOHS/6iNh5dcqk9Rsu91ZZ6eCCion1M8pDIIIhyg64 +LGGgD++qD3ZblW1omZX2ma3yxEaPeHteD2cNDjH4d9AtkAgEEd0EKKN0D+UEksGB/1N/mNlImNc HDLTnKgZQEBAQEBAQEBB4dLGx7WOe1r355QSMux+KD2gICAgICAgICAgINUhLz4Y0yPe8kHsNaAG gaDYJkekBAQCgq7+WstNW49YyP5fcpHUWEIxEwDo0INmcIIF2rTSUb3Rt5pSPcb3Kw1tWKYjtlhr 6nJERHWdkDhqyyWyKWprHiSvqyHTuB0bjZo9M/NWrWKRiF6UikYheu2V7dF2vRsbieg1VYzgjo5e /wBKbpaLhTRuDyyJz8AbuAyPnosaf8uvSkT0mc+vf93FbNrxSs/pnM+s/wAZWvCVUK3hqhnBcSYg 12epaOUn6jK9Li6cmvaIx129d/8ATrpERXbZcLnXEBAwgwN8IOK4wljtXFVju2Szmc6GZ3TkyN/k 5x+i9DhKxq6N9OZ37I75/iMM7zMS6G6ipZV2+WBxMXjgStA6EHXPT+q8/saLVAQYKDPRAQEBAQEB ByH6SqSGfhl1RJGDLBI0xu6t5jg/35Lp4PE6nLMd6to7crrhwNfwzbmOaHNNKwEEb+7g5VeKz8a/ nP5KT8qXT0NHQxOjo6WGnY45c2OMMB+gC5p6bptjEvXPkNc0ZAODhZ8+2fHDOLbZZkHv4Ozhg+qX 2vnPZhaeuHNT3qOx1scVU2R/jyiNjYwCdTjOCdlxcLz01Zr2OTh7WrqWpPSF1cLtHTSNp4I31FXI PchYMkDuegC9N3K6sszqgwV1xlNRUQvDgwDDGA74HXHdWr1F3NBFWUb4Jm80UrCxwDi33SNdRqN1 Uca+zV9q4os4pfa6q0wjww5xbI6HOdNBkNGmp22zsEHbOe4AkM5sdiAg9gkjJGPJBlB5LevUINHM 5j3Oa3GN2jqEG+N7Xt5mHIKSPSAgICAgICASAMnog5Clc+83n9cva5sNLP4FKMEcw2c7OepyBjth SLm33yK4XeqoadheymaOaYH3SToR6j+aC2UAgICAgICAgINcjjnlaNT17IMtbjrnO/mg9ddEGeiA gIB2QVV1BmfT0hGY5pcv8gNfxCmBajGgHZQMOcGjJI06lRnYmYiMyqqTNwq3zyx/soX4jLhue/mF zaUTe83t6eTm0c3mb2jt28lodwO5XRbrDo7WTvhT2najVDjHA/my7GuiytPJWZ85UvblrMoFIwR2 uqqHDHOxxORvosv6fXmvz98x+XNwu9Z1O/dC/R3/APpCk1/fk/8AMr1uOj/ml116OmXIsICAgx+8 g5vj63mv4YqC0DxKf9s0noBv9iV1cHaY1cZ67evZ91L9kt/BdxFz4apJC14dEwQuLxnmLQBnX+85 Cz4msV1JmvSd4TXphfLFYQDjqgICAgICAgIKLjaA1HCdwY0ZLY+cf+k8x+wW/C35dWJhFuhwY4u4 YoBzc37Ia9lbjI/5pV0p+X6/uvHAFuD1C5ZjaVpjMIVLICZKc6FhOPNcWhfedO3Z0c+jaN6PdTO2 GklmecCJhe7yA1P4LeZiYn6tLT8svjNRVu4kvM9ZW1sVJC3JYXHVo6Bo6lWvPL0hE/LHTMy+n8FU 8cXD1M/wAyZ7SXvOrpBnQ532+itEw1raJX0zA+Fzcbgq8dUtFFIeUxF3MWYyVayUrAHQKqGGajbq g9ICBrjRB4cDvn5oNTmujdzxgDO7eh/qp2G2KVsoyw7HBHUFQPaBlAQEBAQRrlSurrbUUjZnQmaN zBI3dmeo9MoIlss0FvsMNqeRNFGwtc4t5ebJyTjJxr5oI/DluorfJWMoB+zc/X3ubXr+KmReKAQE BAQEBAQeC/XlB1KQMtaGjOck7lBnVBnGdUBAQEGCdEFbI10t6g5T7kLHE+p0Ct/iLPYKogVEjp5h TxsPL+84HYLmtab25YjZhafiW5ceqZGwRsDAMADRdGG8RAfiAVZ6naySBqTsFPahX1ZfNL4DHYLx sOg/quTirzefhVnz8nNxEzf/AI6z5+T1XMbBZKpoGjIHfPRdvB6cUtSsd8NopFNPljuU36ORjhOH /wC4/P1Xd/UYxr48ITTo6lcK4gICAg8vY14LXjLSMEEbpHgbYeaeCKmhbDBGyKJg0YxuAPolrTae a05kiMRs2ICBhAQEBAQEDOmcfRAzog1VUTZ6WWFwyJGFpBG4Kms8tonuRMZiY73Ifo4qnigqbXUA tmoZnNx2B6fUFeh/UK5mNTv/AG6T6xMM9OJiZh2m685qgV8LxiogGJGbgfvLi4nStExq6fWHLxGn aP8Ak0+sfdtpJIqqn8RrW++MPBHXrla6NqaleaGmjeupTmj1/hXPsVpbki1UfM13MCIWqto5Y7fq i2cYWUg/Zh0YwQB8ltMTjMLWjbMNkTw9gIOe6vW0TC9bRaEDWmu4B0ZM0gadVp1qutN1RAgICAgI G/RBGqKeQkSU7w2QDr8LvkpjA8R18YmFPUAxTdMg4d6HYpy53gTMgjTVQCAgJkEAnRByE1wm4kvV Tb6Sq9ntlFpUSNIa+V/UA9Gg74316EILjhyClgo5BRY8EyHlIOQenz1UyLdQCAgICAgZwg8F4ceV uvfyQZa0NGgGu56lB6QEBAQEBB4cfewOg1UwIdDyvmmnAIHNygnr3+6TOycNlRM9/wCygwXHc9gu e9ptGKsbzM7VbaeBsLMDUnc91elIpERC9axEYbsZWizyfiz2Cptk7WiWUNY6Rw91o08yqat406za Wd7RSs2lEtQfLJJO85ydMhcHA0te86ky4+D5rza89+zzxTMIOG7g8uxmBzQR3OgH1K93g682vSPH /buvPyo3BFK+k4VomSDDntMn/ccj7LT+o35uJtjy+kFOi/XGsICAgICAgICAgICAgICAgIGEHGWa E0v6R7zE0HkliEvrnlOfqSvT1p5uCpbx/GY/aFY6y7NeYsEaIKieF1DcRVRf5MukjRsD3wvOvWdD V569J6uC+nOjrc9ek9Y/dPlw4NezXXp1yuy2JjMOnUxMRMMUxc5ha4/CSPko0ZmK4nsTpTmJh7OI jlow0746K+0LYisot3ikmo+enOJIyHtPotazC/Yk0dQyqpY54yC17QQVVETs3okQEBAQEBBrmgin Zyysa8Z2IykTI0ezSxaUsgA/gfkj67hTkR5rlUUr+WooJiz/AJkRDmj7ghTFYlLZBd6ObRshBG4c 05CTSRLjmjk1Y8H0KrhDZkDXKCpqOJLJTTeFPc6Zj+o5wcfMaD5qZiRRXy5cFy1sRuPs87pG58eH 3wMaYcWa59eiCRauL+GmTG3UkzYIYx7j3AtY7vgnzTlS6iKaOaMPie17XDRzSCPqFXE5HtSgygZQ MjuEHgyNGxz5BBjDn7ktHYboPbWhow0YQZQEBAQEBBh7g1pLiAANUFRLcGywOdRyxySOcY28rshp 88dhqrWxWNzsemCZkEdLCXEge9JjOT1K5NW17zy1+rC1rWnEfVYU8DYYw3c41J6rWlIpGIa1ryw2 9lddkqUNMrxjOQ1o3cSqWmKxmZVtaIjMyr3vkuEpiiHLA3d22V52pa/E25a/p73Fa1uJtNY/T396 zijbCwMaNAF6GnSKVisO2tIrGIcv+kOWT9RxUsJy+rqGRcuN+v4gL1P6ZEfGm3ZETPv0yrqdHTU0 LaemiiYMNjYGgLgvabWmZXjaMNqhIgICAgICAgIHVAQEBAQEBAQEHO1PJT8d0kr3Ae1UT4mju5ru b8Cu2kzbg7VjstE/WMM5nF/B0LTkLiaMoPMjGyNLXAEEagqJrFomJRaImJiUJjX0UnKcuhcRuR7p /kuOsW0LY/x7+5zRE6M+H4bT+yq+bUtlGvkR/NazPJqef5XjNdTMdv5hueMHPQ6FazG7WeqJVz+y xue9rnRY15RnAVL3+HGcMr35N8KPhi6sjuU9mLuZjSZIJMEcwJyR6jK1i8Xjmjta01IvHM6rIzjK lZlAQEBAQEBAQCg0yUsEjg58TC4bHGyDTJQMcchzhjbXb81bmS+WcRWS6Wq5RW5lxnNPUNzGTI4N 3+HXc9T6hOsoIOA7s4EMrqaPm094vAOfPl1Ubilv/D81ikijqKqkmklyeWB5cWjzyAowKctLchzd Ttqg+h8BcPX2OSnuPtTqWif7xiLjmVuP4dte/ZNx9Lw4DAI+5QAHHBz646oPXKPP6oHK3sPogzgD YIGMICAgICAgIId1ro7Zbp62Zkj44WlxbG3JP95/NQOH4lv9wbYGV9UTSe1nlpqZpHNy9XOP008w r/pkZ/Rtb6iSCWuqmnwi/wDZ5J1d1P5fVY2mbW99VMTl9AAbu0DKvsvs9IkOmqT1Q0SzDBAPLjcn RLXrSM2VvMVjOUMwuuLvfc5kDToMfEvOmtuKtvnl/LitpzxM75x+VhFEyJgZG0NaNgAu+lK0risO 6lK1iIiGw7K6XLX5ra7i2yUIJ/Yl9VIB2GOX7gr0OGmdPhtXUx1xEfv9pZ3/AFw6kLz2ggICAgIC AgICDCDKAgICAgICAg5XjyjldbYbpTf/AFFulEzdM6aZ/AH5L0P6bqVjUnSv0tt6+8/VS9cxmHRU NS2rooamPPJNGJG57EZXDevJaaz2Tj6L5ykKoIPEsYkjLXAEEdlS1YtGEWrExiUdjiCYZOnwnO6x rbE8tpY5nPJPpKS08zcntquiN4bR0a5MNOHD3D0/JZW2nfopbad3JcR8M1XiC42CQxVcTudrAfi8 tdPyWddPktt0/DOunFLZr0/HkteGeIGXimMc7PBr4PdnhcMEHbIHYn6LoiW0WXw2VlhAQEBAQEBA QEBBoq6OmrYfCrIIpoyc8kjQ4Z9D1QVUnB/D8knObbGD2a5zR9AcJkaqvgrh+qpjD7AyLGeWSIlr x8+vzyEyNNt4DsVBKJTA+oe0+6Z3cwB9AAD9EyOnAAGABoNAEBAQEBAQEBAQEBAQMoNNTKyGJz3O aA0ZJJwAOvyWd7YhS1sQ+a0dNJxxxVLPNI79W0WGtxs7XQAeepz5Jp1tFfm3Rp1tFc2fSaWnipoR DAwMjbs3GAFpjZo9kFuoOmdllOYUxMMhwO4x6q3NGVsvE8zYmcxPoFF9StKzMotasRmUWnDqv35G 4jB90HTm+S5NObcRObdI+7npnWnNunYntaGjAGANgF2xWIjEOmIiI2ZVksZyg5q2sM/H14nkcT7L DDDH5BwDvxH3Xoa1orwenWO2ZmfrhSv65dMvPXEBAQEBAQEBAQYQZQEBAQEBAQEGueNs0D4ntDmP byuBG4KRM1mJgmImJhz3BkssNFVWmpfzTW6cxDfJjOrTr319AAu7+oRW1661Oloz69vvvU09tnS5 XCuIGhQaKinEoyNHDZZamnzxntU1KRePJpgqnNk8GdvK4k8p7rLT1bVtyanpPeypqWrPLeMdyS8D Z2rT9l0WpFow3mIl4DnNPISSDtp0WMTNZ5Z9Ge8ThzN9t8lPVx3Wjd4dXGMNe0aTD+F3n2P9FtFZ neFprzdFzbLuyspo5XNLebQ/9J/JUref8k83LG6zDgRla5hO2GUSICAgICAgICAgICAgICAgICAg ICAgICDXLLHC0ukeGgdzhVtatY3lE2rHWWhssk+PDbhh3J3IWcTa2NtlM2s5bj64PZRRWO3nNdcX hhGcYYfMnqdPTK1iuI2WisR0X3Dtjp7Fa46Sn1d8Ukh3e/ABP2RK0wQNcJk3NcZIUYIy8TStjj5n DPbHVVvatYmZRa0VjKIyjMsniSO0J1Hf+i5P7edW2bTt3MI05vOZn0T2taG4aBgaYXbWsRGIdERE RsyrJEGDoEyKHhiU1VReatzGgvr3RhwHxNY1rW/h9118ZWaRp07OWJ+szM/dSm+ZX65FxAQEBAQE BAQEGNygygICAgICAgIGMoOQ4hL7HxPR32Np9lqAKasxsM7O/D/tx1Xfw1Y19G2j/lG8e8+8+DO2 1suuGNwc5XA0Z6IHogbhBHqqVlQ0fuvb8LhuCsdbSrqRiVNSnPXH37kSmqXwyikrHAvdnkdtzLHR 1Jpbkv6T3ufTvbTtyak+UpvKRo4jH7p7LqtXMOqYzDVK0Fpa9ocw6OBWE2tSYn7M4mYnZVvo5KFr 30/vFx90Ae68efYrptWupXZpFYt1lMt1Q2eJzoXEOacOjdpylZRpcmcKcnLHypjKhp0cOU+amNWO 1EakdrcHAjIKvmGkTDPRSkQEBAQEBAQEBAQEBAQEBAQEBAQeXOAGSQPVVmYiN5RMxEZyh1FyiiIa wOe92waCcrG2vWNoY21o7EP9WzVFS2qrJyGN+GLAwPVZRw9rW5ryzjh5tfmv9GbhfqOgd4DpGGXB wxmpAHp17LtxLpzOXMcLWqrvN6fxJe2PjeHYp4Swt02z/RRzJy+gbBEsbplLVPOyEYJHMdgqWvWk byzvq1pjMtMcEkvvTdToAfoseS2pMTZnFbXn5ksAAYHRdLeNmVIICCt4irjbbFV1bTh8cZ5D/wBR 0H3W/C6cautWv18lbTiGnhSgltvDlHTTjEoaXvHYuOcfLOFPG6kauva0dOn07f3TWMQuFzpEBAQE BAQEBAQYG+6DKAgICAgICAgIIV3t8V0tlRRz45JmYzjY9D8iFfS1J0rxaPfeTGYwr+EKt1RZGQTv BqaNxp5hnUFpx+AW/G6cU1cx0nePVWk5heY6rlWZygxqDkIM5yEEerpIquMsmbkdMdFhraFdWN1N TSrqRi0IzZJaMclSOaEaNduR29VlS99GMas7d7GNSdL9fTvSstc3mYeYEaYO4XRasWjMNpxMZhpj c2RpicA4a5HUBY6F+WeXLPTvvMKi40tTbHm4WtnjPaP2kWcF49fJdMYtM97aJw3W270N+psAugnb 8cT/AHXMP5hZamjW8fOpeK2jDf4dbQ5MRFTGRqCcOXPOlqaU5059JYRTU0szSc+E9XqnvcDpRBUt dBKf3ZBj7rSnExM4tG62nxNbW5Z6rRrg4ZaQc9l0ullSCAgICAgICAgICAgICBqiTIG5UZRmEWpu FNSuDZZAHHYDUlY6nEU05xLHU4imnOJ6oT7hVVAzRU5Lf4nDC5p19W/6K7MZ1tS8fJH1bY6eWoHN VTOAO7G6DHqtKac2j55nyaV0+aPmz5PdRPb7RSmWd8cEbRu47/mV01pWOkNorWsbQ5WWuvXE9SGW 5r6K35/z3NySPIHcnpjbutsYheMr618M2634e2J0swOTJK4uJPfXTPoq5nohdYGwUDBw3XOPPKr0 EeWpdz+HC0ucR8XQeqxvq74iGV9XflrH8PMVJzESVBDpB26KlOGiZ5tTeVa6WcTfql40wuqG8MqQ QEBBynGBdcLjaLLCQ7xpxNM3OzG758sZ+YXo8DPw6X1u6MR5/wA9PRS+JnDq+i85cQEBAQEBAQEB AQY64QZQEBAQEBAQEBASY2HI3NzuHOJo7m0ctvuBEVSB+5IM4d/fn5L0dLPE6Hwo/VXp5e/2U/TZ 1oIIzkEELztlw+SDI2QMYQEHmRjZGFrhkEahUtWLRiVbVi0YlAfTzUuH05LmZ95h10XH8PU0J5q7 x3OadO+liafRrc9kr/HpzyztHvRk6keiiZrqTGrTr3E8tp56de2E9o8RoeBgkagrsicxE4dGNsuf vnDdNWvNVC59PUNOS+M4JWV7TSMxv3srZpPNHrCPQ1N+t7P2sLbhTDdzXASD6po6tbUzWFqasWrm IW8VXbLjo/lbLjVkg5XD6/kptpaetvgtTT1OyG9tIYxikl8PH7ucg/VRNL1jFOiYpaI+XZs9olhZ mdme5A/JROvNI+eEzqcsfM9Q19NN8MgBB1B0x9VrXVpaNpK6tLRskhwIyCD5rTZfMMqcJMpgEBAQ EAoCgMqcjBIHXCjMGYa3VETNC9ue2VlbWpE4mVJ1KRPVBmuzWy+HBG6UnOC09VlPEzM4rDGeIjmx EI4prpWHmqJ/AYT8DNwFEaerf9U48Gfw9a+82x4JkVrpoiHlgfKB8bzkn6rSNCsTnDaNCkTmeve9 VVworfCX1U8cLR0cVtXGG+2HMVnE1dcpjT8NUjps7zPHuj5lLUhWYjKTScKGd8dVeal9ZUNAJjef 2bfl1VYiYRES6ZgZE0NDQ0Y0GFab77pm3e2ZG+d1OYTmGuaZkQznJ6AdVS+pWsK3vFYamxyT6y5a 3oAsuW+p+pSItfq3RRNibgD6rWmnFYaVpFY2bFosICAgINNZUx0dJNUzHEcTC5xAzorUpa9orXtJ mIjdx/Cr3Xzievv/ACObTNYIIQ4jI0GfT/8A0vT4yP7fh66E9erKkZnmdt0XlNRAQEBAQEBAQEBA 6oCAgICAgICAgICCJdaGG526ajnHuSsI1HwnofkcK+lqzpXi8dhMZUvCNxneyez3E/8AH288jiT/ AJjOjvPTr5juuvjtGuY1tP8ATb89vvzUpPZLpcLhXEBAQEDQoIdVQtl9+NxjlB0cN8rk1eGz81Np YamjFpzHXvhoFZLSHlrWadJGAkH5dFSnFWpPLrR6qfHnT21I9UqOeCpbzRva9vQg5/2XTFqakbS2 rqU1I2l7ETWN/ZAa9O6RpxSvywnkiI+VFqKKKoHM5gyDr3CzmLUnmr9O9nyTO8bMNjqmx4pp2uwd Wyg5HzC0rqV1I2zDXMWh6NXJE3lq6ZwHVzPeH81M4mPmNsbvBgoaxmBynPTGD9FlPD1mPlZW0KSx Db5ack01S7B2a/UBVrpXr+mfqmmnNc4mfVmZ90hAdHFDMBuA4tJ+uitM6sR0iVbTqxG0Q0SX32Vw bWUskORqdwPosp4uaTEWrLH+85ZiL1lMZdaN8fO2UYI0yCMrX+608No4nTxnL0y50bwSJ2DG4Lho rV4jTmNpTXiNO3SWTcKMa+0RnO2HAqZ19PvWnW0++Hh90pGt5i847gFUniaR3o/uKQjyX6kaQBzu zsQPzKieKp3T9FJ4qnZE/R5nu0o92mpXSOIGBqR9tlM68z0ifot8W0xtDJhuk3vmZsROzWjb+ayv TWvO04ZzGtM7Mew1D/dqat511IAVfg3tPzyp8K8z80t7LXTBwc7mkxtzOOPot68NpxOW9OGpWc9f NMZDHGP2bGt9BhbRWI6NuWI7HiepipmF88jWNaNSSmd90c2HL1vGBqZzRWKnNTNkAyHRrfmrZiFm aPhMVs3tt7mdUznZrnEsb6Db6pOJnZGHTUlJBRxCOmjbGwDRoAARMQ3abnTzUIaDVs8Uxj3nDfVY /wBxWbcsMvjV5uWGqRks7sNdyt64Ci+nfU6yral7T3N0NKyIakuPcnKvTQrWF66UVhIwtmogICAg ICDhv0h3hxYyxUYc+oqC0yBvY7N9ScH/AHXr/wBL0IiZ4i/SOnn2z9GWpbsh0fDNoFlssVIcGX4p XDq4/wAtAuDi+IniNWb9jSsYhbLnSICAgICAgICAgICAgICAgICAgICAgIOZ4ooammqIL9aoXSVt MeWSJgOZ4zpg4GTj+9gu3hL0tE6GpOKz+fXb34ypaJzmFtZbtT3m3R1lM7R2jmE6sd1B/vUarn19 G2jflt7haJiVgskiAgICBhEvLmNeMOAI7YVbVraN1ZrExvCJJbYebnhJif0LTgLltwlc81Jw57cN TOa7eTwYq1hHhyNdg6lw3HyVJjiaztMT5nLq16W+sNEtwnp5cVVI4NG0rDnRVtxNqT89fVjfibUt 89Z846PTLhTS+9DK0nqO/wDJJ4jTzmP/AFMcTpzPyysQSW5IyCNuy7IzMRLsidmmWnimGHsyM7gk EfMaq1bzWdkfhp9nqYdaao524+CXX7jX8VE4tOYlMebUbs+nfyV9JLCOkjcOYfmNR8058Tgm2+8J cdVSzsDmSMe0jQ6FJtXtM17W7ljIzys+gKmIrhOKy0S0FLMSXQROJ390arO2hSexlbRpM9IR47fb Q7AooBjswafZZ1jSz0REafTH2bwyli90RxtZ5ALTm069y3NSI7G3NPgEcmp02WkTWY2Xiay2Zb+6 4emVMxKcGSNcfQpujdrkqIGDMr2t78xGijmgzEqK5cX2m2vAdVMmznIiIdg+fZZzN4ttDOZtE4hW ycde2ubT2Whmlnf8LpG8rAteaIjMtcxjduj4Yr7u7xuIq5zwdRTwnDG/zVs1mOidnQUFtoLVCIqS nZEwDcDU/XUrKbRXqrNoiUvxWHRpBPkU56z+km8T0a3SObsqTNo6Qzm1mOWSQY5tCeo2Uxp3n9Up 5bTG8vTKSJruYjLuvqrU0q06L1pFekJGABoAtVhAQEBAQEBBXX27QWW2SVk/vcuAxgOC9x2H99it eH0ba+pFKotOIVPC9kka995vEYfc6lxflw/ymkYAHY4+my6uM4mu2jpbVj7qUjM5l0+FwNBAQEBA QEBAQEBAQEBAQEBAQEBAQEBAQMIlyV1gPDV4F7pjy2+peG3CMA6EnST6nUD6anHdpXjiNL4NusdJ 9+/LDOYmJzDqopGSxtkjcHse3LXA6EfmuGYxOJhfse0BAQEBAQCgIPLmBzcFoIO4Iyq2iJjcmImN 4Q5bVRynm8LkdndhIXPPCaU9jmnhNGZzhhlNVwEmKoD26Ya8bD1CV09Sk/LOYPhalZ+Wfq2Gp5Dy zxubtlwGQSpnUx+uJjx7F/iY/VkFXS8/L4nKfMEKPj6OcZRGtpZ6t5DXtxlrwei2xs1noramz000 hd4XLka8pLT9lny2i23Rny2iXO3zh29Pc1lmuMjIj8bJJXDB8vJK/LOEVtjZ6pbdxnT0ojhudAOR uGtLSSPmW7rWtow0rMSjPt/G7ZXVHt1OZCMEBo29MbqvPEbzVHNHbV5iouNagPBqKXTfmwPyWUVp rZzmGdaU1c9VDeJ+JrdyCte5jQTymF2A76LamnWkYheunWm0I1PXyV8bY4W3WSsk93EcuRgbaYyf NWzhp3Q6azWni+pp3RVte+mgI93xTzPAG2xyPmrRaMGK4bTwnVSShlfd3yR594Bx94fVVnXpWd8M 51KVnGyzprLZaEeHFBmQjUsGC4ds7lcmpxOnM4xLLU4rTzy4+izhimghbFTUrGMHcAYWfxOImMcq k218REQkxxztaOeTUbhuq0po6uIzZrWmpiMy9spnZJcS4O35jstI4ffffzWjSnO8/VtZA1mo09Bh a10qU6RDSKRHY2BjRsAtFtnrAQEBAQEBAQEBBgnAUTKXIxAcUcSmqJ5rXa38kYzkTS9Xeg0+3cr0 5tbhNCaYxa3XviOz67+4Z45reTrwNF5kNBSgQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBqqII6iF8 E8bZIntIc1wBDgkTNZzBOJ2cvb3ycL3htrqpS611biaOV7ifCdp+zOemun9Su7UiOJp8Wv6o6+PX p78OyFInll1gOi4V2UBAQEBAQEBAQEGCAdCB9FGEItVbqWrbyyx9c5aSNfks76OnbrCltKt+sIk9 nBIdBUSxkDQlxK5dTgYmc0lz6nB5mJpMw9MpbhGce18wH8TQprp8RH+UEaWvE/qe5K2KkdyVsgHZ /KcH5hW+NFLcup9cLTqV09rz64apLnb+YckzXuOwGT+Cpqa+lEZ/llfitKJ65+rcLm1zcsgmceuG lWjjazGcT6Rlb+7zGa1nPkwKqdxzHRPBduToka9pn5KT5zsmuvqT/hKtbZBJc5K+aiZLO93xTSFw aOgDToNvurROrM9Fo+NaekQtoKedmjvBY3OgY3GFpWupneY+i1a6md8Nr4A9pbI84O+uFa2nzRiZ WnS5oxLWyhp2HLRsepJWdeF04n/aKcNp1lIbCxuoHzAW8VrHZDWtKx2Q98g66+uqsscuNhhBlDcQ EBAzlAQEBAQEBA0TYc3xTdZ2vjslqPNc64ENcHYELerj1GmcfMrr4TSjM61/01+/ucbenfil7di2 s9thtVshooB7sbcFxGrj1Kx19a2tqTe3atWOWMJyySICAgICAgICAgICAgICAgICAgICAgICAgIC CFdrZS3ahfSVjOaN+o7tI6jstNLWvo3i9epMZUVoulTargLFfZgXkf8ACVLtpm5wAT/FsPP6Z69b QrrU+Po+sd0+Hv8AfGdbTE4l1QOq4GggICAgICAgICAgICBgIMFjXaOAPqMqJiJJiJ7HgU8AOREw HvygfkqfCp3R9FeSndH0euQDyV4iITGI7DlI2cVKTlP8RHyQY8Mbkk+pTIzyN7IMgY7IMoCAgICA gYCAgIHRAQEBA2CDmb9xI+OqbarHG2rucmQQNWw+bvPy6dV26HCxMfE1tq+/t+eztUtbO0JPDlg/ VTpqusnNVcqn/Pnd/wCIz0/HAWXEcT8WeWkYrHT3+3Z5prXG8r1c6wgICAgICAgICAgICAgICAgI CAgICAgICAgICAggXa00d3pDT10Ikb+64aOYe4PQrXS1r6NuasomIlQ2+61lhr2Wi/PdLFI4Npa1 2z87Nd59M/XuuvV0Ka+n8bR2nthSJms4l1gIPVedmGrKlDAOToUGUBAQEBAygZQEBAQY1QZQY1QZ 6ICAgICAgICAgICAUBAxrlACAgdEFberzRWakNTWSAZ0YwEczz5D89h1WvD8Pqa94rSEWtyw5Y1v FfE7OWgp22qieP8ANe4hzhjvjPXoB6r0IpwvC2n4k80x3b/6+sz5M55rw6Lh3hyisNMWwNL6h4Hi zOGr/LyHl+K4uJ4u/ETvtHZHvrLStYhc4HYLnwkQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ EBBFuNBT3KikpKtnNFIMeY7EeYV9LVtpWi1epMRMbuep6uq4Yq4qC5SGa1SHkp6t5AdEf4HnO3nj 7bdltOvF1m+nGL9Zj94zPXw9zT9Pk6lrg8BzSCCNCDoV5+cSvHRkADOBhSMoGUBAQEBAQEBAQEBA QEBAQEBAQEBAQEGD5IM4QMBAQEGHOAGSdlGYMuSvnGkFO/2KyNFdXPdyt5PeY0+vU+nnqvR4f+n6 lo59SMV8Z94Z2vHY82jhGSarbdeJJzV1p94RHHIzsD3/AAU63HRWvw9CMR3+/wDcladsuvAAC87D RkJgEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBHraOCupZKaqibLDIMOa7+9/wU0vbT tzUnEwTGYcrNS3bhMia2mS4WkE89K7WSEd2ncgf33XoRfS4vPPHLfvjt82eJr0dDZr1Q3qlE9FMH Y+Nh0ew9nD8+q4tXQvoziy+YlY6LPZJgFAQEBAQEBAQEBAQEBAQEBAQEDI6kIMcwO2qBqUGUDGEB AUJYJwmRz184xtVmkMEjnT1I3jiweU+Z6Ls0OC1Nbw8/2ZzqR2OeZHxDxqTK+U2y1kYa0Z/aDz1H N9h5brsmdHgtsZt6e4/KN7w62y8O22yxj2OAeLy4dK7V5+fT0C4OI4vV15+edu6Oi1aRHmtsLmiF hSCAgICAgICAgICAgICAgICAgICBlAQEBAQEBAQEBAQEBAQEGCMqJlLnbpwnT1NX7fbKmS21xOXS wjR5826fjr1yuzR421KfDtHNHj799mFJpEo5uvEtoAZcrSLjECB7RRuPNjrlmM508gtPg8Nr2xp2 5dulunlnP8ozasbrS0cSWm8ANo6pvikaxSZa8dcYO/qMrn1eE1tGMzG3v6euFotEzhbZzoueISyp BAQEBAQEBAQEDI7oMcw7hBjmA/oEGOYnQNPzQZ949cIBaDuT9UGeUdAgzhAUJMhTkY03ydEQqbnx NZrZkVVdHzg4McfvuHyG3zW+nwmteMxXbvnaETaIUE3G1wdMDQ8M181O8ZjlLXDnHfRpH3K1/tK1 vy3tjx2mI++frhTnz0lpitPFXEhMt3rnW2kdtTxDBcPMZ/8ALPXRbW1dDhrf8W8++2f2iPNGJt1X tl4RtNnHNFT+PN/zZgHEenQfiuXW4vV1PCPD3/peKQvsDbGMLmx4LsqUCAgICAgICAgICAgICAgI CAgICAgIG6DyM5x2QekBAQEBAQEBAQEBAQEBATAaJgUV64UtN3PiSweBUZ5vHgw15Pn0K6NLi9TT 7cx77pz98eCJrGHM1HDnF1tuDK623Q15jwA2WQhzh2IccY+a6P7jS1LYtERHbt08pj+PDozxMe/5 TxxLxTSkNruF3yk9acuI+3MrRwnD3nNdSI85/wDE88wkx8d26OYQ3OlrrfJjJE8JwPpr88LL/wCf qzHNWYmPOPz0+6efvWFPxdYKgEsukI/15Yf/AHALOeC14/x+m6eeG5nElke7lbdaTPnK0fiq/wBr rZ/TP3ItErGKaOaMSQvY9jho5pBB+iwtE12tGJWe8kKJmDEs5ROxkKJtAKc7AmwxoT3U5DA9EQyg aIGQmyTKIYLgNSRgb5TtFZX8RWegaTU3GAEHBa13O4eobkro0+D19TpSVeeveqH8Zsna51otFyuA BwJI4SGH56n7LSOCmJxe0R4bfvMRP1RzT2Nj7hxZVta2mslPRFw1lqKgSAfJoBH3Vp0eEpmZ1Jny iff3jzRE2kPDVdXxBt7vlXPkYdHThsTD5EDdTHG00v8Ap04ifHf/AMTyZ6ysLbw1Z7WQaWhjDwci R+XuB9Tt8sLn1OM19Tabbd0bfXvWileq15R2XNiE+j0BgK0AgICAgICAgICAgICAgICAgICAgICA gICAgYwcoGUBAQEBAQEBAQEBAQEBAQEDCjEBhSCYN2qopoKqExVEMcsZ3ZI0OH02U0vak5rOJ8yY yqZuErBM7nfa4Af+jLB/7SAuivG8RWNrfaPzKOWGmTgrh6RvKbc0diJH5/FXn+ocRbrb7R/COSPJ A/wFT04cbXdrjRvd1bJkfQYz9VpP9RvafnrExHZ/7n8I+HDx/hC+t1bxdWk+Yd/+atHHaP8A+v7R /wDzByM/qnjamIFNfqaeMf8AOjwT8+U/io+Nwdpzas+n/sfhGLMtq+OaaTlltlHWMadXMkawn6kf gotTg5jMWmPfr+TNnt/FF9idyzcJ1em5jlL/AMGpTgtG28aseuI/dM2tD0/jmngH/FWe7Qu6gwAD 7kfgn/zrW/TeJ+v8EXnth4P6QLefht9yd/8A1N//ACV//k6sf5V+/wDCPieD23jmmd8Nnux/0wA/ /JUt/Trx1tCY1Hp3HFK04faLw3yNMB/8lWv9OvbpaPv/AAfEeTx1SH3Y7VdnPOw9nGv3Vo/p1sfr j7/vB8SGG8Q8RVYc2j4Ylj/hdUS8g+hAz6ZU/wBrw1d76v0j+Jk5rT0htbR8XVjg6outHb2kf5dP B4p888231WN9ThaTHw6zPn/MTH4Ti3ef4KoJ3B9zrK+vdt+3nJA9Oo+q0j+o6lazGnWKx4Qj4ffK zpeHbNRgCC20wLdnOjDnD5n+a578Zr3/AFXn67fSForXuWgaAMADA2GNlgllAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAwgICAgICAgICAgICAgICAgICAgICAgICAgYQEkYwOyhJgdAgypQ YCDGEGUDCAgJgEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBB/9k= ------=_NextPart_000_001D_01CE6513.6F579D80--