Return-Path: Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by klubnl.pl (8.14.4/8.14.4/Debian-8+deb8u2) with ESMTP id wALFIacT001837 for ; Wed, 21 Nov 2018 16:18:37 +0100 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1gPUAs-0004de-UX for rs_out_1@blacksheep.org; Wed, 21 Nov 2018 15:12:18 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1gPUAq-0004dV-SK for rsgb_lf_group@blacksheep.org; Wed, 21 Nov 2018 15:12:16 +0000 Received: from rhcavuit01.kulnet.kuleuven.be ([2a02:2c40:0:c0::25:129]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.91_59-0488984) (envelope-from ) id 1gPUAm-0002Ah-SJ for rsgb_lf_group@blacksheep.org; Wed, 21 Nov 2018 15:12:15 +0000 X-KULeuven-Envelope-From: rik.strobbe@kuleuven.be X-KULeuven-Scanned: Found to be clean X-KULeuven-ID: 5C252120338.A48F8 X-KULeuven-Information: Katholieke Universiteit Leuven Received: from icts-p-smtps-2.cc.kuleuven.be (icts-p-smtps-2e.kulnet.kuleuven.be [134.58.240.34]) by rhcavuit01.kulnet.kuleuven.be (Postfix) with ESMTP id 5C252120338 for ; Wed, 21 Nov 2018 16:12:03 +0100 (CET) Received: from ICTS-S-EXMBX22.luna.kuleuven.be (icts-s-exmbx22.luna.kuleuven.be [10.112.11.57]) (using TLSv1.2 with cipher AES256-SHA (256/256 bits)) (No client certificate requested) by icts-p-smtps-2.cc.kuleuven.be (Postfix) with ESMTPS id 4F019200A3; Wed, 21 Nov 2018 16:12:03 +0100 (CET) Received: from ICTS-S-EXMBX27.luna.kuleuven.be (10.112.11.62) by ICTS-S-EXMBX22.luna.kuleuven.be (10.112.11.57) with Microsoft SMTP Server (TLS) id 15.0.1395.4; Wed, 21 Nov 2018 16:12:03 +0100 Received: from ICTS-S-EXMBX27.luna.kuleuven.be (10.112.11.62) by ICTS-S-EXMBX27.luna.kuleuven.be (10.112.11.62) with Microsoft SMTP Server (TLS) id 15.0.1395.4; Wed, 21 Nov 2018 16:12:02 +0100 Received: from ICTS-S-EXMBX27.luna.kuleuven.be ([fe80::291a:cc4f:6953:698a]) by ICTS-S-EXMBX27.luna.kuleuven.be ([fe80::291a:cc4f:6953:698a%25]) with mapi id 15.00.1395.000; Wed, 21 Nov 2018 16:12:02 +0100 X-Kuleuven: This mail passed the K.U.Leuven mailcluster From: Rik Strobbe To: "rsgb_lf_group@blacksheep.org" , "600MRG@mailman.qth.net" <600MRG@mailman.qth.net>, rsgb_lf_group Thread-Topic: LF: SlowJT9 update (v0.9.10): tuning issue solved Thread-Index: AQHUgObjLHsZQP4DfUWU6/b+f9ZG66VaHjGAgAAuhoY= Date: Wed, 21 Nov 2018 15:12:02 +0000 Message-ID: <1542813050896.24684@kuleuven.be> References: <1541712573053.31739@kuleuven.be> <1542362144885.30626@kuleuven.be> <1542721669174.9290@kuleuven.be> <1542724318123.33202@kuleuven.be> <4c469b8e-72ca-08f9-f8f6-a382109537b5@n1bug.com> <1542728224113.91361@kuleuven.be>,<8c07075d-4453-5362-1697-4abc779a8ae0@n1bug.com> In-Reply-To: <8c07075d-4453-5362-1697-4abc779a8ae0@n1bug.com> Accept-Language: nl-BE, en-GB, en-US Content-Language: nl-BE X-MS-Has-Attach: yes X-MS-TNEF-Correlator: x-ms-exchange-transport-fromentityheader: Hosted x-originating-ip: [10.112.50.1] MIME-Version: 1.0 X-Spam-Score: -2.3 (--) X-Spam-Report: Spam detection software, running on the system "relay1.thorcom.net", has NOT identified this incoming email as spam. The original message has been attached to this so you can view it or label similar future email. If you have any questions, see @@CONTACT_ADDRESS@@ for details. Content preview: Hello Paul, unfortunately I have now working WSJT-W version that supports the JT9 submodes. So I had to rely on the parameters given in appendix B of the WSJT-X 1.0 users guide (http://physics.princeton.edu/pulsa [...] Content analysis details: (-2.3 points, 5.0 required) pts rule name description ---- ---------------------- -------------------------------------------------- -2.3 RCVD_IN_DNSWL_MED RBL: Sender listed at http://www.dnswl.org/, medium trust [2a02:2c40:0:c0:0:0:25:129 listed in] [list.dnswl.org] -0.0 SPF_PASS SPF: sender matches SPF record 0.0 HTML_MESSAGE BODY: HTML included in message X-Scan-Signature: 90849e2e868f82ecf87b026cfc01187e Subject: Re: LF: SlowJT9 update (v0.9.10): tuning issue solved Content-Type: multipart/related; boundary="_004_154281305089624684kuleuvenbe_"; type="multipart/alternative" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.0 required=5.0 tests=HTML_MESSAGE autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false --_004_154281305089624684kuleuvenbe_ Content-Type: multipart/alternative; boundary="_000_154281305089624684kuleuvenbe_" --_000_154281305089624684kuleuvenbe_ Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Hello Paul, unfortunately I have now working WSJT-W version that supports the JT9 submo= des. So I had to rely on the parameters given in appendix B of the WSJT-X 1.0 us= ers guide (http://physics.princeton.edu/pulsar/K1JT/WSJT-X_Users_Guide.pdf)= . [cid:cd94d96b-dfff-49cf-8001-3972e5a6a3b5] Further I had to assume that for all submodes the transmissions start a 1 s= econds after the minute, as it is for JT9(-1). The check version 0.9.10 I did 2 things: - 1. Fed the soundcard input with a 600Hz sine tone while SlowJT9 is running = in JT9-1 mode, with audio saving on (that way the audio files used to feed = the JT9 decoder are saved on disk). In this audio file I could see a nice sine at 1333Hz, as expected (with the= original parameters the conversion rate between JT9-2 and JT9-1 is 15360/9= 12 =3D 2.222, so 600Hz becomes 2.222*600 =3D 1333Hz). This is at least a st= rong indication that the JT9-2 to JT9(-1) conversion is done correctly. For those interested in the details: due the the odd conversion rate, each = 2.222 JT9-2 samples now have to be averaged to 1 JT9-1 sample, I will expla= in in a separate mail how I did this. 2. Recorded the JT9-2 signal generated by SlowJT-9, added (a lot of) noise = to it and then played it back tp SlowJT9. I did this for the both JT9-2 ver= sion. For both versions I had a sloid copy down to -30dB. But as said earli= er: it was just a short test. Good enough to constate that the decoding of = the original JT9-2 is more or less as good as the earlier version, but cert= ainly not good enough to confirm the (theoretical) S/N gain of about 0.5dB. About the frequencies: the maximum frequency that the JT9 decoder will hand= le is 5000Hz. This means that for JT9-2 the maximum frequency is 5000/2.222= 2 =3D 2250 Hz (but SlowJT9 has a general upper limit of 1400Hz to keep out = of the WSPT band). For JT9-5 the maximum frequency is 5000*6912/40960 =3D 843 Hz and for JT9-1= 0 it is 5000*6912/82944 =3D 416Hz! An important remark: I just noticed that the baurdrate conversion is SlowJT= 9 is OK, but not the entire timing. As a JT9-2 transmission now also starts= at 1 second, after conversion to JT9(-1) it will start at 0.45 seconds (1/= 2.2222), thus an error of 0.55 seconds. The JT9 decoder should be able to h= andle this without too moch loss. But for JT9-5 and JT9-10 the error will b= ecome larger!. I will correct this in the next version of SlowJT9. 73, Rik ON7YD - OR7T ________________________________________ Van: owner-rsgb_lf_group@blacksheep.org namens N1BUG Verzonden: woensdag 21 november 2018 13:47 Aan: rsgb_lf_group@blacksheep.org; 600MRG@mailman.qth.net; rsgb_lf_group Onderwerp: Re: LF: SlowJT9 update (v0.9.10): tuning issue solved Hello Rik, all, Yesterday I could do some tests with my QRP Labs U3S transmitting, SlowJT9 receiving. I used a lot of attenuation between U3S and TX antenna. Then there is another 30 or 40 dB lost between the TX antenna and RX antenna. The result was that in JT9-1 I had a signal which was most of the time -27, occasionally -26 or -28. I then switched to JT9-2. I confirm SlowJT9 will decode these transmissions using the old baud rate. SNR was now mostly -29, so I am not sure this is reporting correctly. SNR should have remained the same when changing modes. I then switched to JT9-5. I confirm SlowJT9 will decode this OK. SNR was now mostly -30, again does not seem logical to me. More tests are needed to see if I always get the same SNR results on the different modes! There was not enough time to run enough cycles of each mode to eliminate random chance. I tried JT9-10 but I could not get any decode. I assume for this mode the audio frequency must be under 500 Hz? I tried 470 Hz but nothing. The signal was clearly visible on the waterfall but did not decode. Later, K3MF upgraded to the new version and made some JT9-2 transmissions on 2200m. His signal was strong as usual, but I could not decode him at all. I could confirm that his transmission was occupying the correct amount of time for the slower baud rate, but it could be decoded. That is all for now. I will continue my SNR tests between the submodes. 73, Paul N1BUG --_000_154281305089624684kuleuvenbe_ Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable

Hello Paul,

unfortunately I have now working WSJT-W version that supports the JT9 submo= des.
So I had to rely on the parameters given in appendix B of the WSJT-X 1.0 us= ers guide (http://physics.princeton.edu/pulsar/K1JT/WSJ= T-X_Users_Guide.pdf).


Further I had to assume that for all submodes the transmissions start = a 1 seconds after the minute, as it is for JT9(-1).

The check version 0.9.10 I did 2 things:
-
1. Fed the soundcard input with a 600Hz sine tone while SlowJT9 i= s running in JT9-1 mode, with audio saving on (that way the audio files use= d to feed the JT9 decoder are saved on disk).
In this audio file I could see a nice sine at 1333Hz, as expected (wit= h the original parameters the conversion rate between JT9-2 and JT9-1 = is 15360/912 =3D 2.222, so 600Hz becomes 2.222*600 =3D 1333Hz). This is at = least a strong indication that the JT9-2 to JT9(-1) conversion is done correctly.
For those interested in the details: due the the odd conversion rate, = each 2.222 JT9-2 samples now have to be averaged to 1 JT9-1 sample, I = will explain in a separate mail how I did this.

2. Recorded the JT9-2 signal generated by SlowJT-9, added (a lot of) n= oise to it and then played it back tp SlowJT9. I did this for the both JT9-= 2 version. For both versions I had a sloid copy down to -30dB. But as said = earlier: it was just a short test. Good enough to constate that the decoding of the original JT9-2 is more or less=  as good as the earlier version, but certainly not good enough to conf= irm the (theoretical) S/N gain of about 0.5dB.

About the frequencies: the maximum frequency that the JT9 decoder= will handle is 5000Hz. This means that for JT9-2 the maximum frequency is = 5000/2.2222 =3D 2250 Hz (but SlowJT9 has a general upper limit of 1400Hz to= keep out of the WSPT band).
For JT9-5 the maximum frequency is 5000*6912/40960 =3D 843 Hz and for = JT9-10 it is 5000*6912/82944 =3D 416Hz!

An important remark: I just noticed that the baurdrate conversion is S= lowJT9 is OK, but not the entire timing. As a JT9-2 transmission now also s= tarts at 1 second, after conversion to JT9(-1) it will start at 0.45 second= s (1/2.2222), thus an error of 0.55 seconds. The JT9 decoder should be able to handle this without too moch lo= ss. But for JT9-5 and JT9-10 the error will become larger!. I will correct = this in the next version of SlowJT9.

73, Rik  ON7YD - OR7T

________________________________________
Van: owner-rsgb_lf_group@blacksheep.org <owner-rsgb_lf_group@blacksheep.= org> namens N1BUG <paul@n1bug.com>
Verzonden: woensdag 21 november 2018 13:47
Aan: rsgb_lf_group@blacksheep.org; 600MRG@mailman.qth.net; rsgb_lf_group Onderwerp: Re: LF: SlowJT9 update (v0.9.10): tuning issue solved

Hello Rik, all,

Yesterday I could do some tests with my QRP Labs U3S transmitting,
SlowJT9 receiving. I used a lot of attenuation between U3S and TX
antenna. Then there is another 30 or 40 dB lost between the TX
antenna and RX antenna. The result was that in JT9-1 I had a signal
which was most of the time -27, occasionally -26 or -28.

I then switched to JT9-2. I confirm SlowJT9 will decode these
transmissions using the old baud rate. SNR was now mostly -29, so I
am not sure this is reporting correctly. SNR should have remained
the same when changing modes.

I then switched to JT9-5. I confirm SlowJT9 will decode this OK. SNR
was now mostly -30, again does not seem logical to me.

More tests are needed to see if I always get the same SNR results on
the different modes! There was not enough time to run enough cycles
of each mode to eliminate random chance.

I tried JT9-10 but I could not get any decode. I assume for this
mode the audio frequency must be under 500 Hz? I tried 470 Hz but
nothing. The signal was clearly visible on the waterfall but did not
decode.

Later, K3MF upgraded to the new version and made some JT9-2
transmissions on 2200m. His signal was strong as usual, but I could
not decode him at all. I could confirm that his transmission was
occupying the correct amount of time for the slower baud rate, but
it could be decoded.

That is all for now. I will continue my SNR tests between the submodes.

73,
Paul N1BUG

--_000_154281305089624684kuleuvenbe_-- --_004_154281305089624684kuleuvenbe_ Content-Type: image/png; name="pastedImage.png" Content-Description: pastedImage.png Content-Disposition: inline; filename="pastedImage.png"; size=41797; creation-date="Wed, 21 Nov 2018 14:41:18 GMT"; modification-date="Wed, 21 Nov 2018 14:41:18 GMT" Content-ID: Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAAi8AAACZCAYAAADn2NoFAAAgAElEQVR4AeydB1gURxvH/3fHVY6q YkEERJGmoCCoGDuxJhhs2DVGJdHPFmOIsfcSNfZeoyK2xGiiib0XjIICgoIosScIIigHd/d+zx53 xx0ccIgQ0V0entud+r6/eWd2dnZ2hkNEBPZgCbAEWAIsAZYAS4AlUEEIcCuInKyYLAGWAEuAJcAS YAmwBFQE2M4LawgsAZYAS4AlwBJgCVQoAmznpUIVFyssS4AlwBJgCbAEWAJs54W1AZYAS4AlwBJg CbAEKhQBtvNSoYqLFZYlwBJgCbAEWAIsAbbzwtoAS4AlwBJgCbAEWAIVioCJIWk5HI4hZ9aNJcAS YAmwBFgCLAGWQLkTyL+qi8HOCyNV/oDlLul7lCHTGfxQeX7IupfUhFlWRRNj+RTNp7S+LN/SEiw8 Psu2cDbG+DD88h/sa6P8RNhrlgBLgCXAEmAJsATeaQJs5+WdLh5WOJYAS4AlwBJgCbAE8hMo9LVR /oBFX2ch8fBqLN96BBEJKciR2MDZrxMGjRiKdg7CoqNqfDPPYuk3B2D55TwMrP+WxNKkbeyv4j5+ njkfMT6TMKlLDWNjseHKiEBW4mGsXr4VRyISkJIjgY2zHzoNGoGh7RxgpFWVSLLMs0vxzQFLfDlv IN7IBNNOYNHEI7AZOQf93f4jG9ZonH0Zq8ZuwDVZYbt/8OExYCHGtJBqYrC/KgLFt2VZ55dj3D4p Vi0eXC7M0k4swsQjNli1oH+55PefZpKViMOrl2PrkQgkpORAYuMMv06DMGJoO+jfSl7izI+TccN3 JgLuz8Xic9boOW0c2lbRfR6X4+aWUKx6GoAZ37SHntd/qmQZZq74B9f3bcC63ScRnZwGWNWCR6te CBkWBM9KPP2MjWYNvIjei1WrduF45D2kcaxQy7UZPvsiBL2aVIdAP9Vyu9It6TfMVIHba7vDP2gR Is2aoufQ4fi8ayNwT89A52bdsTZeYVy6WXE4smUnzv4tNy58WYSif/DX/i345XpqWaTOplkCAorb a9HdPwiLIs3QtOdQDP+8KxpxT2NG52bovjYeRlpVCXIEsuKOYMvOs3hTE1RmxuC3zWE493dZSFci VQBwwDMxgYnqn4fUa/uwZd9feM7VuJmA9xZqf0mlerfDG9eWyf+9g78ik8pJFSUyY37D5rBz5ZTf f5iN4jbWdvdH0KJImDXtiaHDP0fXRlycntEZzbqvhd6tJPMUNi++hBeWPDy+GI6Nq7/DF98exDOl rvxyJJ/dgc2HbuJlYX143eAV/TwjAou6NESToVtw36YZug0ehM+aWCFh4+fw8/oUS65m5GloNGsZ 4rb0QWPfAVgda44m3YZgSI+PUOPZXoxq4YmAqaeQosc8L4syP2M2Zsx/5M7Xze9ayLXsIk1wFZLz mDP0WjdI+lH6qg6f7EKOUpaue2Hn/66jDuLqNOQ3JhU5yWTywkISkYJycvL5y2VUeJRi0lPkkCq5 nAj6vr6YvGdEF8hbIcuinAKuxjmUiKcxSebISKYwHFAhe12onyoGo2shcRmustcyKtTbcJZFur6Z 7jK6OMGVhM5j6Iy+UdHRr+oQ3y6EjhplVHmiKXJySN9iCtrEv+s6kLj6EMo1waLsiUguk+VLj0jx YBm1FtWkYUdKKJxazDdjladj4WcyOjfOmQROo+i0rPBQVGQdyo2XIyvKPhQky3rTWlKEXGqvsuOj zqC0bVlOTvFtRBF1V1X/Ml/nq58KerCsNYlqDiseUClDlDnfYuSTXZxArkJnGqNf6Sn96FdUh29H ITqVPuv4CKrjOZEicrLo5P9qk4lASAK+Aw3+5alO+/WaDn1ejYTNF1KifuUvRpK37132bF/SiVH1 SFi5LS24+lJfgfQImtvamoT1RtMJtZexrGVXp5KPqTn5hp6kZ3o3htcUu64r2fJtqf9eXeb6Wb+t K0P8Sv/sRRlIz1SCFHLojZmYtcKoJUvwTYANFFDi6Y4h8Gk3HReyNf0xOWKXBcGn1xqNAyMfUk5P RoCDBcRiU1Rr1BuLzz+HqmOXthchjXtg5rpJ6OxsDbFAjEoN+mND1E1sD2kKW6kYYmlNtJhwCI81 PUFZIvaHdoZbJQlEIhEsHFti+MZIvNTkmBGFjcOaw95cDKHUFv4jf8331K3Ao6Mz0c2rKkzFYojN HdBi2EZE6XRgNUmV7W8a9oY0RrdZGzE90AVWEhHEZjXhH7ITt1U8lUi9sAjB3jUgFUsgltjAo8tE /JqcOwKQtjcEjT+bitXfB8DeTAiRaXX49FmC88/VoJSpuLAoGN41pBBLxJDYeKDLxF+hjl62qhlM nZCRngklKSDXNyq0GrUES74JgI0iE8dCW8C7zwYk6Qx0yK/OQyefgdjy93MVsx4z12FSZ2dYiwUQ V2qA/huicHN7CJraSiEWS1GzxQQc0hoMY4IpOD05AA4WYohNq6FR78V5nCBD4v5QdHarBIlIBJGF I1oO34hIrUEZVOadd5Ql7kdoZzdUkoggElnAseVwbNQopap33TBr43QEulhBIhLDrKY/QnbehrYq Kx7h6Mxu8KpqCrFYDHOHFhi2MQrlXk1KS9qotgzI+HkEfFpO0uaWEbkBQ5vbw0wshGkVL/T+YS6G +XXCvKuM8RZXdwHlk+OY27sJHC1FEEklEJnbocngdYjM1GbxQZxQRjoylQSFfqWHWatRWLLkGwTY aCp6NiL/OA1uy4/RQP121qT+5/j641fYPiYUB/WHXz4Idspn+7Bs2z3UH/UjxnrnexVs5oPxi0fC NWkrlu//R3U/NY51Jv5ctR5R1QZi/tRW+V67ieD6+WJ80zwNe5dt12uDyw24oZ6RoV6OoXC5bhl0 6mt3EvEsyaXDUJq6eh+djU/J9wSS9/SQ91CaQxHf1yex94zcZJiRFyGHuJaNaeSWs3T9ygGa1dmO BDV6U/gTBZHKn09C+040++B1uhWxjQbW5ZOpVU3yHbaBTt24QUdnBVAVQX36PoJ5+sug0+M9SGzp TSFrj9P1qAu0a3IA2QpsKTjsESnoJR0bWZcENi0pdNdFiry8j6YE1CA+h68deZFFzqam5tbkO2I9 HY+6RZF/LqVgZ1OqNXB/vl5o4XQYn5LxNJTWv7Sug5AEEgcKmBJOF6Nv0ImlQWTPr0Q9w54TyS7T dx4Schm8mc7fSqRbZ9dRP2chVeu/n9KIQdeBhHwhVWo0nDacvk5XDsymLnYCqh68ixi0ssvfkYfE hQZvPk+3Em/R2XX9yFlYjfrvZ2KX7nhT3TNOfU3uIh5ZunSgoVNX076z8ZSS76E+bW9fshH50exY zWNV7giDafOFdEeey4wvtKdOsw/S9VsRtG1gXeKbWlFN32G04dQNunF0FgVUEVD97yNUSqo4cbhk 2XgkbTnLcJpFne0EVKN3uIpTxunx5CG2JO+QtXT8ehRd2DWZAmwFZBscRo8UFXTkJeM0jfcQk6V3 CK09fp2iLuyiyQG2JLANpjBGKVW9E5DEIYCmhF+k6BsnaGmQPfEr9STG9IhkFDm7KZlb+9KI9ccp 6lYk/bk0mJxNa9HA/c90noJLZ0dM7De1JeNzNqYtI0rb1IXENgNzk007QiFOAqraKpTCLkTRlQNz KdBRSFwTJxqlGuYqpu4qnlFYz6okcu5Lq0/dpISEm3RiVV9yFkip49rHpKC8ttN4Pd4sZNnzLUau jFP0tbuIeJYu1GHoVFq97yzF56/0TBI5N2l641o05FAmEeWOvIh8ZtLNhA30qQ2fHAb/Qk9VowQf zsjL618HU1W+K024WMjQquw8fe3Mp2qfH8x9Q2IMa9kl+taNT5X7/0wM6YKHnOLmNCG+aSBtTS3o +zZdDNkms/5IgcNQwAKBdB3kD+nEoiHUpp418TkgcPhkWbcVDV5wlJJVN5y8Clh050VIzebFaYfj Fc9+oiBrKXVY84gU6s5L03nxan8ZnRrlRHzbIaSyYUae9K0UKLGgnuGZROm7KbiSmPzn56VH9C/t 6mVDIv/5dCdtL/WpLKGWi+/m5fdkMwVaCtSdlyz6c7gdifxm0y3NvZGIUvf0IRvTAFr1UG8MTZdG gfMS8yyQgroB1B3+lJ2n8fWE5Dn5GtHrfdTX2pSaTDpHz1SyKujRqa207mA0pWs6L0I/mh2Tp0jK zh5U2TSAVj5Q0Ot9fcnatAlNOvcsl4XiEZ3auo4ORjOxS3e8ue5yenhiEQ1pU4+s+RwCOMS3rEut Bi+go7lGRfTyIH1uKyCvyddzO8tZp+h/TmbUZtk9UpC689J0HsWr1ZadGkVOfFt1o8folU5bAyVk 0TNcpaSq8yJsRvPiNJwU9OynILKWdqA1j9Jod3AlEvvPJ603w3ZXL7IR+dP8O/IK+doofXcwVRL7 03x9paiXjYj8598hubrz0nxhoraeyM6Pp3pCT5p8LYco608abiciv9m3tP5EqbSnjw2ZBqyiElST Yg3tzW2p2KTzAhTblul3XlJ3dCNLs/a0+kFee5D+6+dky8/XeSms7iqe0dU9q2jbWZ2OnuwCfeMi UtXtnA+p88JMGHh4ghYNaUP1rPnEAYjDt6S6rQbTgqPJ2gdieeIP1LJGMIWrnq3yOi8xcjklbQwk G+3row+n8/J8fUcSClrQoqQ8O8wzamamRRItaiEgYacNpOlnFMv69QEaaMMnl28uUCFdInq59VMS 8Zup2j+9/N7yhaG6X/rXRswYEa8GWo/bgONxT/HszjnsW/kdujs+wr7Qzmg36jCMnv7KqwXfZo7Q zInmWjeGj7Mc8dHxyGHy4UjhWKeW1l8sEYFXtSZqaaY780QQ8pVQKAB5UjTiM+3g55+XHmCF5v7u oPgY3LgTjfiMGmjoY6tNj1u5CXzrqcchFQ8RFfMEOXGrEOjuAheX3P8mE44iXZaA2NsqicpthIyZ gGnm4IQaWjgWMJdykJOdDYjaYNAgJ0TP/gh21d3QutdYbHtUD590cIeZWkKefTO0qKOJDFj4+aKe Ih7Rt3IgajMIg5yiMfsjO1R3a41eY7fhUb1P0MFdE7sc1dRmxUON1uOw4Xgcnj67g3P7VuK77o54 tC8UnduNwmHGqKRt0PvT6ojdswMR2UDW2XAcTGmB3t3tkGvYHEgd66CWRm2xBCJeVdTMMxiIhHwo GYNRH7xavmjmqInAhXVjHzjL4xEdewfR8Zmw8/OH1huAVXN/uFM8YmLK2x40EpfmV46k6Hhk2vnB X18p+LsT4mNi1PXODA5ONfLqiYU5pJwcZGcroXgYhZgnOYhbFQh3dR1xcWmCCUfTIUuIRblXk9Lg YOKWqC2T4050HLLsveFTNa8pNWvmBw++riBF1F1uFXgH9UKDZ7swfcwXCP6kFRo6d8SP8QoolXl2 qZva+3zOq9Ea4zYcR9zTZ7hzbh9Wftcdjo/2IbRzO4xSVXolnh09hnif9mhtkZ8EDw4Df8TcTh/e 6yO+RAw+vcKrV4XMTFZmICOTYCIUQvMdZLGsOUIIBYA8u7C2TYnMzNdQcoQQiwsuIpe/dN72dV6N e8OU5dF7MG9eOKJkTAImsHTyR9CX07H+j6s4ONoJSTs34YjBOQFKKBVK6KM2AV+v0pvAhAfkLa7H z+fPdGgKgZajgBwm4GtKSq0fj8cDlApV3gpwwVxqD44IIu03uNnIzuHA3GcQJk2diqma/9lLsemn JRjgoieoNomyPFHJni8D1WA6LNFu0XlEHduI73u4QRG1E1P6+sPzk5WIU7d/HIEYIp3S5nC54IGg ZArAsh0WnY/CsY3fo4ebAlE7p6Cvvyc+WRlXJl/15FOh4KU8GnvmzUN4rlHBxNIJ/kFfYvr6P3D1 4Gg4Je3EJpVRSfBR7yA43N2PnedTcTL8EF62Dkagzo2Er29Qqq9wCrGYXDlM+NArWRMT8MABBzlQ yAGTggYFHpRQaOZZFdTmnXbJyVVK26DlCstT1Qumfupe6ytCuXU3Oxs5HHP4DJqUV0emTsXspZvw 05IB+A+qib6YJbh6s7aMk9ueaFAx+SnVbHTyLrTuKh9hz+eN4ddvPn678xqWbgEYNm8e+tXVqaw6 6by/p3JE75mHeeFRyL2VWMLJPwhfTl+PP64exGinJOzcdEQ1h+j4H5HwCGiLSoZg8Bww8Md56Px6 O8aEHsJz/RuMoRjvhZuofn04IwHXr78wrE/6dUQmALXdXCCCkaz5HvB0McGDG5F4omvf2hyycO3a LVANN7hXLn97LXWOyheXsHlqKNacyT+7zAyurg4wUSpVE4RUlVeWhSytMcnx6FHu5CEtC+VjJCbq pPPqBm4kcOHgXFf/hqKNUPiJiYMT7E3+RvRN9YRfVdAsREbGg+xqo05tZ9QWPUJsdEruhGDGPysO cXfVd3ueLWrXkiAzXQzvnr3Ru3fuf692nrB38oCTdanRFS58CX2UKREIWxKG+24DMXnlXpyJe4Bb qztCfjIMB+/l6qN4EIf49LyEX0fHIJHjBBdnHlIiwrAk7D7cBk7Gyr1nEPfgFlZ3lONk2EGoo+dF LI8z5Qtc2jwVoWvOQMcaVDmbubrCwUQJpboyCZsGI6juQxzZsQBbf8vGx7275JtYVjKBlY8ToW+C N5DAdYCzSx042Zvg7+ib0MxzZlLOioxEPNmhtmO+XnLJsv2PQpvAwckeJn9H46a+UoiMJ9jVdszX qSkoJs+2NmpJMpEu9kZPdR3p3bsX2nnaw8nDCe9QNSkofD4XY9uyvGgmqOvpBknyVVzRad1fXroC YwfilH/vxqpdKWi79Aqu/LYDa+Z/jy+7VIU8TQlSPVnk5fZ+nynx4tJmTA1dg4K3Ele4OphAyVT6 jNP444oT2n1cQz26WpAKz2EAfpzbGa+3j8Ps868KBngPXUzceiHYLwd/rlqjHkgAlMlb8WXQSCw7 mYiIlavwZ1Z9fNbNCyYwkjW3Orr2bQ/J+bX48WzBTpHi7k9Y8fNT1A4Khr/2ob/84Jb6DizwG4Lh zdKw5cv+mHcoFs9VX4dk4fHFNRjzwylYfxqMAFMuLB0dUCntNHbvvwsZZHh4dDZ++DVFf+SFXuDw /InYn5QFZWY8wr+egp+VH6P/Z9ULNdRCUVl1Rr8uUhybMxJrrqRArshAXPg4hIalolHPHvCo0gkD ulrixPwx2BiZBoUsGYenTcPuR5ouphk69A9C1cilGDnjDyRnAYqUCKz44mO0CpyKEwZHkwqVpkw9 uJy7ODB3NEbPPIT7WQDkL/D3vafINreDvXXu0BK9+B1zJ+xCfKYCrxL3YcLkPchq1x/d7EzAuXsA c0ePxsxD95Eb/W/ce5oNczt7qKOXqfwFEhf4YcjwZkjb8iX6zzuE2FyjQtbji1gz5gecsv4UwQGm udFMGqF3d3fc37YIP3M7oXdHywLJlcSBXhzG/In7kZSlRGZ8OL6e8jOUH/fHZ9UroXO/LpAem4OR a64gRa5ARlw4xoWGIbVRT/TwqIidF8Cqcz90kR7DnJFrcCVFDkVGHMLHhSIstRF69vAotvMCsw7o H1QVkUtHYsYfyciCAikRK/DFx60QOPVE3pd9JSmE/yiscW2ZvnCWXb7CQLvzmN57HDb8cRYndk1H 31Hb8YiY0TojDr4AfK4Mz5KSkKYEFM+jsHX0ZOz9h5CdJct7sDIiqYodRAC/IcPRLG0Lvuw/D4di n+d+vZr1GBfXjMEPp6zxaXAAsi7+gfNV26J9bd0h8/ya82A/4EfM7SzHndvpHwZDniu+WvQdvG7N QNfuM3HgVirkImd4VrqM6e3d0HzmDTiNXIixDZl2yjjWABc1+s3BrHbPsaLXp/gm7DqeMZ8YKjOQ dPxH9Ov8NU7afIFF3zYrk0VD85dqgWtD82oMTY4xFE7jpnh8nGZ95kaWJhziCkzJzJRPPIENNeq7 jC5pZgflxNL6Hk4k4fJIJBGRpFZHmjKyJZnqfm0kqUuBg9tQDZGIRHwu8W2a0fiDD3O/WGAmDops aOABzcIfMroc6k4i72l0Q/MVSmY49bQwo247c+dGK54ep2nt7UnM4ZFAyCeusDo1G7mLEtSzjxTP TtDUADsScfkk4PPJymcQ9Wgo0X5tRIoUOjf/U3Iy5RJXICaRCZdENdvS5D+flOgripLy1HDN+2Um n4rIZuCBvLV0cqJphreIXCdcUq2Lk7hzCHlamhBPZEbmYj7xq/jS//bdU02iZCaiiiwbU6fWtiTg C4jPFVD15uPoQLJ6Yqo8kXYO8SRLEx6JzMxJzOdTFd//0b57momreZKU9OyNdVc8puOzPiM3SxPi cAVkamZKfJ6AbBr1pWVao8qVRn5rLjUR8sg+5KjOrPiCzGSXQ8ld5E3T8gyGwntakFm3naqEGE6S uoE0uE0NEolExOfyyabZeDqomXWqeErHp7UnezGHeAIh8blCqt5sJO1SG1TFXOdFQU+PT6P29mLi 8AQk5HNJWL0ZjdyVkDtJr0C9I8qJnkHeIleacCm3IilSztH8T53IlMslgVhEJlwR1Ww7mf5kPmV7 i8cb21IJZDCmLdP72oiIXsf8RCNa1yErIZ+ktj7Ue3QP1XolX59n+BS0Q9Ktu4rndHxiE6pkwiW+ qZREfEty7zWLvu9Siczar6aHiryPHUqgxhsFLQ++RQumoMfHZ9FnbpZkwuGSwNSMTPk8Etg0or7L LlEqMV8TupLruHM6E0h1J+zqpy6/t5k+q8olvu5kaf0g5XZVPmwVlBqxjr5sXZvMeDwSSqUk5HFI WNWDvOtaU2WvPjTnwC3KXeqlONY6aDKiacfXHakec38RmJJUbEJcsS359Z1LRx+W/h6hk1Ohp4b4 cZjQ+Xs0b7oDpiwlEbHxD5AOc9i5uKO2tWYmrSaHbKTcjsStFFPUaeiOaiKNu+6vEhnJUYh6wEUt z/qwMy3t4JAczxMjEfsEsHGuD+cq+ce3ZHh6KxIJGZXh1sgJVgY69IoX93AzOhkvhbZwb+CEAmrp im/g/E15GkiqSCdl5kPE3EhEGrcKnD1dUVXNN2V9R9ScVBXhSSvhdTsKj/mOqO9eHRK91JTIfBiD G4lp4FZxhqdrVRgsHr04xV+UWndZChJj4/EgHTC3c4F7beuCy1GnbEdQvVlw/CUKi5rnL9/iZSwQ QpmB5KgoPODWgmd9O+Q3QfnzRETmGhTqO1d5a08dpWZVQJESOMifIzEyFk9gA+f6zihQTYpNSoEX 924iOvklhLbuaOBkoJyKTaPoAOXJp/i2LFdW5dNoXHpsgQZedtCsrpF9/mvUb3cRn0edxbfOBhqU Amoq8fL+DUTdfwULJ0/Ut1WPKhYIV7YO5cm3aE1kSEmMRXxupYeLe+0St7lFp1/+vuXLVoGMxwmI T/oXSgs71K1XC5aKeziyfDbWPPgY6xf30Hm1bjxr5atnSLqTiCcyc9g510Mty/IbbTbE7612Xsrf JCpGjobAl6fk2s7L/S349G30SEogfNnqzrzie42ouZ3Qdn9bnLg4RbtoVQlEfGeCli2rd0bNNxbk XeQjvz4ZPk13oMHmY1jTuzaEqX9hzeBAfJ3QH6evzYVf/ue3N9a+7CO+i3zLXuvyyYFlWzrOhviV dlijdBKxscuFAIfDfFXFfDPzfh3yiCnwNreGz5wXGDT3fxW64/J+lcyHo42J5wjMHWuHY4PrwlIi hdTGF9/d8sXcTRMrVMflwykxVtP3hQA78lIOJWmo11gO2b4TWZSp7ornSLieAFnNBnA3/A7ynWBg rBBlyspYId7hcO8yn+yURMTEP0G2WS24u9tBWgEfC99lvu+cWcpjsXXNXXT8qgtsjChrlm3pStAQ P7bzUjqmRsU2BN6oiO9BoA9Z95IWH8uqaGIsn6L5lNaX5WskwewrWDFyLrb99QLOrQZh+6IBxUZk 2RaLqMgAhviV34ybIkVjPVkCLAGWAEuAJVABCAi80a5+JUSaWELk3a4CCPx+isiOvJRDuRrqNZZD tu9EFkbrrkjA7qkL8Kd6sS/VPB2BKSrV8kSbbt3Qtk45bFWQmYDLCWZo7FkV3KzzWD5uH6QhCzBY s3VtGRM1mpVKjiwkHl6N5VuPICIhBTkSGzj7dcKgEUPRzuEtfHFVrK5ZOL98HPZJQ7B4cINiQ7+N AEbzkd/EltDlOMcsnMIcHA54QgtUd2mBHv0/hXuBZeXfhnS5aSju/4yZ82PgM2kiutQw4n2CJuti 7K1guplIuJwAs8aeqMrNxNml3+Bn8xAsGNyg+LV5NHnm+zWGb/blVRi74RpkBb5RVSfG98CAhUPB 2Vh6efKJV/Rl5lks/eZnmL9xfU3DiUUTccRmJBb0dyuYl+I+fp45HzE+kzCpSw0wq2QqmeJVcsE1 opiNYVswU2NdsnF51VhsuCbTXzdNJzrfYwAWjvFFVDnXWR0RSnVqiJ8R2EuVJxuZJWAcAcUTXNqz Bfv+eg4usyQ/jwNF5kNEbP8GHT0bodf6mNxlw41LreShFIlYHuiLL3bdz10cS/4v7vwViaTUd3F/ GQVur+0O/6BFiDRrip5Dh+Pzro3APT0DnZt1x9r48pBZjn/v/IXIJKN3Lit5mbxpDHkyzu7YjIPR GeCZMFuMcKB4cQeH5wXDt/koHEnRLET5phkUHo/++Qv7t/yC66klzKMYe9NPV4HE5YHw/WIX7qsX BY07shk7Tt/Ltd3CxSu9D4cHE4apimsqru3Lq7O57jxwkYVyk0ejUVYcjmzegdP3VEA0rsb/KjMR 89tmhJ3723Ac+gd/7d+CX66r7Z3LhervHbmDcnjqMmHaztRr2LdlH/56ztUpK0bQd7jOGqZepCv7 2qhIPKxn+RLgoHKrsVix5KO8tVwUj3Hwf+3Qc8wQ/OB3Dt+XcBREoVCovrTS1UOZ/QrZXBFEJjot D73C87TXeU8u0kAsuxyoG019rgCzF6ZAUMT6HfJsZHMFEOgkbyChN3fKjsDGpcdgEXIUR5Z8pF2P J2RoK5g16oTZP57EoNXt9NefUcpVe33pqnYoHwYAACAASURBVKwngDIbr7K5EIlMDK9mrcyGTGkC oTYBKQKXXYYhQkwjmZ3NhaAQAHK5XNWo6uX/1i+4qNlhIlZOyxuJUCQtx8eeEzBnyxgEfF1bu9Ek k7VBm8gnkzw7G1yBwCAfpVwOMilFc1qIvRlOl/DqeRpeFzb6Ic+GnCuAtqjy6VGaS4HvcCz1VaeQ fR5fnzqE9BZjsGJpi7w6ixTc0s2kGHkK1lElsmVKCISF8FRmI0tuAlEh9sVkLc+WgysoxJYV2ciG AEVVYa34TL0hkzcezdKmU6YnAvgOX4q8Yvkapw6lo8WYFVjaQv9b/cLqrMbO8lq1ots5ZbYMSkHe Jo9lql4hiZdV81pIdqwzS6CEBHjV8cn8eehtdQ1bNl1ANpR4umMIfNpNxwVmqWrVIUfssiD49Fqj ukoJH4rGQWPwzadOsBRboN7Iw4DyCY7P7Y0mjpYQiaSQiMxh12Qw1kVmqvy2Dw3GmlvZSNzUF749 VyPhxc8Y4dMSk06ptokDZInYH9oZbpUkEIlEsHBsieEbI9XL36dhb0hjdJu1EdMDXWAlEUFsVhP+ ITtxWyujWtS38UMZSM9UghRMh0TnMGuFUUuW4JsAG9WGmml7Q9D4s6lY/X0A7M2EEJlWh0+fJTiv 3cdIiSfH56J3E0dYikSQSkQwt2uCwesitXtKZd/9BZO6eqKaqQRisRWc2o7FnkRGqQz8PMIHLSed UgmgyqvbLGycHggXKwlEYjPU9A/BTi2ADERuGIrm9mYQC01Rxas3fpg7DH6d5ukoULanvBoecK1M SEt9nttJLcomGFHS9iKkcTfM2jgdgS5WkIjEMKvpj5Cdt6Ep1oyojRjW3B7mYiGktv4Y+evf6jKR I/rHz+DdbTluqQfCFHfXoXfDRhi49aF6yXo5/prfGY2/2Imn6fr2Vni6SjzZPhTBa24hO3ET+vr2 xOqE3AyUqRcwO9BVZX8iczs0/3IH4jWCli1ag6kXJY/BOqp4hKMzu8GrqinEYjHMHVpg2MYoZKhT Z9JbFOyNGlIxJGIJbDy6YOKvyTqbxyqRemE2Al2ZsmJsuTm+3BGvLStZ4n6EdnZDJYkIIpEFHFsO x8bIQvZ5yYjCxmHNYW8uhlBqC/+Rv+JvvcpmUOV33FG3zua2WT1mrsOkzs6wFgsgrtQA/TdE4eb2 EDS1lUIslqJmiwk49FgziqjAo6Mz0c2rKkzFYojNHdBi2EZEaQqovLU3tB6voaV4DYVj3Ywj8CHz NFp32Vka6yygOmPO6Cz9reGbSps/kZDAfyElyvOWSz+SpfHPoYjv65NYtdWEgp6sakcCrpg8vwyn KxGH6JdzT+hZWE+qKnKmvqtP0c2EBLp5YhX1dRaQtONaeqzIpFuHF1KP2nyq2XUmbf3tBqU+30Rd xJrtKDLo9HgPElt6U8ja43Q96gLtmhxAtgJbCg57RArVEvBCEkgcKGBKOF2MvkEnlgaRPb8S9Qx7 rhGy2F+jWVEGnfranUQ8S3LpMJSmrt5HZ+NTSLNLhiYjZrsDIV9IlRoNpw2nr9OVA7Opi52Aqgfv ImblfsWzMOpZVUTOfVfTqZsJlHDzBK3q60wCaUda+1hBJIugKd4SsvAOoU1noin20g4a4W1OZh8t pFvyNNrURazasoLJT5WXQEIOAVMo/GI03TixlILs+VSpZ5hKnLQjIeQkqEqtQsPoQtQVOjA3kByF XDJxGqURt9hfo/m8PkSfVxNQo6lRWiaK14/p0sogqmXuQ9MimGX7FcXYhEop6iAUkMQhgKaEX6To GydoaZA98Sv1JFWxvjxGI+sKyKZlKO26GEmX902hgBp84vC9aUZ0Dr0+GkK1TNvQ8mRmmwQFPd3Q maQcLln2CKM0Rlt5NM3wkZDvrFiSp+nYWzHpZt46TAt71CZ+za40c+tvdCP1Ga3rICQOrzq1nbSH Lt2KodMrepAD35p67tLsz1IsXmYcp/hAuiFk52ics4CcRp3OV2eZLRGKksdQHX1AkbObkrm1L41Y f5yibkXSn0uDydm0Fg3c/4wUJKPL33mQxGUwbT5/ixJvnaV1/ZxJWK0/7WdgMttYCDnEq96WJu25 RLdiTtOKHg7Et+5JKgQZp2m8h5gsvUNo7fHrFHVhF00OsCWBbTCFPWIqwwNa1lpENYcdIaKXdGxk XRLYtKTQXRcp8vI+mhJQg/gcft7WMbocjDgvMVsj0iwsiOzcOHIWONGo04yd6x66dTa3jPhCe+o0 +yBdvxVB2wbWJb6pFdX0HUYbTt2gG0dnUUAVAdX/PkKViCxyNjU1tybfEevpeNQtivxzKQU7m1Kt gfvp2dvdCURXaNW5IX4GrdVQwAKpsQ5GE/iQeRqte5Gdl9f0y4DKxHf/jq7kGNl5Ebah5Q80NUpB z67uoVXbzupUMhld+MaFRJ6T6Rpz18+5QdO8ReQeejm3Ida9maTvpuBKYvKfH6faKyq34P+lXb1s SOQ/n+7IcxsCge4eKrLzNL6ekDwnXysbO5E/pBOLhlCbetbE54DA4ZNl3VY0eMFRSlb3YlQdCqEf zY7J238kZWcPqmwaQCsfKEjx7CrtWbWNzuq0PLIL35CLyJMmX8uhrBMjyVFYnyaqbva5arw+v4iG DF1OFzJ0G0JN56U5LUzU5CWj8+PrkdBzMhGl0o5ulqq9erRFQun06+e2xC+zzguXOFwe8Xi5/1wO h8CRkueo3+ixSkQjbEJ1QxRQ84WJ2nKXnR9P9YS5fF7u7UOVJS1p8V2Nzgp6sjmQLAW5nRfKOECD qltS0E9MB/Yl7etXnVx8vcna4Ss6lkWkSFpCraQNaUpkDpGOvRWbLuXQjWneJHIPpcuq+5Pa/vwX UoJGlJwr9J2HiBpMulo29sekWkznhXnYMCyPuvOiW0ez/qThdiLym31Ly5qxmz19bMg0YBU9VLym fX2tybTJJDr3LFdJxaNTtHXdQYpO13ReBOS/MEEbP+fKd+QhakCTruZQ+u5gqiT2p/lxGkBMnF3U y0ZE/vPvkFy38/JyL/WpLKGWi+9q01I82UyBloL3r/PSdB7Fq5HITo0iJ74tDTmUuzcgUTptDZSQ Rc9wIsqiP4fbkchvNt3SQZi6pw/ZmAbQKs3+b0ZbW8kCGrqPFPJSsbzHf9j8WAJFEVAgMyMLEEtg auQywVwLO9SqpHkrykUV7yD0MvkFO6aPQVR8IhLibyIyJhkKF6XOsLNhGeRJ0YjPtENrf0edeRJW aO7vDpoRg5gcJh4HZg5OqKF5acy1gLmUgxxmgkxZHLwaaD1uA1qPW4O0xMs48eefOPzLLuwO7Yzz Sb/g0qqOqlx59s3Qoo5GKMDCzxf1FMsRfSsH3HbeCOplgl92TMeYqHgkJsTjZmQMkhUuUCqUeB57 C4+lnvDxyHtvLmo2DhuaMUm/QFw+vThmDnDKAwALcyk4OdmA/A6i47JgH+iDqpoigRma+XmAfzpf Im/tkgeX4Tuw5XNH1RwVpSwN9y7twNyZPdCO+yvOL2lrnE1wzODgVENb7lwLc0g5OcjOzkZSdDwy anwEH1sNXy4qN/FFPZMHuVqYtkTHFnyMO3ker3pIcfKSCC0n9cCtEbtxNj4bHleOIdL+Y8x3NWF2 uVAf8uLT1QTV++VA6ugErSgcM5iZAlmv1a899cKWx0Xx8ujWUcXDKMQ8yUHcqkC4b8ur5NnP0yGT xuJ2jghtBg2C02ez8ZHdWrg0bY2ADl3RZ2APuDMfIqYwVVAKRydbbVlxzMxgiiy8luWWVaZda/g7 asoKgFVz+LsTZsTEIAc+Wiiq+p5RAx/55KXFrdwEvvVMoC5ZbdiKfcKUUR3U0iARSyDiVUXNWpr6 zoNIyIdSoQAUDxEV8wQ5casQ6L4tb7X27OdIl0kRezsHqFEeXznmEWc7L3ks2LN3lYA8FtHxMph7 usKeB6QVkFOputnqzV9kZt9rwynxaM/n+Kj/bsg8WqOljwcChvVFcMRUjLmqDVT4SY5CNdmVn5eg Kiyz5QKUCvX8BRSYGMwEKrjtaeHZGOsjj96DHw4p0XFsL3gKTWDp5I+gL5n/8eg/zg/tNm3Ckfkd 8THTngvEEGk7DACHywUPBCUBykd78PlH/bFb5oHWLX3gETAMfYMjMFUNhenAgPmqxFjBeDztjUMb RQOAw6BSalkx/kqNnzbw2zzhQGxTD4188ibs+vq3QK2nl9Fi/Xr8Mas1mv9ujE3wwBSz/kGqOTMK pQLg6uvMEYl0JkpboG1Hf7yacxJXb0pxId0X337SDlWWzMa5s4mod+YKbAK+hRdzr9B2XoDi09WX RnNlUlDQsjFATYbF/BYrj24dzc5GDsccPoMmYYi7vsVxJHXgwgcs2y3C+ajO2LNjH347ehw7p+zB ysXbsPT0IYyowgjDfKVYUCjGzHIUcsCEn8+Wc8tWZee60RTMAw2zpYqOI0cEUfnem3UyL7tTPp+f L3FOXsdEzycb2TkcmPsMwqQh7vocORLUYQqonA99KynnzNnsWALGEEg9ugG7b1dCxxltwey3+5Jp VWRZyNL2VuR49OgfvRujXrrKv7F71S6ktF2O2INDkbv8RgZ+vjgaSlKqvzAqrNICJg5OsDf5G9E3 n0PpV039tUkWIiPjQXZN4WgC/KuXYdleKF9cwuap+3HfuwtWB+juQGwGV1cHmDBrUKhFUDyIQ3w6 4GOd6/A6OgaJHCd85szD37tXYVdKWyyPPYih6jVJMn6+iNFKpnPDhZWDPSzS7iD+kQKf1M5tyRUJ m/G/ifFo+8ME45U0qQtPNwmWX72CJ0pf1FJ1pl7i0hXmidfF+HRKHZILnuoTHA44ZIxNFJWhCeyd a0P0KBbRKUo0q57bQ8yKi8NdnS/VrT7uAN8xaxG21Rx3PXvhI0sPVGleGat+X4A9kVK03ear85UO k59x6XLyBieKErLC+PFsa6OWJBP3xN7o2dtN3QlW4p/YS7gndII1UhARtg2R1XpjyOQ2GDwZkN1d i+6NRyPs4D2M+LwoVU3g4GQPk7+jcfO5En7V1L35rEhExhPsmjrq3YxN7J1RW/QIsdEpUDarnlvf s+IQp1uwRWX3PvrxbFG7lgSZ98Tw7tkbbuqOnfKfWFy6J4STtc4TUjnpX/45lpNibDYVk0D28yTc iIpCVFQU/rp0Ant//BJdBm3Bq44zMTXQEgAXlo4OqJR2Grv334UMMjw8Ohs//JqS95lzAdX5EPC5 kD1LQhKzcJniOaK2jsbkvf+AsrMgY+70HAGEAiAz/aX2xq9Nxqoz+nWR4tickVhzJQVyRQbiwsch NCwVjXr2gEc5PwII/IZgeLM0bPmyP+YdisVz9Vofjy+uwZgfTsH602Bo+jT04nfMnbAL8ZkKvErc hwmT9yCrXX90s+OCL+CDK3uGpKQ0MM+az6O2YvTkvfiHspElU0LSJhif1biKlaGbcfOFEsqMWGyf OhubrmXAsrLuY6mWVCEnlujy1UDYnZ+O3uM24I+zJ7Brel+M2v4IVGZ3YULWv4m4qbalqOsXcXjd GIxaexvVuvZCW4kRNlGINhpnq04D0NXyBOaP2YjINAVkyYcxbdpuPNL0HBlrrdoeHbzisWXjX6jb oiVsuEI0btMMvKPbcYjTBl2aFnycLz5dDgS5xoqXOnlp5KqQv2Yd0D+oKiKXjsSMP5KRBQVSIlbg i49bIXDqCbzkcnD3wFyMHj0Th+5nqdYsefH3PTzNNoedvbpnXoTiVp37oYv0GOaMXIMrKXIoMuIQ Pi4UYamN0LOHh17nBVadMKCrJU7MH4ONkWlQyJJxeNo07NYt2CLyej+9zNChfxCqRi7FyBl/IDkL UKREYMUXH6NV4FScKOSjrbJkwXZeypIum3YJCSiRvG0gGnt5wathQ/i17IqRq2+i5rDtOB72BTRT N0QB4zCtqwl+6e8MS1NLOH9xHW37Nc/3BKuTNbcaeoeOhVfSQrSoZg4zaTW0WpiJ3uM6w+JxLKL/ VQK8WmjS1AGP13aCjdtYaL6QVqXCtUGPpdvxnfNVjG9SFaam1nAf+CtMB23A9vH19Rs+nWzL7NTE DWPC9mFSg3jM/8wDVUylMJeaw67VVMQ1no99K3poN4vjWNSH/d3xaGAlgaVzH/wsHYpNKwfCjstF td6hGOuVhIUtqsHcTIpqrRYis/c4dLZ4jNjof6GUBmDO9hmo/9doNLQxg9S6PkLOOmHSphloLSmZ dqYt52Dv+l4Q/jYBgW0DMf6QFIGBLuBxy6rnp0DsyiA0YmzJqyEa+bZF31nnYdVnDQ4s6wprY2yi OBWtPsGCbaFwujgK3jYSmNXpi5OuH8NTdwSda4cOH9eHIqc6/FvWUY0oSJq3hq+QYNWmM1oY4lhs ujzUatIUDo/XopONG8bqGWtxQr+r/pbovDAMs5omY1EnR1hIpKjW5FtccwnF1kVBqARrdJ+zFH24 O9HNyQrmFuaoGbARnMFrMK+bVbFKcW16YOn27+B8dTyaVDWFqbU7Bv5qikEbtmN8/fw2aIVPFmxD qNNFjPK2gcSsDvqedMXHegVbbJbvXQDLzgsRNqspkhd1gqOFBNJqTfDtNReEbl2EoErlry67PUA5 MDe0tHE5ZPtOZPEh617SAngTVrKURMTGP0A6zGHn4o7a1prJdkDK+o6oOakqwpNWwut2FB7zHVHf vTr07pfKl7h/Iwr3X1nAybM+bHXfQmkUkKciMTIGjxSVUc/LBTYFBws0IQv5VeJp9CU8tmgALzup Okw2zn9dH+0ufo7XF74tJJ6+85vw0U+BvSqKAMu3KDql82PZvn1++bucpcuBjc0SYAmUKwFhJSc0 bOZUdJ5cU9TyaoZahkJxzWDv1Rz2hvw0biZWcPJpjmJy0YQ28KvEo/Cv0HRHA2w+tga9awuR+td6 LAy/D6f+rQyEZ51YAiwBlkDRBNjOS9F8WF+WQIUloNrckscr5OuB8lTLBJ4j5mLsmSEYXNcSQ8Q8 5Lzmo3bgXPw00a88BWHzYgmwBN4TAuxro3IoyA95yPBD1r2kpvX+s8pGSmIM4p9kw6yWO9ztpAb3 CSqM2/vPpzDNy8ed5Vt2nFm2pWNriB/beSkdU6NiGwJvVMT3INCHrHtJi49lVTQxlk/RfErry/It LcHC47NsC2djjI8hfuzXRsaQY8NUUAJKPDk8H1N3xetvYGhAG1nkJkxecc7AAngGAldgJ+WTw5g/ dRfi5YDi/s+YGvINtkUX3HFOfn0DRofMxeGnxX2LK0PkpslYca7g0oEVGFOhorP8CkVTeg/lExye PxW7GOM0cDD2Ou2rWTjEfLIsv4kt44fhiy++yP0fOhTDR47HtBW/IuZFXuSKWq917SxPGyPPss5j +VfjsPmGYY5GpqIXLDPhMqKKbQv0ohi+kEVi0+QVeBvNBdt5MYyYdX0PCCgf78bYMUdg5lmn2M+Z ha7uUG4Jwfd/vMc3YeVj7B47BkfMPFHHBKBnEdi/OQxn/9ZZVU1d7vK7J/HT5l8RlaZdCbAQixDC 1V2JLSHf431Gp1Ke5VeIDbwNZyUe7x6LMUfM4MkYp4GD/vkL+7f8guupTOclGWd3bMbB6AzwmFWg eRwoXtzB4XnB8G0+CkdScjvdFbJe57MzAyiKdpL/izt/RSIptWC9LjqiYV9F4nIE+n6BXfffQmdI 6Ap35RaEfP9HqR8U2c6L4fJiXSs8gQycnD0VEa2+RYir7oJqSmRnZRdciE7YGKPHueHA94txtYy2 I/qvkWacnI2pEa3wbYhrwWX8SyGcsPFojHM7gO8XX8V7ik5Fh+VXCiMpLmrGScyeGoFW34ZAr7oy 20jI5YXsP8ZFzQ4TsXLNGqxZsw4bfjqAC2fno8n99Ziz5V5unApYr4u0M6Uc8nx9EkV2tj4faSCW XT6BGS0NrGkgz0Z2cYOp+cqKXj1H2mvDDzHKbFkRo9qG2lohGo8eB7cD32NxKRtatvOSr6DYy/eD gPJhGBaH8RA0qA1UK4soU3FhUTC8a0ghloghsfFAl4m/IlnbEHBhEzgQHZ5uwrJD7+Hoi/IhwhaH gRc0CG00S60YWdTKv7dgQEMPeHjk+/fqhhVxzP4+Nggc2AFPNy3D+4hOhemN+Snx95YBaJifnYcH vLqtAIPvg+BXpK0p8TBsMcJ4QRikY5wZURsxrLk9zMVCSG39MfLXv4u4UeZmwKvhAdfKhLTU5+oV tytYvTZgZ2l7Q9C4x0ysm9QZztZiCMSV0KD/BkTd3I6QpraQisWQ1myBCYce50LI+BkjfFpikmrx wjTsDWmMbrM2YnqgC6wkIojNasI/ZCduM08ayqfYMcQH7aZfyHvwkMdiWZAPeq1JhPLJdgwNXoNb 2YnY1NcXPVcnAFDg0dGZ6OZVFaZiMcTmDmgxbCOiMtSFXExby7UJxMAOT7Fp2aFSjb6wnZciKxXr WTEJKPHwl904Y9Ya7RvlLtqWfXUhhk+JguecY4hJiMGx2Q1xZ/FwTPpV5wW5aQu0b56F38OPlKpS vYvMlA9/we4zZmjdvpH+SsSUjX/jL+LcuXN6/xcTUrRPc1wrX/Qd/y2+/Vb9/3UwnDNv4x7HCR7V cke1TFu0R/Os3xF+5D3s+DFt/Bvz48LKty/Ga9h9+y2+DnZG5u174Dh5QI0P7zu/IuuE8iF+2X0G Zq3bQ11dgYzj+K7HVzhg0gcbz17D6eXtcHdjGOKKeHOhzHqCyxtX4GBKfXTrmrchJypQvTZkZ4rU +7h5YDbmXPfH4lM3cWXjJ8gKH4PWnZaDvtiJK5F/YJJbHJZOXJmLWZGG5Ng4PEhnRksUSL1/E4fm zsJ5rxk4fD0Kx+b64eGmUZi8P1W1zcLzpBjEP3qps73KKzxLiEXiP1ngmvug1+CPUI1XGc0GjsOg 5pWRHTUf3bv/iAfNZ+O367G4um8cbE+Pxqcjf8Y/SqD4ttYULdo3R9bv4ShNc2H45WKRlsZ6sgTe dQJZiLh4DUrXnmigHjlVPkjGI44lbOvWRd3aVeDisADrhIfw0lm3/y6Bp5czMteeR6QsGK0MjLq+ 65oXJl9WxEVcU7qipwaINmAKfp8UiBO6b9YYP/lrZJB3biipG9r3dcs9Vz7DkbHtcCynC5aGz0Er Zrsp5pB4wss5E2vPR0IW3EpnZ2W1fwX/KQ0/qVt75OE7grHtjiGny1KEz2kFDb73nV+RxZ8VgYvX lHDt2UBrNxl/bMKuh00x8Y9Z6OXIGGd9/JQeBZfhD3SSkuP6zEYQzcp1ItWGpKbw/F84hjfMW2ka qDj1unA7a4Qvl3yLLs48wG0wOk7fiX2tpmDJkJaqFbMd+jXDnFF3dNjkO200Amum9IRqf9W6X6PH qt9wNPYeAJt8AfNdSlzQrr07rCbHwuXjYHSqTzgasgbXXb/G9aVfwEXVbrhg9ezLqDdoNfbOCcRg I9paiacXnDPX4nykDMFv2NDqttz5pGYvWQIVlIDyHyQ/yIRZ9eowU6sgajMIg5yiMfsjO1R3a41e Y7fhUb1P0MFdE4IJyIOtbTVwnyTj/ns1eUOJf5IfINOsOqrrqsuozKmOAXue4cWLF3r/T7f1gEWB nYtfIXJJHwzYKsT/wjZhiLPOsw/PFrbVuHiSfD9v+LmCmk9Bsd8Sv1eRWNJnALYK/4ewTUOgiw/v Nb+CRHVdlP8k40GmGaprjVOOpOh4ZNRoCB9bTa+ai8pNfFFPx+SY+uoyPAwXLl3CpUuXcPHsnwhf 2B2crT3Qbvxx5I2pVpR6XbidcaSOqFNLw0IMiYiHqjVraUdReSIh+ErtO3BdvEwlh5mDE2poonMt YC7lICf7DRo5xUNExTxBTtwqBLq7wMUl97/JhKNIlyUg9nYOjGlreba2qMZ9guRSNLR6ppBPY/aS JVAxCZAcOXIOBAJh3uqylu2w6HwUOu/ZgX2/HcXxnVOwZ+VibFt6GodGuGgnsHIEAvDpJeRFDE9X PCgEeY4cjG7CAh0SY7VRIHn3l+g+JQFt1p7CjI+0YwbqBBjefNBLebHzEozN8d0J9xb4KZKx+8vu mJLQBmtPzUABfHif+RVdkiTPgZwjgEDHOBXMjZjL09ZLJgWOSKQdmclNkQOxTT008sl7ReTr3wK1 nl5Gi/Xr8cestuip3qurYtTrIuyMz4fufp8qHiWoyzyepueSVxZkeA4uoFRCoSzMMxvZORyY+wzC pCHu+l9xciSo48IHjGlrmfLmE16WoqFlOy95ZcmevS8EeNaoYs1Deupz1Y1UCCVSIsKxLbIaeg+Z jDaDJwOyu1jbvTFGhx3EvRAXOKnqthIZz1Mhk1ZFJfH7AoPRgwfrKtbgpafiOdMpe4PXYS/OTUOP Yb+i6reHsaGfg95NRUVKmYHnqTJIq1bCe4VOpVxp+b3AuWk9MOzXqvj28Ab0cyh4I8F7za/ousSz rgJrXjpStcZpAnvn2hA9ikV0ihLNque+IMiKi8PdwgYXtFlwwTNhwnPA0d7cK0q9Lq2daSGU4IQH pl8jy8rKm/Mif4RHzOQVzZEHEswIYe1aEmTeE8O7Z2+4qU1Z+U8sLt0TwskaSIkIK7atVWY8R6pM iqqlaGjZ10aaAmJ/3yMCZvD0dILsTiwSVCMoXHDuHsDc0aMx89B9ZDFTOl78jXtPs2FuZw9r7b0k B7ExCeC4ecEz/2NOBadj5ukJJ9kdxOYCKZE28vj1GBi8AA+bf4/pn4qRGBWFKNX/Tdx9rr6b5MQi JoEDNy/PAk+IJcrsHQ385vzkiF8/EMELHqL599PxqThRzS4KUTfvQoMP7zm/IovVzBOeTjLciU3Q jtpZdRqArpYnMH/MRkSmKSBLPoxp03aDWZ8u7yBk/ZuImxp7vH4Rh9eNwai1t1Gtay+01W6fXnHq 9ZvbWR6VEp1xLeHoUAlpp3dj/10ZIHuIo7N/wK8peSMvHIEQAmQi/SUD3wwd+gehauRSjJzxB5Kz AEVKBFZ88TFaBU7FiZfGtbU5sTFIaaV+6gAAIABJREFU4LjBqxQNLdt5KVFJs4ErBgETuHduD8fb Z3DyQW5rZ919Dpb24WJnNydYmVvAvGYANnIGY828brDSKCWPw8nzz+DVqRO0r5c1fhX818S9M9o7 3saZkw8KrnFTpG5K/HMsHIcfZuPhb98goKEXvLw0/z4YHv6vKrY87iTOP/NCp061Co7KFJl+xfB8 Y37Kf3As/DAeZj/Eb98EoKGWnRe8fIYj/N9c+3zf+RVZyibu6NzeEbfPnIS6ugJWn2DBtlA4XRwF bxsJzOr0xUnXj/M9VCgQuzIIjVRMG6KRb1v0nXUeVn3W4MCyrrDWZFqB6vUb25lG1xL/ihAwbhq6 mvyC/s6WMLV0xhfX26Jf87wJz7xaTdDU4THWdrKB29hTsOy8EGGzmiJ5USc4WkggrdYE315zQejW RQiqBBTf1soRd/I8nnl1QqfSNLRk4ABgwJV1elMCHzLP/0x3+R1a0royNV8QR3JtwSko48ENunD6 DF2KfUKvte65J7Ir31GD6t3op8eKfD7lc1m2rOR0Z0lrqtx8AcXlAXlLisnoyncNqHq3n6gs0ZUt n+JQVHx+xWn4X/KV31lCrSs3pwX5jTPrCcVeOkdXEp7r1OPiNNH3/6/rNSON8WzL0s70uehdyf6l +Mtn6UL04wLtIhNOkZ5EV8+cocuJqdpo8rQkun7uNJ2JSKAUmdZZfVJEWyu7Qt81qE7dfnpMxra0 hvgZ7KUYCphfNPbaeAIfMs//UveXx0ZQPddRdDLDmLJKof0D6lDjqVepQD00JvpbCFPmrF4eoxH1 XGmUcUCM1yhlPw2o05imXi1bcmXOpziNKzi/4tT7b/m+pGMj6pHrqJNkVHUtThmt/39frxlRSsS2 rOxMy+S/PUnZP4DqNJ5KJWkuDPFjXxuVeJiNjVBRCEjbzsCPbS5g7ro47bv0wmSXXV2KH5P6YPkE b+3nh4WFrbDu0raY8WMbXJi7rsjFvkqmnwxXl/6IpD7LMcE7b6i5ZGlUkNAsvzIsKCnazvgRbS7M xbqiVqIroQQVsl6XiZ2VEFxZBZddxdIfk9Bn+QSUtrngqHuFeqIa2n5aLwB7USICHzLPD1n3EhkJ 830Eh8OMhJY02gcTnuVTtkXN8i07vizb0rE1xK/QzkvpsmJjswRYAiwBlgBLgCXAEng7BPI/2BW6 zkv+gG8n+w8zFUO9xg+FxIese0nLmGVVNDGWT9F8SuvL8i0twcLjs2wLZ2OMD8Mv/8HOeclPhL1m CbAEWAIsAZYAS+CdJlDoyEtJpFYk7cOM+RGoN2YWur9Yh7EbrkFW2Kt7vgcGLByDFlLgVeJRbNv2 O2LSTeHYrBsGBjVEJe2CYUVLoEjcgxk7+Rgyset7tyaHQc2zknB823YcvvEUqNoIXYcMQPMaOsX3 KhFHt23D7zHpMHVshm4Dg9DQEExFIvbM2An+kInoqveN/UvE/bYd4Sdj8CzHDPa+gRjQqwmq6WRh UK53wVHxBJd2bMK+K4+grOqFwIED0KJW4ZNHlf9cxYHfbyJNd8Errg0ad+sMDymjkAzJp7dj68Hr eKKoBLeAPhjYqR5UXu+CviWUodi6oriH07tO4W52wUrLtfBAx66NYcM85mTE4/etO3D01guI7P3Q tX9P+OUzkKyk49i2/TByzbQrhgxoDl0zLaHo72BwBRL3zMBO/hBM7Kqzpo3yH1w98Dtu6hsVbBp3 Q+dcozKgSxaSjm/D9sM38BRV0ajrEAxoXkN/yXUDsT5Up5dxv2F7+EnEPMuBmb0vAgf0QhPG/oy1 3w8VXFF6F3dfKSruf+1n6KMpQ58lGQqncZNdmkCuAgf66ngWyS6voVEhw2n48OE0fFgQNbTkkaXX ZzSUuWb+Ry6jsy+J0s5MoSaWPLJwbkM9en9K3tUlZNtpGUVlaVIt/Ffx7ASF+lkQv8EkupZTeLh3 xaekPAvInXaGpjSxIoldUwrq14vaOpsT364nbUtSL9ih8rcknoUztenRmz71rk4S2060LD9MxTM6 EepHFvwGNEkXnOIZ/T6qPklFtuT32UD6vHc7crYQkG3gWrpVSr6l1r0AjHwOimTa1b82ia09qFOf YGrvZk2CGp/SuvjCFzPJ2B1MVlzVatiqTxgZGcH3pwUJTJwcil3RkarxLcmtfW/qF+hN1QSW5Dfl PL3Ml/XbviwLVkbVlczd1MuSk8eC4aH+53tMpAjGBtLP0qTGFiSybUxd+/WlTvUrkbB6J1oZk2cg qjptJSG7pkHUr1dbcjbnk13PbaQx09LyKgs+JZNJQc9OhJKfBZ8aTLpGeZoTUcZuCrbiarnl8uOT /4KEQtYnSaMzU5qQlcSOmgb1o15tncmcb0c9tyUVEr5kkr5J6P+eb2FSK+jZ76OovlREtn6f0cDP e1M7ZwsS2AbSWqaBMsZ+C0u6nNzfSbbF3VfKiY0x2Rji91bWedHtvOgJIjtH45wF5DTqtP7aGfJY mttUTOb+MylCfUfIubeFgmpYUsCKoirva0o6Moc+q2tKYpHwA+m85NC1KQ1J4tif9jxU35BTf6dh jgJyD71MMpJT7NymJDb3p5l5MGlLUA2yDFihvXG8TjpCcz6rS6ZiEQnzdV7ksXPIT1SFum66r204 08+MI3dBDRryW/6l3PRKuNgLQ0ZXbKQSBHh98n/kJHSlMafSc2O9jKBpTcyoxoCf6f/snQdYlMfW x/9sp1cDgqKgglJEQMCYGBX1EjFXAUsQsXdRL5oYsZGYRE1iol4/TZRYETUWYmLlk+vV4PV+GgsK KpioCAi2SC8L7O75nmV32cIuC4iy6PKwz86875QzvzlTdt53zhSpTaeGUld4kaFvLF0pKaOyMumn nC8ZjPhnKKozh7ovSJFOVmooc20/MjYPpfjnahNssYsty6opbUVA/PJyOYuyMnqUFE2eZt1oys/5 JCQhZW8aTCaWQ2mLbCZSfpEWe3Kow8zTVPt7o+YaxXobkdP4QyRX0xnkxHGnmEstY/+lZfk0sdoq syhpdSh1MzYkHrf+5KUmdQV5GfpS7JUSBY7lxFea4cjzrLkWS95GTjT+UJ60zRXSyRlOxHGPoRbC Jc+ska5W5duQjILbtDqAR+1CdlC27DdJSQotdOeQ/dQTVEna9LehxF/NPd1jq21ceTVcGpuLOn6t 885L6SX89zoD/afOQW/pWjyr02hEBrJw4fhpPFdczldYmhI92o7p4VtQGrINCfPlJwErBHn9nILr OPxzJjymLUWo7ExziyCsTvoPdk7tChZKcem/18HoPxVz5DAxOjIQrAvHcVoMU/QI26eHY0tpCLYl zEd31UdzTFcEz4rB3DD5Mripd2/04D1Hfl6FDjOtRurJZDx0CcW4d0wlcpr4YHqkPwpPH8V58SFG 9f7KkJ6eBQsvf7ibGsPYWPox4kqW66kEJaUGsO3oCMnRKCx06NoZRvxCFJRpUMx6ebT+haa1FSa4 RkZyFlXn8GnUVlRP/AHrQttD3EmYBS7G9j1rEC47VJBnD3sbA1RWlNcu0wiuH8bPmR6YtjQUcjVd jaT/7MTUrm3h2WNDdSbCo+3TEb6lFCHbEjC/XgMCytLTkWXhBX93UzlHYyNw1RZdgOuHf0amxzQs DbWXHqdggaDVSfjPzqlo87gaQtmse0y4Bs9CzNww+SsCpt7o3YOH5/l5qIB2/W1Wtq9zJK3jiu4X vnUmLySCiJjgcJXfSxC/UFyTm4UHGsYIhlUo4m5mIPmbUXBuxsm4ul8daiQsTUf6A0u4d8jGhsmB 8HByRLfeYVibZg7PrlYQP/0QiQjM2sOzFOJLYCJLDJNhhdC4m8hI/gaj1IBjuoQhdv1CDDKXxRci +8B+/FbtgYAAM9lFHfyuxr27uWA6u6Jb3SDBgHUXZ1gV3cUfj9UoUvVtpGVUwbzgKCLfcYNTJ1f4 h3yMfTfLJeXjDcD4yK5IXTcDK3afQFLiOsxecRSc4AkY7tA6zaU54JvfVspxfvUniBdG4NvPBkGi EgxY9BiMMcO8YC54jLTkA9gwNwJf3eiFqFlDwANQmp6OB5bu6JC9AZMDPeDk2A29w9YizdwTXa3a Djf1rBmwCo3DzYxkfDPKWc2h3NW4nZaBKvMCHI18B25OneDqH4KP992EVKtUki1FevoDWLp3QPaG yQj0cIJjt94IW5sGc8+uaPO4VEr7wl6mC8Ji12OhvIOCMPsA9v9WDY+AACj3UOr094UleP0S0Dqu 6H6RW6dXMfWDv3sVfkvYjUzpr2NB9mHsPVMI4legUs2YU4uSaw8nh7qjQnWfbgtIKCz4CwU1pTgR MxNHeB8g5utVmNYzF1vHBeMfJwpqT/n083dHlfgFUzlMHN57BoXER0UtTC7snRykKwnahBLhafIS jP7oDGxnfYX5PetmBdoivvr7onKUlgrBMzFRGlAMTE1hLD4FtaS+IomKbuJmTg3y/iyG1/QvsW7V NPTM24FJQZOQkCsObwH/SfMQbHQea6aGYnj4x9j31Aczooehk+qK1asvceNzbGZbEWbtwhfb8tBv 0XIMrTvZTp6tMCcRK6NjsW7/FQhdfNG1duQQouCvAtSUnkDMzCPgfRCDr8Vcc7diXPA/UKum8iTa pItr7wSNXY+oCDdv5qAm708Ue03Hl+vEbTQPOyYFYVJCbv2DMIUF+KugBqUnYjDzCA8fxHyNVdN6 InfrOAT/4wTErVr/p5mA6Gkyloz+CGdsZ+Gr+T2VXnDWpr+aU32z7mgfV3SfR+uMTCx3RK2KwpHR 0ejrcwQD3NjIunwfVi5dwHzCBfvRBexLSkOxdOxh2r6NMWG9YKH7PFteQvEqlagCrMG7cPSHMMlJ qaP6wzzfE4s2J+LzodPhHrUKUUdGI7qvD44McAM76zLuW7mgC/MJuE1aoeIjMyEKo+YcBMbsxLG1 g+UnLrd8yV48RQYHbDYgEomUBwiRECIYgKFmas4wGYJlew4AfULxroNkNjIi0ApP3edgY3wmPpxw BZPfX4iMoE24+n8T0JNzD0c/m4xpI8LA/e0cFuvyZO6FiQpwfXscUkxG4tD4zmpPh2Y6RyHxVhRQ nIoNEUMxbSQHjje+hYO4DipYGLzrKH4Ik8x6RvU3R77nImxO/BxDp9vWPn56YRF1MQGGCYYs24MD 6IPQdx0k3EYEwuqpO+ZsjEfm2GVwU5r4ildLRahgDcauoz9AgmsU+pvnw3PRZiR+PhTTbdUory6W vYVlEj26gJ+Oau77+ZkJiBo1BwcxBjuPrcXguiPhxYJo198WFrftJteIcUXXVbBZk5fqohzcfc6D a5e3FDo4AzDq25HRULkMWAd9h5RLA7D7pxRki9ojfNlY2O0ZgPdTHWD3/CLWbt+P2h/CAFiehng/ pBcs3sD2zLS0hiWTCa6vn3zyxrCHr09HCI5lIUcE2FoH4buUSxiw+yekZIvQPnwZxtrtwYD3U+HQ 2H2qomc498WHCF+TCY+lx7Bv+QDJ9lgNNagblw1hY2OMqqcFtcvzsjU50fMCFMIS7WzUKIyRE94d 6aQkPuMtf/g4A9uyc/DX6YP438q/4Yf1U+BdOwa7InTVVzj369+w71A6PurprfRLTymhtu6pvoqD P2fCIXQD/iZ9hUhjkcy9MXvecHw74izOZBL+YW0JJpMLXz/5TwyGvS98OgpwLCsHIrzGkxcYwend kVDSKsZb8JcoFXIEUJ68MC1hbckEk+sLOS4G7H190FFwDFm1jVqN7mqsjNfnhujJRRxS2/eL8Ozc F/gwfA0yPZbi2L7lGFC7f1+h7E3RX4Vob6KzUeOKjqtgMyYvVbiwfACCr8/Gzd8WoQsToIpy8GEM M1OlnxeadUKUj6R1G3DLcyEWrPy75BeZIB0rU3LReVAfdPAJwJHfP9Ic/026Y+4Fry7A/jt3wEdH 6aMfPh4+fAYDG1vYMkTIT1qHDbc8sXDBSvy9VuEESF+ZgtzOg9DHrjEaWI5Lq0IQ+m0xwnacw/cR LkqPYXQXNxs9vdyAf17FtQogqHb2IkDmtTSUOQ5CTzUvD1QkxeCDVcWYeXgzPpT9tKi8jwePALsO HcAUvyskEkAgVCi1ARMshniFR/Giwv3XxCm8m4yz920wcO3bKvXPR9ICf8z4cwbOH52LTlKVqiwu QSWMYGxkAHMvL3TBfty5wwc6SqeR/Id4+MwANrav88QFQEUSYj5YheKZh7H5Q1lZK3FfolToUK9b NIeXpFFDGddDPDOwga1ML18TvWpKMVi9PlLb95dfWoWQ0G9RHLYD576PgIuaFWXN+tsUCd6QsFrH Fd3n0JiRTaUUbPTwdgf3xs+I/70QIkE+kg+eQZ65F3xdGzkXYpgDfxzAp4vX4HS+AKh+hHOr/4HN 9/pg+uTer++pviokG+VleSMisjee712CFSeywRfxcf+XJfjyFyEGjh0BBwYD5vgDBz5djDWn8yFA NR6dW41/bL6HPtMno7fyO9FqsxSkrkXU6sswCwyDT/EZ7PjhB/xQ+4nDr+llauPoxkUmOoWNxXul B7Hi0xPI4Vfj2YVvsSjuD7iHRyBAXHbhXST9uBWHLj+vFZnn3hVGt3bhsyX7kVEmgrA4HXuil+Ew vz8mR/SAzaDhGMj5F9Yu3oNb4ueWYt38OhZ7crpi2Aeer82qi/BuEn7cegiXFbb2lV69igxGTwT4 i1/BVfzjwMu7KypPf4dPdtxEqUiIohu7EL3yKETvhiO0CxMs7whE9n6OvUtW4EQ2HyL+ffyy5Ev8 IhyIsSMcXt9HRmJMPHd0NbqFXZ8twf6MMoiExUjfE41lh/noPzkCPcR21JR4s+AdEYnez/diyYoT yOaLwL//C5Z8+QuEA8diRBt6MVxRS16aW5CKtVGrcdksEGE+xTizQ9Y//YC4X9Mh66E06+9Lk6zt Jqx1XGkDRVO3z1rdnmqlcOXXaP0HjsRlsInHYxPT1JUitmco23IRR9Bk54WIhHm/0nxfK2KxeGTM YxHXoR9FJzZk40VRAomtDt6bYqSu6i7tn+1HNmwmcXkcYrJtyH9eIj2Q2TwQ5tGv833JisUinjGP WFwH6hedWGfjRYmc2B4FT9FIXQ1dXupJbAXDZOL6l3w41H99NgkVE2iiW6suNTG9+sGr6E78JHI3 YxCTzSYWw5CcQzfStTJpyPIECjVik9eKVOkFAT34OZr62rKJweYSl2VAXIf+tPi4zN6GkB4eW0T9 7bnEYBuRCY9FLAtPGh93g8rrZ96iV14OK/VtpTwhlIzYXrQiVWaIpIbSV/oS13EWJaszFCnMo+OL +lF7DoPYPC6xDLjkMHAxHXsoU0Kiqrv7abafDbGZXOJxmMS28ad5iQ/qbAe9KKyXw6eJUtWk0gov Xj0jdYIHP1N0X1tiM9jE5bLIgOtA/Rcfr7N5U593Fd3dP5v8bNjE5PKIw2STjf88Sqxr1E2UqwWC 6wRfNeWoubyUPNmyPkn5m9N/PWXXdlBa9FdNuq/ykk6y1TauvEpAWvJSx0/jqdLaD2bk48nt6/ij iIeO7p7obF5vbVT71E1Uiuy0NOTW2MDF0xVvqf7g055CmwjRUody8R/dwvV7pTBx9oSHvbFK2UUo zU5DWm4NbFw84aojMFuq7CqFrecVFmXh+s2HELTrDm/XdtpX7/hPcPvGHTw3sEP3Xi5op7pCVfUM d25k4onQAl16usPBuBmLlPWkbPjCq2LVsBQN3+U/ycCNO3+BYecGLxdrNZz5eHTrOu6VmsDZ0wP1 1LTh5Bu8q/t8xH3iDdx5bgC77r3gUk+p1BSP/wi3rt9DqYkzPD3sodqq1cR4aZd0n+9LK/pLT1iX 2TY8rrx0NI3KQB2/F5i8NCpPfSAA6sC/KWDe5LI3tY71rBompufTMJ8Xvavn+6IENcfXs9XMpjF3 1PF7+T8nGyOZPoyegJ6AnoCegJ6AnoCeQCMJaFx5aWR8fTA9AT0BPQE9AT0BPQE9gZdKQPVVFo3b g1QDvlSpXvPE1S15veZFrivem1z2OgiNdOhZNQxKz6dhPi96V8/3RQlqjq9nq5lNY+6I+an+6R8b qRLR+/UE9AT0BPQE9AT0BHSagH7yotPVoxdOT0BPQE9AT0BPQE9AlYDGx0aqARvyC7MS8fnXl+Ea /SVGFcdhwbZrqBJbClH3x/bAhLXReM8EqLiXjPj4k7hVYgynviMxMcwb1lp2XJdmnkDCgbO49bQG pp38MWLCh+hj1yLFUCdtq18T3juEz/exMXVpiPw4eNEzXPn1JNKLFA8eZOAtv5EY5mEikbnsDk7u 3ovkjGLwOgUgZPwYBChx4iPrTDwSTqXhCWzhEzIVE961VzDCJsTji3uxI/F35Its0WvEREx4z1HN 1thWRyQXQHgPhz7fB/bUpQhxbEiRSpF5IgEHzt7C0xpTdPIfgQkf9oEcTxVyxAddHkvFY6E13IZE YGKwK6Rk5fnpuEv4+CL27kjE7/ki2PYagYkT3oOj6pZwcRmED/DbT+dwv7p+o2WYe2BoiJ/kqIiq nNrDVI+lPobQ2g1DIiYi2FUdFSHuHfoc+9hTsTTEUeEIER0H1ljxGstLNT3hY1zcuwOJv+dDZNsL IyZOwHtqK0Q1ot4vJlB25yR2701GRjEPnQJCMH5MgEKbBRqt73qcUDuuiE+Hb0vjqzrbMOoMwqgL J7tWdfET6sHpTHPO8Knq0haaP2smzZw5k2bOCCNvCyZZ9Aql6WK/+DN3I50vJSpKiaU+Fkwydwmk 0WOHk297I3II3kg31BnIqs1ISE9PzidPEx45BITSxCljabCLOXEcRtDWDJmhLZlEuvXdVJ4y6YVP /00xAebEVjXGV3aQwi0ZUkNyMqNNbHrnm7sSg2Al52m5nznxHPwoJHIcBXtaE7d9MG2+JeNURCmx fcjSqCO9HRZJHw5yITN2RxoTLzMSKKScn8aTs6EVeQRHUHiQG1lx7Gl43J0mGxxrbtllDBr9LXxK /44JIHO2ogE+NbGFT+nkfE8y4TlQQOhEmjJ2MLmYc8hhxFaSqFEN3d40lOzYFuQWNJYiR/iSHceC AmIvUKma5FryUkuyEub8ROOdDcnKI5giwoPIzYpD9sPj6I7cppxc9PKD9KGFgYo+SfSK7bGULovV puY2bRpqR2wLNwoaG0kjfO2IYxFAsRdUqQjp6b9jKMCcXc+QmzzD5rlakk/zJJDGagwv1QyEOfTT eGcytPKg4IhwCnKzIo79cIpTWyGqkV+NX2f4qiluyfnl5GfOIwe/EIocF0ye1lxqH7yZZF1ak/Rd Tfov+5IusVU/ruj2+KqOH9RVmrqA6sLJrilOXmTXar81WdgV3KY1bxuS2Ttf0GVp31fzYBeF2VvQ kE2yAVQpJSLBbVodwKN2ITsoW9YBl6TQQncO2U89QZUqwXXJ21SeRJWUlbSaQrsZkyGPW2/yUiO2 kmvoS7FXSqisrEz6KSd+7dxESNmbBpOJ5VDakiUFVX6RFntyqMPM0ySeG9ZciyVvIycaf0hmVbaQ Ts5wIo57DF2qIqLKszSvC5d6RJ+jklqQpXT5sz5kaj+BjhQ1jWzTy9609MWhK7OSaHVoNzI25BFX y+RFcHs1BfDaUciO7LqJWEnKQnLn2NPUE5VE/DMU1ZlD3RekSCcrNZS5th8Zm4dS/POmy9aUGC3H qpLOzutC3B7RdE5SgVR6+TPqY2pPE9RWoID45eUKulRGj5KiydOsG035Ob/WwjL/TBR15nSnBSmy BptJa/sZk3loPNVhqcyipNWh1M3YkHjc13jyQtp5qdZ75dl51IXbg6LlFUKf9TEl+wlHqIlNSjXp FvO3nP61mEiShITZtGmwCVkO3VJnNbz84mLy5HSgmafFPVpT9b2F5WtEcrrBtoFxRcfHV3X8Wued l9JL+O91BvpPnYPe0lVnVqfRiAxk4cLx01A4bkVhgY8J1+BZiJkbJn98YuqN3j14eJ6fhwqFkG3d KXq0HdPDt6A0ZBsS5nevt+xelp6OLAsv+LubwtjYWPoxAlf69MwscDG271mD8M7SRyc8e9jbGKCy ohwkPjb+8M/I9JiGpaH20rQtELQ6Cf/ZORVdWUB16kkkP3RB6Lh3IDlc2AQ+0yPhX3gaR8/zdQuv 6BG2Tw/HltIQbEuYj+4NPS0SS850RfCsGMwNkz/OMPXujR6858jPqwCoBCWlBrDt6Cg9BJOFDl07 w4hfiIIyxcd0uoVBSZrqVJxMfgiX0HF4R3o6tInPdET6F+L00fOoX4NMcI2M5LpUdQ6fRm1F9cQf sC60fe25RFRSglIDW3R0lB66yOqArp2NwC8sgASLCI+2T0f4llKEbEvAfK0VoSRxG/No56VcoGqk nkzGQ5dQjJNXCKZH+qPw9FHoWpNSll0XfGYIXLwde9aEQ96l2cPGoBIV5STusJqo77pQplcvQ8Pj StsbX1tn8kIiiIgJDlf5Abx4N1RNbhYeqBsjmC4Ii12PhYPM62pdmH0A+3+rhkdAAMzqrrZ9B8Mq FHE3M5D8zSg41zs9tRq30zJQZV6Ao5HvwM2pE1z9Q/Dxvpsory06AxY9BmPMMC+YCx4jLfkANsyN wFc3eiFq1hDwUIr09AewdO+A7A2TEejhBMduvRG2Ng3mnl0hPoi5+t5d5DKd4dpN/i4Rw7oLnK2K cPePx1BXPa1GnWGF0LibyEj+BqPqw6onFtMlDLHrF0KuRkJkH9iP36o9EBBgBvAGYHxkV6Sum4EV u08gKXEdZq84Ck7wBAxvKwfmVd/D3VwmnF27yd9hYliji7MViu7+gccNVmA5zq/+BPHCCHz72SDI WhtvwHhEdk3FuhkrsPtEEhLXzcaKoxwETxgOCRYGrELjcDMjGd+MclY5lbpeNbxGF9TzUi5gNe7d zQXT2RXyJsWAdRdnWBXdxR8NV4hyUm+ij2GBHoPHYJiXOQSP05B8YAPmRnyFG72iMGsIT9xhvYC+ vzlAGxxX2uD4Kh+dXmUdmvrIceqxAAAgAElEQVTB370K/5OwG5lhUejOAwTZh7H3TCHIsAKVDXau EkFFT5OxZPRHOGM7C7/O7ynvpF9lOV5WXlx7ODmIExfUz0FUhJs3c1CTx0JxxMf4chwL9078E2sm BSFbdBEHIjvWneArzEnEyuiNuJyfA2H3KegqnuEJC/BXQQ1KL8Vg5h8jMD/ma7TLS8KGr8YhuNAQ v28diprSUgh5tjBRnDgZmMLUGCgvKamdvLTOrLc+DoALewksdbTURVC4JsLT5CUY/dEZ2M76FfN7 ipuDBfwnzUPwqQVYM/Us1hoIILIagNjNw9BJ26qOQsqt6RSVl6JUyIOtcgXCVFKBKBG3Lw0VKMza hS+25aHf6uUYaqVQCgt/TJoXjFML1mDq2bUwEIhgNSAWm4d1qlsZ5No7QZPaKqT0Wjk18lIspagc paVC8GxNlCZ1BqamMEY5ShqqEMV03ni3EDmJKxG98TLyc4ToPqVr7Y/WF9H3NwppQ+OKCoi2ML62 zuSF5Y6oVVE4MjoafX2OYIAbG1mX78PKpQuYT7hgP7qAfUlpKJZOYpi2b2NMWC9YSAHzMxMQNWoO DmIMdh5bi8GWKuRfZy/DBEOW7cEB9EHouw6SgWNEIKyeumPOxnhkjl0GN+kgy3SOQuKtKKA4FRsi hmLaSA4cr0VBJBKhgjUYu47+gLDaAWoU+pvnw3PRZiR+PhSj2GxAJBL/K/yJIBQBBgwNo55CyLbh 5CMzIQqj5hwExuzEsbWDIVYjUW48Jr+/EBlBm3D1/yagJ+cejn42GdNGhIH72zksrp3g6HYJGRw2 2BDXn1IFQiSpQE3zltrJ8vXtcUgxGYlD4zvXTUoAEXLjJ+P9hRkI2nQV/zehJzj3juKzydMwIoyL 384tRhvA8hIqTQD1vFSyYnAgaVIi5VVLkRAiGOC1aVIqxW6OV/ToAn46qqnvZ8I5KhGSLm0DIoZO w0iOI27ENlffmyPh6x+nrYyvzRqJqotycPveUwiV6tEAjPpG8JRCyD0MWAd9h5RLP+Pz0d7o0mMI lvxyDp96AwxbB9g9v4hD27dju/Sz49h1ya9FiPDs3EoED5iGU3Yf49i/4zDGqXXmX/KyvGqXEZze HYlRsomLOHvGW/D3cQbys5GjZrEG5t6YPW842j04izN/msLakgmmiy/8ZLNBMGDv64OOglxk5Yhg aGMD46oCFEieQ0kKKHqOgkLAsp1NA4Pfq2bRzPxEz3BuZTAGTDsFu4+P4d9xYyBTo6LTB/G/lX/D kvVT4G3FAtPEFaGrvkKkzRXsO5TejNWdZsr4ItEMbWBjXIUC5QrEc0kFwkZTq6++ioM/Z8IhNBJ/ k74rIxGjCKcP/i8q/7YE66d4w4rFhIlrKFZ9FQmbK/twKF2d0r1IAdpIXI28VOU3hI2NMaoKCqSP diX3Rc8LUAhLtNNYIarpvP5+0RNNfb9y2c29Z2Pe8HZ4cPYMMtnN1HflJPW+Nja+aurGGqjIKlxY PgC+E3fjgXT2QhXl4MMYZqaNXFcX5SPp208Ql+OHOSvXYu0XCzHG8y+cTclFZ/8+6ODzEY78fgVX rkg+F3dOgiMDKL+0CiGh3+LpsB04dyIWA95qhvgNlKxN3KpIQkxgP8w+8EThV1wl7j94BNh1QAcm H0kLesLxg03IVvjhXVlcgkoYwdjIAl5eXYAHd3BH4c1N/sOHeGZgA1tbBtg9veCG27h6Tf4atCDz GtLKHNGzp1Ubn7yU49KqEIR++xTDdpzDidgBEhsmssoXv3glEkCgODM3YILFEC9GKV6URdDBb3ZP eLkBt69ek7/ILsjEtbQyOPbsWftekzqphXeTcfa+DQa+/7bS4w1xWAkWgdIPFgMmCwzxCk8bwaKu zC9yrSFeyumy0VNSIZA3KQEyr6WhzLEneopfNNP/1RJg9VLT91cnYUFPR3ywKVupzysuqQSMjGHE aZ6+65ErE2hr42szWg0bPbzdwb3xM+J/L4RIkI/kg2eQZ+4FX9dGroIwzIE/DuDTxWtwOl8AVD/C udX/wOZ7fTB9cm/1htAEqVgbtRqXzQIR5lOMMzt+wA8/SD5xv6ajTLkeXl8fzx1djW5h12dLsD+j DCJhMdL3RGPZYT76T45ADxYHXt5dUXn6O3yy4yZKRUIU3diF6JVHIXo3HKFduPCOiETv53uxZMUJ ZPNF4N//BUu+/AXCgWMxwoEBZqcwjH2vFAdXfIoTOXxUP7uAbxfF4Q/3cEQEKL9krfOghXeR9ONW HLr8vFZUQepaRK2+DLPAMPgUn8EOqQ798EMcfk0vg8Wg4RjI+RfWLt6DW+LnlmLd/DoWe3K6YtgH nm3j3SpmJ4SNfQ+lB1fg0xM54Fc/w4VvFyHuD3eERwTUti/h3ST8uPUQLits7Su9ehUZjJ4I8Oep VKsFBg0fCM6/1mLxnlu1j3OrH53D17F7kNN1GD7wbGS7V0m1rXs18wKU+TLRKWws3is9iBWfnkAO vxrPLnyLRXF/wD08Am2tSb3yeuN4wbtrJU5/9wl23CyFSFiEG7uisfKoCO+Gh6ILR7u+v3KZ21qG bXF8VbdFXd2eaqVw5ddo/QeOxGWwicdjE9PUlSK2Z5DYRIjSnyY7L0QkzPuV5vtaEYvFI2Mei7gO /Sg6UYONF7FtkstLyZMtM8im/M3pv56yhUo565RHK0+N0tZQ6gov4qkYqRM8+Jmi+9oSm8EmLpdF BlwH6r/4OOXJ7N8I8+j4on7UnsMgNo9LLAMuOQxcTMceygJU0d39s8nPhk1MLo84TDbZ+M+jxAey +0RVd+JpkrsZMZhsYrMYZOgcShuvlWmUVNON5pddU4qar9fav+GpGKkrT6BQIzZ5rUgVaxFdXupJ bCjrj1hGgEP912eTkIT08Ngi6m/PJQbbiEx4LGJZeNL4uBtUrjnrFrnToqyq7lD8JHcyYzCJzWYR w9CZQjdeI1kNlieEkhHbi1akygwX1lD6Sl/iOs6iZHWGIoUP6dii/mTPZRDbyIR4LBZZeI6nuBtq qNSk0gov3utrpK62thvmVZ9vFd2Jn0TuZgxistnEYhiSc+hGakaTahFdU5dIi+qfugxe4Jow7zgt 6teeOOIxR9rnDVx8jORdWsP6/gJZt0hU3WJbf1zR9fFVHT8Dcc2oThL1J2CqEnkx/5vM800ue1O1 Rs+qYWJ6Pg3zedG7er4vSlBzfD1bzWwac0cdv2Y8NmpMVvowegJ6AnoCegJ6AnoCegIvh4B+8vJy uOpT1RPQE9AT0BPQE9ATeEkEND42ekn56ZPVE9AT0BPQE9AT0BPQE2gSAdU3XDRuE1AN2KRc9IGV CKh7XqcU4DX2vMllb2q16lk1TEzPp2E+L3pXz/dFCWqOr2ermU1j7oj5qf7pHxupEtH79QT0BPQE 9AT0BPQEdJqAxpWXpkgtzErE519fhmv0lxhVHIcF266hqt4eJmmKbA9MWBuN90yAinvJiI8/iVsl xnDqOxITw7xh3ZCdO9EzXPn1JNKLFKyvgYG3/EZimIf0eOqmCN4WwoqKcOPEcTzuNgpB4kOgpH/C xxexd0cifs8XwbbXCEyc8B4cFU2wVNxDcnw8Tt4qgbFTX4ycGAZvJbh8ZJ2JR8KpNDyBLXxCpmLC u/YKdkyEeHxxL3Yk/o58kS16jZiICe85qrfBIxOqtb7L7uDk7r1IzigGr1MAQsaPQYBd41RbVHQD J44/RrdRQbVnbCkXQYh7hz7HPvZULA2Rn0KtHEZ3fVp1REX00swTSDhwFree1sC0kz9GTPgQfRQ5 atWpMtw5uRt7kzNQzOuEgJDxGBNgp6BTKhm2ca9WXvXKp63N1Yugv6BAoOzOSezem4yMYh46BYRg /JgAKKpnXVANfWbd/TfYoY1hU/uMVkWpbhO7uj3V6sLJrlVd/IR6cDrTnDN8qrq0hebPmkkzZ86k mTPCyNuCSRa9Qmm62C/+zN1I50uJilJiqY8Fk8xdAmn02OHk296IHII30g11NiZkGZUdpHBLhnha pPBh0zvf3CW5hRJZYN35bipPueRCerg/ghxZHBr8/WOSmbIR5vxE450NycojmCLCg8jNikP2w+Po jgxCUQrF9rEgprkLBY4eS8N925ORQzBtrINbRCmxfcjSqCO9HRZJHw5yITN2RxoTL7OzI6Scn8aT s6EVeQRHUHiQG1lx7Gl43J0mc25+2eUUGnSVnKflfubEc/CjkMhxFOxpTdz2wbT5lsx+SQOxhQ9p f4QjsTiD6fvHMrqy8EJ6+u8YCjBnt7i9ElkOqt8tyUqrjihlLqSnJ+eTpwmPHAJCaeKUsTTYxZw4 DiNoa4aUo1adKqHzy/3InOdAfiGRNC7Yk6y57Sl48y1qRE0oSaPJ05J8NOXRuOuN4FUvIW1trl6E V35Bd/jWL3rJ+eXkZ84jB78QihwXTJ7WXGofvJnqN3P1fWb9FF/tFV1gq41h0/qM1ucHdSI0FbTi 5EUpPU1G6gS3ac3bhmT2zhd0uVQSo+bBLgqzt6Ahm2QDqFJKtZ5aI2SGvhR7pYTKysqkn3Lit1Tv WD/LFrnSVJ6yTGsyNtP7dsZkyOEqTF4q6ey8LsTtEU3nSiQhSy9/Rn1M7WnCkSIiEtDtNW+Todk7 9IUcLu0KsyeLIZsoS0BUcy2WvI2caPyhPOlkpJBOznAijnsMXRJbGqw8S/O6cKlH9DmSZFFKlz/r Q6b2E6g2C5mAjfhubtkbkbTY1CFlbxpMJpZDaYu4YOK/8ou02JNDHWaepobmwWKDdRmb3yc7Y0Pi cFUmL5VZlLQ6lLoZGxKP2xYnL9p0RIWu4DatDuBRu5AdlC2bAJek0EJ3DtlPPUGVjdApYfYmGmxi SUO3yNpvOV1c7EmcDjPpdMMVoSKMZu/L1SXN+da7o5VXvRja21z9KK/8is7wVS25MJs2DTYhy6Fb avsv8e3yi4vJk9OBZqool/o+UzXBV+9vdbZaGTaxz3jFCNXxa513Xkov4b/XGeg/dQ56S5/2sDqN RmQgCxeOn4aCxXKlVamy9HRkWXjB390UxsbG0o8RuI17QqCUls57Ki5j9ZQv8Hzicoxup1BN1ak4 mfwQLqHj8I708DwTn+mI9C/E6aPnwUcpLv33Ohj9p2KOHC5GRwaCdeE4Tj+vxvXDPyPTYxqWhtpL Tw62QNDqJPxn51R0ZQHVqSeR/NAFoePegSQLE/hMj4R/4WkcPa9wIJIOQDQLXIzte9YgvLP0eSPP HvY2BqisKK9dntMkYsXl1ZjyxXNMXD4ainjFJyg/2j4d4VtKEbItAfO7N/QcU1PqrXxdq46oyseE a/AsxMwNg6OsuKbe6N2Dh+f5eajQqlMiwCwQi7fvwZpw2WnUPNjb28CgsgLlmh4hq4rRZvzaeKkW RKC1zanG0PsVCZghcPF27FkTDnkzt4eNQSUqFJVLU5+pmNQb69bCsMl9RuuDVBgVX6EwJIKImOBw FV/SkBz+VpObhQeKr7TUiVWN22kZqDIvwNHId+Dm1Amu/iH4eN9NpZNa64K3aUch/rVkCrYax2Dn Mm/wFF+0rr6Hu7lMOLt2k79LwLBGF2crFN39A49FBJGIwORwld9PEb+tXZOLrAfFSE9/AEv3Dsje MBmBHk5w7NYbYWvTYO7ZtfbQvup7d5HLdIZrN/mskGHdBc5WRbj7x2OFw9FaGzIDFj0GY8wwL5gL HiMt+QA2zI3AVzd6IWrWEMjfEFKRs/BfWDJlK4xjdmKZNw+KeAEGrELjcDMjGd+Mcq53QKFKSrrp 1aojKmIzXRAWux4LB5nX3RBmH8D+36rhERAAM2jTKREYFj0weMwweJkL8DgtGQc2zEXEVzfQK2oW hmisiLrs2pZDKy/V4pRqbXOqMfR+BQIMC/QYPAbDvMwheJyG5AMbMDfiK9zoFYVZdcrVQJ+pkNQb 69TGsKl9hg6AbJ3Ji6kf/N2r8FvCbmRKf8gLsg9j75lCEL8CleomL6Ii3LyZg5q8P1HsNR1frluF aT3zsGNSECYl5OrQgPqitSpC/sF5mPFLD3y9bS7cled3EJWXolTIg4kJVyEjA5iaGgPlJSgRmcLP 3x1VvyVgtxwuDu89g0Lio6LsL/xVUIPSEzGYeYSHD2K+xqppPZG7dRyC/3ECBRChvLQUQp4JlLMw hSSLEp1kLcxJxMroWKzbfwVCF190NVPAo+gU5ePgvBn4pcfX2DbXXXmCJw3HtXeCg5FipLbl1q4j DZdH9DQZS0Z/hDO2s/DV/J5gQYtOKTZYYQ4SV0Yjdt1+XBG6wFdjRTQsQ1u6W5+XivTCAi1tTiW8 3quBgBA5iSsRHbsO+68I4eLbFZJm3nCfqSGxN/SyeoYv2me0Bkz5T+tXmTvLHVGronBkdDT6+hzB ADc2si7fh5VLFzCfcMF+dAH7ktJqT68Vi8W0fRtjwlwwZNkeHEAfhL7rIHncMSIQVk/dMWdjPDLH LoObbMn7VZalhfMS/BGH6QuvIiguBRGdmECVcgYMDhtsiCASKc/wREIRYMAAAyy4Ra1C1JHRiO7r gyMD3MDOuoz7Vi7ownwCLlf8K1qECtZg7Dr6A8KsxOmPQn/zfHgu2ozEz4diFJsNiMR5KOYtgiSL 1pnvKkqizs10jkLirSigOBUbIoZi2kgOHG+sR3+lX/0C/BE3HQuvBiEuJQJq8KpLus1d064jmovE z0xA1Kg5OIgx2HlsLQZbisOy4N6gTimkx3RGVOItRKEYqRsiMHTaSHAcb2C9ckUoRGjbTvW8VMuk vc1Nt9XNdqVakpftFz26gJ+Oqvb9vWBRmzETzlGJkDTzDYgYOg0jOY64OjujwT7zZcvcttJXz/BG rLZxRfdK2azJS3VRDu4+58G1y1vSdybEBTMAQ3n9vYHSMmAd9B1SLg3A7p9SkC1qj/BlY2G3ZwDe T3WA3fOLWLt9P3KlgyfL0xDvh/SC07sj4aSYKuMt+Ps4A9uykSPAazB5EeDW3q1IfpoLk0nuSKwt aw3KCvgQxnig4+FPkHy0G2yMq/C0oByAbHlAhOcFhYBlO9gwAIZ1EL5LuYQBu39CSrYI7cOXYazd Hgx4PxUOHdvB2JIJJtcXfpIeAeJHJfa+PugoOIasHBEMbWxgXPUUylk8hyQLG+h0N2vujdnzhuPb EWdxJlOA/r0UVFxwC3u3JuNprgkmuUvooqYMBXwhYjw64vAnyTi9yE1BpxWVrQ25DW206kj90ojw 7NwX+DB8DTI9luLYvuUY8Ja8phvUKXsFxnUJm8N79jwM/3YEzp7JhKB/L/ljzrowbdnRMC+lkjEt Ya2lzUE/ealFJnpyEYfU9P0WclWsDWfuPRvzhn+LEWeTccLkRMN95ulFr8HYoKRRLeKRMzyDzC98 mtFntIgYzU5EXa+jJbEqXFg+AMHXZ+Pmb4vQhQlQRTn4MIaZaSOXPkT5SFq3Abc8F2LByr9LBkNB Olam5KLzoD7o4BOAI79/pCxHRRJiPliF4pmHsflDW+kAWon7Dx4Bdh3QoZFZKyeqaz4GbAfMxHI8 glAmGuUg6X/2ovC9KRgX7A9rTkd4uQH/vHoNFQiSTF8EmbiWVgbHQT1hxRAhP2kdNtzyxMIFK/H3 2kYvQPrKFOR2HoQ+dpZgeHUB9t/BHT7QUTr/4T98iGcGNrC1ZYBt7QU3/BNXr1UAQZIAgsxrSCtz xKCeVjo0eeEjaYE/Zvw5A+ePzkUnaQdXWVyCShjB2EhlNs2wxYCZy4FHdXRBOUn4n72FeG/KOAT7 W6u8/yKrhDb2ze6pRUfql6f80iqEhH6L4rAdOPd9BFwUn0pCm04xwE9aAP8Zf2LG+aOYK68IlFQC RsZGrwdXBWwN81IIWOs0h5eWNqca4031s3p9VL/v5ydhgf8M/DnjPI7O7VTX9xdLlAsd+s/EckYD faZKN/BGstXC0IjT9D6j1Tmq2/GkbluSPJyQHm37gMxN+lDsfwtIWJNHx2Z1J067cZQo3bpbF1bT Vmkqo1PTHcnYaz6dyqshqsqnsysHUjuLgbQuQ7ZXsy4ViUOYQz8OsyRe98mUcLuUhIIiSoufQu7G ljRk059Ntj+ikvpL9TbMU0vW/CSa0cFQYau0gO5/H0QWFn708fFsqqx6Sv9ZM5hsDX0o9opkz3jZ qenkaOxF80/lUQ1VUf7ZlTSwnQUNXJdRy6kmfQ31NTWj3guP04NKIVXeO0JzfUzJOnirZCui4D59 H2RBFn4f0/HsSqp6+h9aM9iWDH1iSZqFFqHlt1+o7PJkNLiElL87lGzYnWnMj+lUIhRQ4fWdNLGH IVkE/lNi90bwJ52K20IHf/9LbRr8pBnUwVBlq7QsZE0qrfDitUE7L9p1RPDnKYrbcpB+/0so3jtP n/ryiO04nFZs+p6+/17+2fpLGomtGWjTKWH+bgq1YVPnMT9SeomQBIXXaefEHmRoEUj/rDNAJAPb vO+Xq0tNkKkRvJT4EpHWNteE7F9WUJ3hq1pAYT7tDrUhducx9GN6CQkFhXR950TqYWhBgf9UY3uq Xp+pmuCr97c6W60MtfcZr56aPEd1/Jpn56X8Gq3/wJG4DDbxeGximrpSxPYMEpsIUfrTOHkhEub9 SvN9rYjF4pExj0Vch34UnSizEaGUSp1H8OBniu5rS2wGm7hcFhlwHaj/4uOUp2G+UxexlR3qwDda JHUNseoOxU9yJzMGk9hsFjEMnSl04zUqkyUqzKNf5/uSFYtFPGMesbgO1C86sc5GAlEV3d0/m/xs 2MTk8ojDZJON/zxKfCAHWXUnnia5mxGDySY2i0GGzqG08VpdDrKctH6/UNm1pi429ZJHxxf1o/Yc BrF5XGIZcMlh4GI69lBalvIECjVik9eKVLWpvZ6TFyLSoiPlCaFkxPaiFak1VHN5KXmyFQ0/yt2c /uspW2y/T6tOCSnv+CLq155DDDaPuCwD4joMpMXHHrbYD4uXrktqNaT+xcbwUuQrSUF7m6uf06u9 oit81ZVamHecFvVrTxzxmCPt+wcuPkayZq4UR12fqRTg1Xt0ga1Whlr6jFdPTZ6jOn4aT5XWfjAj H09uX8cfRTx0dPdEZ/NmPLcRlSI7LQ25NTZw8XTFW0ovV2palBLnewN3nhvArnsvuLRT2Y6jKVor Xn85h3IJUZR1HTcfCtCuuzdc63EQoTQ7DWm5NbBx8YSrOrj8R7h1/R5KTZzh6WEPY1VGwiJkXb+J h4J26O7tinpZqIZX4385Za+fEf9JBm7c+QsMOzd4uVir3UVUP5ZuXWl5Vtp0pKnlb4xOPUHGjTv4 i2EHNy8XWLdg82x5Pk0tfwuE19bmWiCL5iah+3z5eJJxA3f+YsDOzQsuLalczYXWyHi6w1Ybw5bu MxoJSEswdfxeYPKiJTf97ToC6sDX3XzNHW9y2ZtatXpWDRPT82mYz4ve1fN9UYKa4+vZambTmDvq +Km8w92YZPRh9AT0BPQE9AT0BPQE9ARaj4DGlZfWE0mfs56AnoCegJ6AnoCegJ6AnIDqqywat0qr BpQnoXc1lYC6Ja+mptFWw7/JZW9qnelZNUxMz6dhPi96V8/3RQlqjq9nq5lNY+6I+an+6R8bqRLR +/UE9AT0BPQE9AT0BHSagH7yotPVoxdOT0BPQE9AT0BPQE9AlYDGx0aqARvyC7MS8fnXl+Ea/SVG FcdhwbZrqCINMdgemLA2Gu+ZABX3khEffxK3Sozh1HckJoZ5w7qRO66F9w7h831sTF0aAkeFOMLH F7F3RyJ+zxfBttcITJzwHhxbcLumhlK1+OWqnN+QsPsYUh8LYe02BBETg+FqIs+mNPMEEg6cxa2n NTDt5I8REz5EHzuF6qy4h+T4eJy8VQJjp74YOTEM3mrhilB04wSOP+6GUUHd1Z7ELCq6gRPHH6Pb qCB0b9R2drmcr8bFR9aZeCScSsMT2MInZComvGvfgDn6CtxLjkf8yVsoMXZC35ETEeZtreZYACHu Hfoc+9hTsTTEUc39V1O65ubS3LagqW3J5VCvM6JnV/DryXQUKZ6JxXgLfiOHwUNBd+XpvB4u7byk 5Sy7g5O79yI5oxi8TgEIGT8GAYpt9vXA8dJKUXbnJHbvTUZGMQ+dAkIwfkwAavEJH+C3n87hfnX9 QYdh7oGhIX5QOOnipcnXJhLmZ+FMfAJOpT0BbH0QMnUC3lU43qO5fUarlF1uBkbuUmcQRn63vqvq 4ifUg9OZ5pzhU9WlLTR/1kyaOXMmzZwRRt4WTLLoFUrTxX7xZ+5GOl9KVJQSS30smGTuEkijxw4n 3/ZG5BC8kW7w66evekX49N8UE2BO7J7L6ZrEqGxtEGHOTzTe2ZCsPIIpIjyI3Kw4ZD88TmJpVTWR V+hvKs+a25toqB2bLNyCaGzkCPK145BFQCxdEJs6JSE9PTmfPE145BAQShOnjKXBLubEcRhBWzOk MIpSKLaPBTHNXShw9Fga7tuejByCaaMauMKH+ynCkUWcwd/TY7ExMtU/4UPaH+FILI4GK7Sq4VX8 TS27SvRGeIsoJbYPWRp1pLfDIunDQS5kxu5IY+I1GTyUhLdgmpNL4GgaO9yX2hs5UPDGG6SsekJ6 +u8YCjBnt0ELu0TNbQua2pZiRWjSmbKD4WTJkBu4E9c92O/QN3flxg8V02mq++XrUlMlImoMr9pU S87Tcj9z4jn4UUjkOAr2tCZu+2DafEuhA2t69i0aQxf5ygpYcn45+ZnzyMEvhCLHBZOnNZfaB2+m WnzlB+lDCwPxzKXeh+2xlC7rAGKdYFs7LliSUce3KSzyQxrkYkbsjmMoPkvSPpvbZ8jq6GV+q+PX PAu7KlIqTl6UbmmysCu4TWveNiSzd76gy7UDMlHNg10UZm9BQzZpGnTEKVdSVtJqCu1mTIY8rsrk pZLOzutC3B7RdE56TEHp5c+oj6k9TThSpCTWq/aoA69ZBj6diepMnO4LKEXGJnMt9TM2p9D450SC 27Q6gEftQnZQtmxMKNRPoKMAACAASURBVEmhhe4csp96gipJQLfXvE2GZu/QF3K4tCvMniyGbFKw siu2WZ5Bm9+3I2NDDnHVTl5qKGPz+2RnbEgcrm5OXmquxZK3kRONP5QnteRaSCdnOBHHPYYu1TP5 LMa3ht42NKN3vrhca/aeqIYe7Aoje4shtEnaiKkyi5JWh1I3Y0Picdvi5KU5baGhtqWgrRp1poZS V3iRoW8sXSkpo7Iy6aecTy01djStHSnI/FKcjeRVm7eQsjcNJhPLobRFpmPlF2mxJ4c6zDytMml+ KcI2KlHd4qsgsjCbNg02IcuhW+r6r/KLi8mT04Fmnhb/5BAQv7xcrnNlZfQoKZo8zbrRlJ/zSd1v MoXUX4mz9dnW0LVYbzJyGk+HZCbpC0/SDCcOucdcoipqTp/xStDVZqKOX+u881J6Cf+9zkD/qXPQ W7qczOo0GpGBLFw4fhrPFZedFdajRI+2Y3r4FpSGbEPC/O7Ky/jVqTiZ/BAuoePwjqkkkonPdET6 F+L00fPgK6Sj205CSUkpDGw7wlF6aCKrQ1d0NuKjsKAMIjDhGjwLMXPD5I/LTL3RuwcPz/PzUIFS XPrvdTD6T8UcOVyMjgwE68JxnK6DW4HLq6fgi+cTsXx0O7WHLVZcXo0pXzzHxOWj0a51NEVLVQlw /fDPyPSYhqWh9lJ9sEDQ6iT8Z+dUdFV4iiZLqPTSf3Gd0R9T5/SGRPVY6DQ6EoGsCzh++jlEEOHR 9ukI31KKkG0JmN9d4ZmkLBFd/25GW2iwbdWVtyGdKUN6ehYsvPzhbmoMY2Ppx4jbwOO7uoTbnKNx vOTFMgtcjO171iC8s1SfePawtzFAZUV57XKBPKTeVZ+AGQIXb8eeNeGQ47OHjUElKsrFiy1McI2M 5DpXdQ6fRm1F9cQfsC60vdq+rX4er/kVwXUc/jkTHtOWItReqoMWQVid9B/snNoVrGb0Ga1NrHWG JBJBRExwuMovo4h3Q9XkZuGBhskLwyoUcTczkPzNKDgrnXoLoPoe7uYy4ezaTd5ZMqzRxdkKRXf/ wGMNabZ2BdTPn4cB4yPRNXUdZqzYjRNJiVg3ewWOcoIxYbgDGEwXhMWux8JB5nVRhdkHsP+3angE BMAMBJGIwORwlU3kS+AiSwq38F9LMGWrMWJ2LoM3r/42NBT+C0umbIVxzE4s8+bp6KnApUhPfwBL 9w7I3jAZgR5OcOzWG2Fr02Du2RVWarSbRCIQkwNl1TOAAWqQm/UAIjBgFRqHmxnJ+GaUM1TVrA66 Ljua0RYabFvSsjaoM9W3kZZRBfOCo4h8xw1OnVzhH/Ix9t0s12VSzZatMbzkiTNg0WMwxgzzgrng MdKSD2DD3Ah8daMXomYNUfuemTyu3gWGBXoMHoNhXuYQPE5D8oENmBvxFW70isKsIaov4ZXj/OpP EC+MwLefDYK8l3zDOZamI/2BJdw7ZGPD5EB4ODmiW+8wrE0zh2dXKzCa0We0NlE13fsrEMnUD/7u VfgtYTcypUsiguzD2HumEMSvQKWmiQbXHk4O0uUIFTFF5aUoFfJgYqI43BjA1NQYKC9BiaY0VdLR Ba+F/yTMCzbC+TVTETo8HB/vewqfGdEY1qn+KoDoaTKWjP4IZ2xn4av5PcGCKfz83VH1WwJ2y+Hi 8N4zKCQ+KipFEOUfxLwZv6DH19sw1115AllbflE+Ds6bgV96fI1tc92VJ0G6AEgmg7AAfxXUoPRE DGYe4eGDmK+xalpP5G4dh+B/nECBLJzCt6mfP9yrxC9DZ0pX4wTIPrwXZwoJ/IpKiNWEa+8EDWqm kJLuOpvVFhpoW+KSatMZUdFN3MypQd6fxfCa/iXWrZqGnnk7MCloEhJy21Dja2y1auGlKRlhTiJW Rsdi3f4rELr4oquZppD66/UJCJGTuBLRseuw/4oQLr5doYpPmLULX2zLQ79FyzHUqn4Kb+oVYcFf KKgpxYmYmTjC+wAxX6/CtJ652DouGP84UYBm9RmtDFPNwvorkIjljqhVUTgyOhp9fY5ggBsbWZfv w8qlC5hPuGA/uoB9SWkolvZ5TNu3MSasFywaEI3BYYMtXvQXKXeUIqEIMGC0naVDUS7iJ7+PhRlB 2HT1/zChJwf3jn6GydNGIIz7G84tFk9QJH/8zAREjZqDgxiDncfWYrCl+DoL7lGrEHVkNKL7+uDI ADewsy7jvpULujCfgMv8A3HTF+JqUBxSIjqBiSoVqgL8ETcdC68GIS4lAuL5kmoIlQit6BWvMolQ wRqMXUd/QFhtZzUK/c3z4bloMxI/H4rptsrzc5Z7FFZFHcHo6L7wOTIAbuwsXL5vBZcuTDzhKk58 W7FYL5h1i7cFgTadARgmQ7BszwGgTyjedZBMskcEWuGp+xxsjM/E2GVuyo95X7CMbTU60zkKibei gOJUbIgYimkjOXC8sR79VRcQ2moBX1Bu0aML+Omopr6fCeeoREjwbUDE0GkYyXHEjfX9patXAlzf HocUk5E4NL6zXt8U60L8tENUAdbgXTj6QxgkXWV/mOd7YtHmRHy+p+2Nn7JxULGYWt3VRTm4+5wH 1y5vKSiIARhqnj6oT4wB66DvkHJpAHb/lIJsUXuELxsLuz0D8H6qA+yeX8Ta7fsh+8HG8jTE+yG9 YKE8DiknbWgDG+MqPC0QL1PLVmdEeF5QCFi2g01DcZVTal1f0Wkc/N9K/O2H9ZjiLfnp4Bq6Cl+d +xV/23cI6R/1hDdLhGfnvsCH4WuQ6bEUx/YtxwCFvYAM6yB8l3IJA3b/hJRsEdqHL8NYuz0Y8H4q 7MoOYmvyU+SaTIJ7oqSoNWUF4Atj4NHxMD45tRZlW5PxNNcEk+QBUMAXIsajIw5/kozTi3RkIGJa wtqSCSbXF351M1sG7H190FFwDFk5IkBl8gKGNYK+S8GlAbvxU0o2RO3DsWysHfYMeB+pDg1tr25d tWhS7i3cFgS39jasM8mnscjNCe+OdFISk/GWP3ycgW3ZORBAR3RGScJW9Jh7Y/a84fh2xFmcyRSg f69mdcWtWICXk7XoyUUcakTfb+49G/OGf4sRZ88gU9Aftfiqr+Lgz5lwCN2Av0nfe3w5Ura9VJmW 1rBkMsH19ZMvAjDs4evTEYJjWcjh+re58bMZLaYKF5YPQPD12bj52yJ0YQJUUQ4+jGFmWv+xhtpq FuUjad0G3PJciAUr/y5ZFRGkY2VKLjoP6oMOPgE48vtHaqNqvMjuCS834J9Xr6ECQZLpiyAT19LK 4Diop9r3HzSm1ao3xO9fiCAQCBWkMACTxQBEIoivll9ahZDQb1EctgPnvo+Ai9KCgQj5Seuw4ZYn Fi5Yib/XTtoESF+ZgtzOg/C220AYLTfAo7rkCTlJ/4O9he9hyrhg+Lezg2jmcigEAOUk4X/2FuK9 KeMQ7G+tQ++/mMPLqwuw/w7u8IGO0jkr/+FDPDOwga3qxKX28UcS1m24Bc+FC7BSAgeC9JVIye2M QX3s2s4KnYJ21HO2cFtg2A6Askqo6Iy1ASqSYvDBqmLMPLwZH8q4V97Hg0eAXYcOCj9y6kn7Blzg I2mBP2b8OQPnj85FJ+kPqcriElTCCMZGjf7V99qzYvX6qH7fz0/CAv8Z+HPGeRyd20naRitRXFIJ GBlDhk94Nxln79tg4Nq32+a7ai+zds29IOkq74CPjtKf93w8fPgMBja2sOW2wfFT3WYndduS5OGE 9GjbB2Ru0odi/1tAwpo8OjarO3HajaNE6RblurCatkpTGZ2a7kjGXvPpVF4NUVU+nV05kNpZDKR1 GbL9v3WpqHFItmXylOy8COj+90FkYeFHHx/Ppsqqp/SfNYPJ1tCHYq+01GZNNaI04lLDPFUSED6g uGFWxOs+meJvFpGQqij/7OcU2I5H7ov/S/yaa/SpL4/YjsNpxabv6fvv5Z+tv6TVbv8tOzWdHI29 aP6pPKqpjb+SBrazoIHrMqTbiRXz5FPSjA5kqHartCQcP2kGdTDU0a3S6Wuor6kZ9V54nB5UCqny 3hGa62NK1sFbJdsqBX/SqbgtdPD3vySFKTtF0x2NyWv+KZKo3llaObAdWQxcR/VUryaVVnjx2qCd F+1tQfDnKYrbcpB+/0t1I6m6tqWoL2J3fZ0R5vxIwyx51H1yAt0uFZKgKI3ip7iTseUQ2vRnY9q0 ah71/U1qR/Wjv6Qr6nkp8xVS/u5QsmF3pjE/plOJUECF13fSxB6GZBH4z1a3QyUDo5t8xaat8ml3 qA2xO4+hH9NLSCgopOs7J1IPQwsK/Oeduj6tMD6ETAzfp7inshLpznfrs62h9DV9ydSsNy08/oAq hZV078hc8jG1puCtYvMk2vuM1qSpjl/z7LyUX6P1HzgSl8EmHo9NTFNXitieQfXMamicvBAJ836l +b5WxGLxyJjHIq5DP4pObMjGiyI69R0GVd2h+EnuZMZgEpvNIoahM4VuvEZlilFbwa0OfENiCB8e o0X97Wv5GpnwiMWyIM/xcXSjnKjm8lLyZNc3xiTOg9N/PWWLxyJhHv0635esWCziGfOIxXWgftGJ dTYSlPOuPxAp3yfS5ckLURXd3T+b/GzYxOTyiMNkk43/PEp8IB0wyxMo1IhNXitSpcUSUt6v88nX ikUsnjHxWFxy6BdNiTL7G4qFb7OTFyJtbaE8IZSM2F60IlV1Yq+hbSlyUTN5EdvaePBzNPW1ZROD zSUuy4C4Dv1p8XGZ/R2lBJrlaWo7alYmTY6knlc9vsI8Or6oH7XnMIjN4xLLgEsOAxfTsYctM7Fr sthqIugmX4mgwrzjtKhfe+KIxxwuiwy4DjRw8TGS46uh9JW+xHWcRcnK1ibVlPTVX9IJtlV3af9s P7JhM4nL4xCTbUP+8xJJ1lVq6zNePTV5jur4GYhvq65WNe4ETD6e3L6OP4p46Ojuic7mjXxkpJiZ qBTZaWnIrbGBi6cr3mqRl9aEKMq6jpsPBWjX3Ruu7dTsplGU4RW4G8dTVZAqPLtzA5lPhLDo0hPu DsZNfKQhQml2GtJya2Dj4gnXloGrKqRWf/PKrjXZ+gH4j3Dr+j2UmjjD08MexvVDKF0RlWYjLS0X NTYu8HR9Sye2q7Y8q1ZoC/wnuH3jDp4b2KF7Lxe0ZPNreT5KKvFKPPwnGbhx5y8w7Nzg5WKtUzv5 dJ8vH08ybuDOXwzYuXnBxbr1+/bGKo0useU/uoXr90ph4uwJD3vVnrIV+oxGQFTH7wUmL43IUR+k loA68G8Kmje57E2tYz2rhonp+TTM50Xv6vm+KEHN8fVsNbNpzB11/NrKHpzGlE8fRk9AT0BPQE9A T0BP4A0goHHl5Q0ou76IegJ6AnoCegJ6AnoCbYCA6hsuGrdKqwZsA2XTWRHVLXnprLAtLNibXPam otSzapiYnk/DfF70rp7vixLUHF/PVjObxtwR81P90z82UiWi9+sJ6AnoCegJ6AnoCeg0AY0rL02R WpiViM+/vgzX6C8xqjgOC7ZdQ1W9PUzSFNkemLA2Gu+ZABX3khEffxK3Sozh1HckJoZ5w1rLpqWy Oyexe28yMop56BQQgvFjAmCnUArh44vYuyMRv+eLYNtrBCZOeA+ObeCl9NLME0g4cBa3ntbAtJM/ Rkz4EH1kBRM9w5VfTyK9SPHoAwbe8huJYR7SY7lLM3Ei4QDO3nqKGtNO/9/eucdFVad//MPchwEZ EQLB0CABQUAwwd22NC9h2A8YVgvxjomWl5eZrmbKVv7UtvppueYqa/bLvJTlr/JSrKzrLcsyQZAE S1MuKlIIcpEZmTPP7zXMMMwMw5wZGAas88e85vs9z3Oe7/d5z/c255zvcxCbNA1PD/c1vEoATAVO 79qOfd9dh8ZnCJKmT8OjJmAYVJzehe37vsN1jQ+GJE3HtEcDjHZDsMntaTGd07XKytg0cxkfv7ob wlkrkBxgrWGx+cYmNy6056Tt7Qu262tQk38IBysGYkJ8qNFOLRVKte/UOpCHCqYPwsamYXpCiP7t 3T2Hi6NqYjsv8xLb42eux+UtEtDUIP/QQVQMnID40NYtqjaPCxaN/pYPMrj88avYLZyFFckBJgEj VaXa97wdQF4Fgz5hY5E2PQEh+ilFS6TjbdwJPFt3UremLO2pbpW2TalO/4UGiQbQc0eUpPp2Cy2c O4fmzJlDczJSKFrOJ/kQBc3W5rWf+RvpZB1RzYlMGi7nk0fwKJo4KZGG9nUl/4SNlG9lj37tyZU0 zENC/sOSacrkBIroI6a+Ce/QD/pQFUzphzQ1UEqegxMoLTWewjxF5JeY1e1BoKzzZKjyi4UU4SYh /zgFTU+fRGOCPUjkn0Rbi/SO1e+l1N487XLQ6COkh1+/1Bygian8ghZGuJHEP44U09Np0phg8hD5 U9LWImq2wJTSh1MDSeo5mBLSUik+zJNEfomUdbElxgRDpR9OpUCpJw1OSKPU+DDyFPlRYlZLACg2 eds20XLEuu8tWrZ+28CqxRRTSf9ZHkcewkhamWsey6RFSfvN5hub3NhW59KOZGVvX7BHnynfQ2kB AhKZBDZsogubniBfoZzC4ifRlKSh5CuSU1zmqebAiZ0jozvbkXw6Wx97eJmXZZmfuZbz8z2Jb/ve M1S+J40CBCIas7mCdCEW7RgX2jfcpZLuY8tQ5X+WU5yHsE2wzaYLm+gJXyHJw+Jp0pQkGuorInlc Jp2q06HoTBt3NExL/DoWpM6sZsaLFxNRe0Hq1Bdo3R+k1Ovh1XRGD6rp6v9Sip+cxm5qJ1AdU0Kb xrhR7ye2GIKtNZxeRhGifjTnsHbF00hHFwSReNAiOqaP9Ft35mUa7u5H0z6tMamWszOWwBvqoL5A a+Mk5J28nUpa1hK1J2hxuIj8Zh2iRiJqyltFUdKhlPl9LdXX1+s/DaRsnpPVdGFtHEm8k2l7qwE6 sTicRH6z6FAjUePRBRQkHkSLWsHQy8PdyW/ap9RMpvEoLQgS06BFx0iHro7OvDyc3P2mUTM6NrnB mbYJq763Vbd+xAZWWgONV7JprWIgyaQSErMtXth8Y5Nbr7FdUsexsrcv2KHfVETvjPMlmVREYuPF i/IIzRsgotDnT+gXK01U/MYjJPNQ0I4quzC0q+w4Pu0WYaPADl7mFtvjZ67XDfmew7d955uK3qFx vjKSisStixcbx4X2rXa9pFvYNl6h7LUKGiiTkkRsvnhR0pF5A0gU+jydaJmDi9+gR2QepGjusJ1o 412A0xK/7nnmpe5bfH2OhxGznsND+ktUgv4TMWWUAKcOHkaV8d0Rw9WnXhi17F18sC4VA/R3ACR+ fvByacSdBgLu5uGLnHIEKybjYf1LudxiZmNKbDUO7z8JpcFOT0vwEZIwF8vnp8BwZ8M9Gg8NkqDq +jXcAVB//jyuyKMQG+4OmUym/7hCrL9dxg9JwNzl85HSagDRDw2CpOo6rt25i7wvclAerMDkVjCY PSUW1Yf346RSi+4L5JQHQzH5YejQuSFm9hTEVh/G/pNKVrnziLKzguYG3p2dii11ydi2cyFCrd0t wr3kux2U7e0LNuvfwZm16VhdNR0rJ3qbBk2kWtTWucDn/gD9e1ME6PfgALgqq3Gr3mKHtsOhHqZq My/zelvhZ67K5dsSuHMGa9NXo2r6Skz0Np66bBgX2lr7jR/R4Ma7s5G6pQ7J23ZiYZuBkFBbWwcX n/sRoH8nnKDfgxjgqkT1rXpoOtzGnYfVuAU4r1Tt67mJD5HY9GEU7QPFTWVXcNXSWMeTY9CYpzA+ ygPqigLkfPQW5qe9hvwh8zB3rAS4exmXyvgIDBnY+pwHrw+CAj1Rc+lHVFiy6TyP2y+JH4yUzA1Y PNrDoMOUfIQ9x+9icFwceuEuLhQUQeVxC/unPIywB/ojJDYZS3YXQvv+bICP4JRMbFg8GgYLTAk+ 2nMcdwfHIa7XXVy+VAZ+YAgGGp4N4qFPUCA8ay7hxwoN7l6+hDJ+IEJaFcDrE4RAzxpc+rECSha5 09CysgLA84QiqxBFOa9jQqDJGysNfI0T94zvxpVmS9vbF2zUr/73i0jfKsPy915CtMTs6X/JSEyd 8iDy1mdg1fuHkL1vPZ5dtR+ihGlI9O+eYYYNU4flNvIyt2+Vn7kylzcjUI1/v5iOrbLleO+laJg0 P1vGBTNrv/0sD56KLBQW5eD1CYEWXlQpwcipU/Bg3npkrHofh7L3Yf2zq7BflIBpif7gdbCNO5Nr 94wq7sMQG67C8Z3vo1h/SURd8gl2HakGKe+g0epsyKB03ytYlLkee75nEDz0QfTSvi24oQ51jARu bsYTlgvc3WVAQy1qrdp0JnLrZWkqc/DixBdwxGcuXlsYCYGmBoWFpWi69hNuR83Gf69fg2cir2H7 jHjM2FmGNm5pKpHz4kS8cMQHc19biEheA+rqGEjc3EwasIu7O2RoQG2tGg11dWAkbjBF5w4duhrU WZXXtq2DdRcdJm3DqtmyGH4P+Ov//bMVpblnfbfmmb19wRZ9zfW9WJDxGQb9bRvmh5v+6dDVRY7Y GQuQ4HoS62YpkJi6BLsrY5CxaDz6s1z9suZLT5TZwsu83uz8zM/g8q0ENLi+dwEyPhuEv22bD4vN r1UZlscFI4XfSVLs9wD89VdVLLksj52BBQmuOLluFhSJqViyuxIxGYswvj//nphPDf/FLTnXZccE 4Zi3Zh4+nbgIf4z5FCPDhLhy5md4BgeBf1MM4Y1T2J1dgNv6mZnv8wc8lTIE8uYK8RE4bx9+mAfc znsLaU88gz+LApCfKYQQGmg0ptO5htEALjzTS9xd5ljnDCuLd2LehOewF0/hvQNvYExvrT03jH3p A3yE4VD8yV/3pHjSKHhWhuO5jTtQPOklhLVMDspi7Jw3Ac/tBZ567wDeaDZQDaEQzVxMyGgYaOAC Ho8HkU4Bpug00KETsMi7Z/1rmZW9/O9N39m85Ins6wus+uofkTV7Mc7GZ+FEWn/woWpTBU3ZDswc txhF8Ztw9ptpiBRdxv6XZ+KZpBSIjx/DssjuGWraVNQBB1h5mZdhAz/zU36vec2NU/hwv+nYnzL4 NGYvPov4rBNI066E2zY/Ay7HjAsGc7/dhKYMO2aOw+KieGw6+w2mRYpwef/LmPlMElLEx3Esw74x pDtAdWhEuVtTiktVEoQE3We07coFPLMrye07xEOf+P/BiW9H4v0PT6BE0xepL02C7wcjMS7PH75V p/HGu3tQpp9tBRFSjEseArnZPOkR/SwWJL6JpKNHULw6Bl4yFSpvaW+mtCw3Nai6VQ309oaX2bnt 1607JBr8cmw1nk5dh+LBK3Bg90qMvK+lwq544E9/xgPG1eLdh9iYQGBbCUrVaF68aH45htVPp2Jd 8WCsOLAbK0fep1+wSeHlJYOq8lbzbSYDmapbqEZveHvxIPXygkxVCVN0VdCh84KMRd5SU+Mqdl3a Giv7S723fLfRP6mXfX2BRV9etAtbcypR5jYD4ft0dWiqvwUlsxyD7/8Ef8k5jFnf7MW/Gh/HPzak I9pTqxMCxZrXcOzzx7H74/N4ITK69XaujW70WDUWXuZjjfoHdn5LDf9AeqzXTqmY5uZpfGwy9osQ cG4rcirL4DYjHLrm14T6W0owywfj/k/+gpzDSxHGd+y44BRnu7OQmsPY+69GPP6PDUjXdViEKNbg tWOf4/HdH+P8vKH2jSHd4EsHFi8qnFo5EgnnnkXh8aUI4gN0pwFKyNDLveUSAIsnmuvIXv8WfohY jOdf+S/dJKs+j1dOlGHA6OHoFxOHT797wdSIMhvPx2bgp4yT2D+/v35ibsTt2kbAVQZXUSSiwoC3 z+biDuJ1yxd1MXIL6hEwOhKezp1hTevOkmv4dg2SFW/idsp2HNuchmDjO193srH8yTW4PecTvPO0 j8Hvn6/eAHz7oZ8WecO3WJOswJu3U7D92GakmRgQIlIHBrl3gPjm1YsaxbkFqA8YjUhPHoSRUQjD 2zjbqgB1cS4K6gMwOtIT4r7W5c5Ea5UVC2dL4nvJd0v1t3hMaGdfYNH36huKOSuBG0xLaYTS7L9j V/WjSJ+cgNg+LoD2gTWNGmqDDgAXPgQ87VU/44MtNu7hbxZe5mMNz2ckO797GIcjqy4Y8oLZ2K9B xdEmrHS5AUMrolJk/30Xqh9Nx+SEWGibn6PHBUf61DNtucAFGqhNOyz4ug4Lxs423i0+WtrVZGlb UqseQze2PUkebsMp8+tbxDRdowNzQ0nkPZn26bcoG3Tb2ypN9fTl7ACSRS2kL681Eamu09FXHiNv +WO0vqhlv7DBii7BXKf3FV4kHPAU/fN8LTHqajr33nQaJJXTqLe18UjU9PPmeJLLh9GSgyXUqKqk r9aNIR9pDGV+by3Oh1k5XZC1yrMpl/46VELCgERatWkzbd7c+tn6WQHVMaX0z/G9SRI6k3ZeqCNG XUMFO9IpXNabxm76idTURLl/HUoSYQAlrtpkcv7mrZ9RQR2R+ufNFC+X07AlB6mkUUWVX62jMT5S isn8XhcHRv0zbY6Xk3zYEjpY0kiqyq9o3RgfksZkUjM6NrkVZlZ9t3KeRREbK7OTmreYS8zivKh/ oi+zttDe737VabP5xiY3K7MzWcexYu8L6p++pKwte+m7X7WRMtj1Tf1SUnZGP5IabZVmrmbReE8J hc7cQYU1jK5PvzqKvCXhtOxrK8GbTA1bzTmOj9VibBCy8zLla26yLT9zje7I9xy+LN4rsymjn7R1 q7Sd4wKL9S4RdyvbpjxaFSUxjfPCXKWs8Z7N88qOwhpiSEXXj75Ko7wlFL7sa1LaPSZ0CTaDUUv8 OhbnpSGXNjwZQGKekCQSIfHdQyjt3SJSGYrSJ9pdvBAx1z6nhUM9SSCQkEwiILH/I7RoXzsxXvTm mGsHaekjfUmkLVcsIBexPz227ACVt6x3VBdpx4xw6sXjk1AoIJ40kBQbc6nevF5OzlsC31KFpjMr KEJoHHyuNS0aN+0pWQAAAtBJREFUsYFKGCL11f+jRX/0ISFPSGK93yOWHaRrWr+bztCKCKFR8LrW 8yEaQRu0BkhFF3fMoPBePOILhSTgSSlQsZFyjcCoLu6gGeG9iMcXklDAI2mggjYaKbDJW/wx/7bm u7kuW94WVsY2LC5eGnaSwlVIUavyDKpsvrHJDYY6mXAkK2LpCw07FeQqjKJVefqFPYu+qWuWJl+G yg8spRF+YuIJXclNIiCBPIKmZuVTg+nJHc45lE+Ha6E/kYVXG74m5VniZ6LQLZkexdcaAbPFi73j gjXTXSXrVraWFi/a8JzlB2jpCL/medzVTUICgZwipmZRfkuHZWnjXcXKkl1L/Np9qzT7ixmVuHnh HH6skeD+8AgM8LDxlpHx9SVNHUoKClDW5IXgiBDc1xrp2VjLLK3EzaJ8XPyVB9+wKAT3Md/5wKDm yjkUlqvhHRqNEG9zuZk5J2Qd81IuLe98XKxygW/oEAR3wC+m5grOFZZD7R2K6BBvo9D/eghMDa6c K0S52huh0SFoUwSb3AJLx/huwbCjD7H5xiZ3QH0cz8revmCvvgWnVb/gYn4xbjJyBEWGw1/muJuK judjof52HXIAL7vK61rlnse3a/11pvWey1aFXy7mo/gmA3lQJML9ZfpHE1ro9Iw2bolfJxYvLc5x 32wELIFnO+e3Iv89+27vb8ixsk6M42OdT2elHN/OEmz/fI5t+2xskVji57i/RbbUgNPhCHAEOAIc AY4AR4Aj0EkC7V556aRd7nSOAEeAI8AR4AhwBDgCDiFg/iiLxa3S5koOKZkzwhHgCHAEOAIcAY4A R8ABBLjbRg6AyJngCHAEOAIcAY4AR8B5BLjFi/NYcyVxBDgCHAGOAEeAI+AAAtzixQEQORMcAY4A R4AjwBHgCDiPALd4cR5rriSOAEeAI8AR4AhwBBxAgFu8OAAiZ4IjwBHgCHAEOAIcAecR+H8lmY6Y oDQX+wAAAABJRU5ErkJggg== --_004_154281305089624684kuleuvenbe_--