Return-Path: X-Spam-DCC: paranoid 1233; Body=2 Fuz1=2 Fuz2=2 X-Spam-Checker-Version: SpamAssassin 3.1.3 (2006-06-01) on lipkowski.org X-Spam-Level: X-Spam-Status: No, score=-2.0 required=5.0 tests=BAYES_00,DNS_FROM_AHBL_RHSBL, HTML_30_40,HTML_MESSAGE autolearn=no version=3.1.3 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id t5KL4XZI010111 for ; Sat, 20 Jun 2015 23:04:33 +0200 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1Z6Psn-0004uD-Pl for rs_out_1@blacksheep.org; Sat, 20 Jun 2015 22:00:57 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1Z6Psm-0004u4-VZ for rsgb_lf_group@blacksheep.org; Sat, 20 Jun 2015 22:00:56 +0100 Received: from omr-m06.mx.aol.com ([64.12.143.80]) by relay1.thorcom.net with esmtps (TLSv1:DHE-RSA-AES256-SHA:256) (Exim 4.85) (envelope-from ) id 1Z6Psk-0001q2-D1 for rsgb_lf_group@blacksheep.org; Sat, 20 Jun 2015 22:00:55 +0100 Received: from mtaout-aaf02.mx.aol.com (mtaout-aaf02.mx.aol.com [172.26.127.98]) by omr-m06.mx.aol.com (Outbound Mail Relay) with ESMTP id 1AC8A700000BF for ; Sat, 20 Jun 2015 17:00:50 -0400 (EDT) Received: from White (ipb21bee4a.dynamic.kabel-deutschland.de [178.27.238.74]) by mtaout-aaf02.mx.aol.com (MUA/Third Party Client Interface) with ESMTPA id D61A03800008C for ; Sat, 20 Jun 2015 17:00:46 -0400 (EDT) Message-ID: <0B6D9589B3A8454187AD98EB81C0CA9D@White> From: "Markus Vester" To: References: <394FEA4DA5AA4542828CB5F63AEE2C88@F6CNIToshiba> <474231660.434744.1432735092592.JavaMail.yahoo@mail.yahoo.com> <556640CA.1080101@posteo.de> <5566EDC7.2010508@tele2.se> <556F2EBE.2080906@posteo.de> <3E7121C9C1EB4497AAE525F3AA83484C@gnat> <556F3D82.4060004@posteo.de> <7D2076B0D0D645B8B6446CD4CB3F3E3D@gnat> <55842FAA.4060209@posteo.de> <5585B936.4050000@posteo.de> Date: Sat, 20 Jun 2015 23:01:00 +0200 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal Importance: Normal X-Mailer: Microsoft Windows Live Mail 12.0.1606 X-MimeOLE: Produced By Microsoft MimeOLE V12.0.1606 x-aol-global-disposition: G X-AOL-VSS-INFO: 5700.7163/104552 X-AOL-VSS-CODE: clean DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=mx.aol.com; s=20140625; t=1434834050; bh=eTBZuYpgqq376586QrrsOQWWUWfQ2pETfVPIGR7Z8fk=; h=From:To:Subject:Message-ID:Date:MIME-Version:Content-Type; b=b6zscBjDyJKkGAAtesCooh9RE1o93ZZEnFKv87QhYKJ2E8cqvOjw1fvzwUFSldLen SM2IW7lukb9twkq4z9obGh/4sL4RPxZlNeHMCom5cfd9VeHHnioYpwJ0k5vGTx4oWj 94fZL0D6r1y3fmcQFFi/gOEqDavR+HLBkPX6SkWI= x-aol-sid: 3039ac1a7f625585d47e1e6b X-AOL-IP: 178.27.238.74 X-Scan-Signature: 9e3996b06e6d670e8814874478dd0b45 Subject: Re: LF: VLF vorbis stream, Question Content-Type: multipart/mixed; boundary="----=_NextPart_000_0004_01D0ABAC.F9FDAA60" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.56 on 10.1.3.10 Status: RO X-Status: X-Keywords: X-UID: 3504 Dies ist eine mehrteilige Nachricht im MIME-Format. ------=_NextPart_000_0004_01D0ABAC.F9FDAA60 Content-Type: multipart/alternative; boundary="----=_NextPart_001_0005_01D0ABAC.F9FDAA60" ------=_NextPart_001_0005_01D0ABAC.F9FDAA60 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Hi Stefan, I don't really know the answer but here's a guess: If I remember right, = your MF receiver gets the signal from the antenna through a mechanical = filter. The passband is some 8 or 10 kHz wide, occupying only a part of = the whole 24 kHz Nyquist range. Outside the passband there will still be = some noise from the RX (and possibly also weak NDB signals) but at much = lower level. I suspect that if you turn up the volume, a few of these = weak channels may rise above a threshold where the Vorbis encoder = decides to retain the information. If this is correct, the increased = bitrate would mainly be from out-of-band information, and a lower level = would not compromise the in-band performance. =20 One way to check the hypothesis is to view the full band in a relatively = fast spectrogram, with low contrast to show a large dynamic range. = Attached is a spectrogram from the lovely song "Dreams" by the = Cranberries, replayed from a 128 kbit/s mp3 file. The output from = Mediaplayer was routed to Spectrogram software through the analog mixer. = You can see many black patches, which correspond to temporary low levels = in some audio channels. These have obviously been cut out by the encoder = to reduce bitrate. It's interesting to note that although the nominal = samplerate of this mp3 is 44.1 kHz, most of the high frequency content = above 16 kHz has also been dropped, except for occasional louder = segments. =20 Best 73, Markus (DF6NM) From: DK7FC=20 Sent: Saturday, June 20, 2015 9:04 PM To: rsgb_lf_group@blacksheep.org=20 Subject: LF: VLF vorbis stream, Question Hi all,=20 There are vorbis streams available on VLF by Paul Nicholson and = Wolf/DL4YHF and a few more known people from the scene. As far as i know = these are in vorbis format, like my MF/VLF stream. What i found yesterday, the data rate depends slightly on the volume = level.=20 Now i'm asking myselfe if there is a 'quality' loss when using a low mic = volume level ?? To become more precise: The usual method is to check where the noise = level of the soundcard can be found, e.g. in Speclab it shows -120 dB = for example. Then, if one connects the RX, it may rise to -118 dB (in = what ever FFT bin width and Mic gain level). Then, connecting the = antenna to the RX may let the (daytime!) noise level rise to -100 dB. = Then one knows that the daytime band noise level is 18 dB above the = noise level of soundcard+RX and everything is fine and the dynamic range = is somewhere near 100 dB or maybe just 90 dB but at least it is high = enough... Can this method or thinking be applied when SpecLab is getting its data = via a vorbis stream??? I can detect the noise level without an antenna connected and prove that = it is about 20 dB lower as when the antenna is connected. So i assumed = that everything is all right. But when playing with the mic gain level, = i can see that the data rate rises about 10% when adding another 20 dB. = So is there a loss of data, resulting in a lower SNR of incoming signals = when using a low mic level, although it is still well enough above the = soundcard+RX noise?? (Of course i want to keep the mic level as low as = possible without a quality loss, to have a dynamic range as high as = possible) I just noticed that effect last night and now i'm aksing if there are = unwanted losses. 73, Stefan ------=_NextPart_001_0005_01D0ABAC.F9FDAA60 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi Stefan,
 
I don't really know the answer but = here's a guess:=20 If I remember = right, your MF receiver=20 gets the signal from the antenna through a mechanical filter. The=20 passband is some 8 or 10 kHz wide, occupying only a part of the = whole 24=20 kHz Nyquist range. Outside the passband there will still be some = noise from=20 the RX (and possibly also weak NDB signals) but at much lower level. I = suspect=20 that if you turn up the volume, a few of these weak channels may = rise above=20 a threshold where the Vorbis encoder decides to retain the = information. If=20 this is correct, the increased bitrate would mainly be from = out-of-band=20 information, and a lower level would not compromise the in-band=20 performance.  
 
One way to check the hypothesis = is to=20 view the full band in a relatively fast spectrogram, with low contrast = to show a=20 large dynamic range. Attached is a=20 spectrogram from the lovely song "Dreams" by the = Cranberries,=20 replayed from a 128 kbit/s mp3 file. The output from Mediaplayer = was routed=20 to Spectrogram software through the analog mixer. You can = see=20 many black patches, which correspond to temporary low levels in = some audio=20 channels. These have obviously been cut out by the encoder to = reduce=20 bitrate. It's interesting to note that although the nominal = samplerate=20 of this mp3 is 44.1 kHz, most of the high frequency content above 16 kHz = has=20 also been dropped, except for occasional louder=20 segments.  
 
Best 73,
Markus (DF6NM)
 

From: DK7FC
Sent: Saturday, June 20, 2015 9:04 PM
Subject: LF: VLF vorbis stream, Question

Hi=20 all,

There are vorbis streams available on VLF by Paul Nicholson = and=20 Wolf/DL4YHF and a few more known people from the scene. As far as i know = these=20 are in vorbis format, like my MF/VLF stream.
What i found yesterday, = the data=20 rate depends slightly on the volume level.

Now i'm asking = myselfe if=20 there is a 'quality' loss when using a low mic volume level ??

To = become=20 more precise: The usual method is to check where the noise level of the=20 soundcard can be found, e.g. in Speclab it shows -120 dB for example. = Then, if=20 one connects the RX, it may rise to -118 dB (in what ever FFT bin width = and Mic=20 gain level). Then, connecting the antenna to the RX may let the = (daytime!) noise=20 level rise to -100 dB. Then one knows that the daytime band noise level = is 18 dB=20 above the noise level of soundcard+RX and everything is = fine and=20 the dynamic range is somewhere near 100 dB or maybe just 90 dB but at = least it=20 is high enough...
Can this method or thinking be applied when = SpecLab is=20 getting its data via a vorbis stream???
I can detect the noise = level=20 without an antenna connected and prove that it is about 20 dB lower as = when the=20 antenna is connected. So i assumed that everything is all right. But = when=20 playing with the mic gain level, i can see that the data rate rises = about 10%=20 when adding another 20 dB. So is there a loss of data, resulting in a = lower SNR=20 of incoming signals when using a low mic level, although it is still = well enough=20 above the soundcard+RX noise?? (Of course i want to keep the mic level = as low as=20 possible without a quality loss, to have a dynamic range as high as=20 possible)
I just noticed that effect last night and now i'm aksing if = there=20 are unwanted losses.

73, Stefan
------=_NextPart_001_0005_01D0ABAC.F9FDAA60-- ------=_NextPart_000_0004_01D0ABAC.F9FDAA60 Content-Type: image/jpeg; name="dreams_mp3_128kbs_short.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="dreams_mp3_128kbs_short.jpg" /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAA0JCgsKCA0LCgsODg0PEyAVExISEyccHhcgLikxMC4p LSwzOko+MzZGNywtQFdBRkxOUlNSMj5aYVpQYEpRUk//wAALCAEsAmABAREA/8QAGwAAAgMBAQEA AAAAAAAAAAAAAgMAAQQFBgf/xABJEAACAQMDAQQHBgQEBAQGAgMBAhEAAyEEEjFBBRMiUQZhcYGR ofAUIzKxwdFC0uHxBxUzUiRDYpNTc4OiFjRjcoKSVLIlRML/2gAIAQEAAD8A+YVKlSpUqVKlSpUq VKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpU p6aW4+gvawFe7tXUtMJyS4ciPV4D8qRUqVKlGbdwWlulGFtmKq8YJESAfMSPiKCpUqVv7P09q9ou 1Ll1NzWNKty2ZI2t31tZ9eGYe+s+u0ep7P1l3R62y1m/aba6NyD+o6z1pFSje3cRUZ0ZVuLuQkQG EkSPMSCPcaCmvpr9tC9yxcVRtlmQgDcNy/EAkeYzSqlSpTbGmv6jvPs9i5d7pDcubELbEHLGOAPO lVKlSpRi3cNproRjbVgrPGATMAnzMH4GgqVKlSpUqVKfodLc12v0+jslVuai6tpCxgAsQBPqzSKl SpUo7du5dYraRnYKWIUSYAJJ9gAJ91BUqVKlbO1Oz7nZ2v1OnO57djUXLC3tm0OUMGPXkGJxIrHU o0t3HV2RGZba7nIEhRIEnyEkD3igp+h0tzXa/T6OyVW5qLq2kLGACxAE+rNIqVKlSjuW7lpgt1GR ioYBhBggEH2EEH30FSpUqVKlSpUqVK+jdjeivZOnaxf1vaPZ93RNdt6jvWfDCyGS6u5kC7DedBE+ Ja7Gm/w37Je1bsajVrffTL3V1rSbGJPeNmGMN97aOQcWx0ai0nZHZ/on2Na7P1Ostrq9Vft6xnNt jK2O7uXVDKskAK5WQPxRzJrzPpH6F6pu2e0tY/a3ZNpbl+9fFt77d4FH3hG0KSSFYEgTgii7F9B9 Hc7S0drXdp6TUxqCt+1p7rHepsi7aCnbwwDkmQIGDNdq9/hf2Xbtm2vadxL17clprygw24MNoBEk IrgjMyWgRFLvegXY2o7OD6btK2g1Pe6jQggWywud2LSsWliqkgcTNzoeedqP8OtNY7WsaQ9t2JZr btafwubMorMDBAYu21VIzjJINNs+gN77Pp+zu0+0tJat6K7c1era2zStm4qhSCygTNl5njnPFPT/ AAvuHs8Lc1GmXV/ZWUspcqL3e7lbpgpKnGOYJpWk/wANtBdfXPf7ct9yl97FgWWVyjyAguEwN0kA oAMkQc0TdgeiGr7Qa7oe3NIG1TOUsd2GI79dltVWRBR5aIkSJiAa1av0B7NIOm/zTSLcN3Sq6hFt uAiqlwAyYZ+8RuPxFAZkGp6H+iemb0U7V2ans/XanX2jat3bbb0tDaCoMqGVtxBIjELiRTdd2J2N 6QPr+3rOtsXbmsZU029WIAa2dOm5SJUm9ndB/AIjNYE/w27PTtP7Pqu1WFq0qtdghWYOAtuJEAm4 t3EtgIOTNei0PZfZKa7Q9unUWFurdu31Nm34rw1V0iyXxuiGgSOZzAMj2j6Mejfava1ixqdRtbSJ a0lnSrcKMRbUuUkmXBW4kxkRzk1y+2fQbs3Udqdm6q12hpl0a9zpLtu9dhtQ9tgm0MD+IorCBGU4 ySN/bX+R67svXtd7Rt6Ps3VaXTaa06W2HduivfUbY42OkAc5XBivKW/8OL66q1cv9r9mt2e33xuL eKu+nBG5xKkfhIMyQJGaCz6CaPVrqF7N7fsai5btWmHfWmsKrXShtySDIZS2Bmdo61jPofpdHvft f0n7JsWlRWH2dzfuHdG3wCCQQZkTjPGamo9C00WlFzXekXZNt7zomnCXGdHJAY7mA8ICspmCPEJI kGvYej/oqnY3ol2kNTe0VzWdpIdPZ1VpmdCl0KlsTGAXaSQOoJ4xxb/+Htixeu6jtDtXSaTQWbVq 1ca0zOyXyiL4pA2qXbdk8EfhBkczT+g5v6dnHb/ZbO2oXS2DbZ3t3LpXcVLxAO3iAZOMGtNv/DfV rduprO2ey7ItKWfbcLFANpYkECAFcH3rwDIx6P0KGusX9dpO3uzbvZ+nl7t1e8723bBPia1tkGFJ AnMYPWtXo/6D6ftS/wDaz2xpr3ZC3zZa7bL2rpYgbAA6QCSyYk8wCTXf1Xodo9Hp+0NHrtRYSxct abUW3tqysqadQt+4QARuIuMQPFJb31xbv+G+q1N9LnZHaeiuaPUp32l792S61sgGSoXpuAn1jAmK naPoX2f2h25d03oz2tol2O9t9Lq77LdW4pO5VG2SoEZzwcmsq+hels9l3NZr/SLs1U79bdu9p7hv W8KzOpgDxbQCo6nH8QNQ+inY1rtFxqvSns1NDcdk05s3heuyZ2bwAAoHLHjESJkdHsn/AA9uarsf XXLHavZesv3FFm0bLd5btkOjFt4EhtoYQBw3OanaHoLe7d7T1ev7H7X7Pvrqbp1JtuWVraXQHTcA CQTLcgYAPUgcntf0KHZGlXU6rt7s1bN9wNK33jd8kE7oVSRjbxI8XPEt9F+xvR3v31na/b+iZNG6 Xe6QMBdUBiVK3EBbIXCg4kRkGutZ9AOydJ2hZtdpdtWFYKlx7RbDbFDX0JxAhkYGQQpODE12rPot 2V2J2h2br9T9mS/pNKL2oUIxUizaZblxcQTueyeAfDIyTXm+2/RjS67Qrq+zO1uz7Wk7PtN3iXmu L3Vq5ca9ZOVLElLoERyIEmY52n9BNZqTYXT9r9k3Gv7diLduFvEhuLuGyVlVJExxXY0voR2fr+ye z71ztK3a7pO4v3bFtiHuXWVrBAKgnF5JJ6ADGSH9m+hvZOi1mp73tpRdu2ri6Vbf3gazqPubTnAk yzAxjKmQOR7c9CexftV2z2X2lprN686NZsne/cqCbRUkFp3XmQSY2w0TBFZdN6Gjs3UDUv2ppls6 lLnZ9iRcYvqnttaZT4BtUPvhs4A85rZ2b6A9n63vH7L7Ssa3QvaWxdvFhvS8t5DcKeEhRsUxk/i5 IM0vWehGhvan7Ho+0ez0Qtd1Vn7wqzWrqqtgBiDuUXFI5OGB5aKZ2l6IeiXZKvodX2oydpG1cuWT qHKIQ52W9xAiFaCY/wCokbcBvZnox2JpLtjWp2zpEspqLOps3yhh108Jd8bGFD3XHBI/DE9OdpPQ zszRdusnaXaGm1Gk7PRjr7TNcRyStx02ALnwKrEBiRDcitms7H7B7eu7LHa7BdVq7uttHu3nZe22 pIKDP2hVESPDOetZk/wyuNasXW7Y0i2Ll1v+IB3B7bbRaKrgbmYkEboysT12H/D7s23cs9kantSd Qe8dbiWNjl3Ud2DyGUCxeMbh7pz37/ZPo5dJ7Ns3WtntVrdjuodhcGkaGUHlTtXbM9ARJ54+r9AP R27prnZnZevY9qlXv2nuXd/hVghVgogLuxMTM8wRU0PZno/6PaHT9nanV6S72wt1dc9/uS2xbVwN cVHCkgBbNwRMkzgTFcLVejfZPbdy7r+xe2Oz7Ni0167q7YVw1u0LhYOtuJICMogACVgEzTez/RTs HQ6nSXu2u2dJcs3GF3unZ7Xfae4pFpxwQ28SwkgDJIjPO1PoRc0+1m7c7JRC/dFr1x7e24N4YGVw N1u4AxgNt9cVNf6I9n2O/Gl9KezWbSu9vUJqg1h1ZeQq+Iv14HTE1q7J/wAP7nam6/o+1tFqNGyO 1plZ0uH8aoWQp4QXXPqDQTXT9LPRgds9uavtCx2hpkfVX0t6dX7wCEK2LgaEOe9NsDMQSa4+u9DN OqW30fbOitpbf7Jqn1dx0VdUoJdVOwDbAwT8eKzab0QGt0ravRdv9knTJhrl97lmGATdhl4BdRPW RwTFM1Podp9FfbQa/wBI+zdP2pgrYYP3W2J8d2IQxOCPLzobnonpftOk7Ms9vdnt2pdbxoxuC0Qy q1sI4SGJBmZEyAPX1ey/Rjs/S2La6ntDs3Vai1fTtG+ybrto6K0WV9rBMksSCvXaPKkaj0O0DNpe w9P2jYX0lViL9sm53LrDOCDs/FtKdQMHrzm/+EuztNo7VztD0j0lu7rLQ+ybEcp3h2tDsR4V2Ohk gEb54XxI7T9DL/ZGqsabtHtnsmxev/gVrlw4mJJCQonqYGD5Git+jPZfaWp02h7A9IbGr1l1n3C/ Yu2QQFBAHhOcOSSfKK6fZnofodZq1PZXavZ+rVNPc099Ltwk/ajaeDbGwSgMMDn8LETFau3vRS0p uaC5rdJprtzX3LmjtKHCg6hkFpTCEAbbN0Y4IXMGuBd9Dblnv+97d7ET7PfXT3Zvv4LjcA+D254G 1p/CY8+ms1KWXsi83dva7kqcgJvD7RPA3CcevzNRtbq2ZmbVXyzM7Em4ZJcQ59rDB8+tar/bnaeo cXL+ra44V13MoJIe2tppMZJRVEnynnNZb2s1N7WXtY95u/vs7XHXwli87uOhkiPXWzsjt3X9kdp2 tfYud69qIS8zMhhCiyARwrEDyrRovSftLR6E6cai/cZGHcNcvMRYHdXLZCCcGLkggiNo5rnXO0db c0lrSNqbn2eyhtpaDQoUvvIgcy0HPkPIQFjWanT6jTX7V5hc0rBrBPiFshtwgHEbiTHrNep9IvST /NdN2xesajautfRL3DNJVFtuzqsiYW5EkAZPrz5bV6zU6y7cuam81xrl17zDgb2jcwAwCYHHkPKp f1mp1FoW795rii696WyS77dzE8knavPlS7Vy5Zupdsu1u4jBkdTBUjgg9DUS5cRXVHZVuLtcAwGE gwfMSAfcK9J6PemWt9H+w7+h0SW+9fVJeVnTcNsQ4Oeu1BxwWyDEcQdqa5dNZ06ahkt2GRre0BSh VnZSGGZBuOeevqEKOs1M6Yi8ytpF22GXwm2NxfBGZ3MTNHqu0dbrERNTqblxES3bVC3hCoCEEcYB PxPmaDT63V6VrbabVX7LWmZrZt3CpQsAGIjgkAA+cUOl1F3SaqzqdO+y9ZdbltoBhgZBg45FCblw 2ltF2NtWLKk4BMSQPMwPgKf/AJjr/wD+bqf9D7P/AKrf6X/h8/h/6eKQly4iuqOyrcXa4BgMJBg+ YkA+4UFSuno+29Vo+y10Vkx3Wtt62y8D7u4qkcEZmV5x4eM1o7f7V1NztztxbGta5ptZqGV4fetx FeUz5CBBHTAwa49q5cs3Uu2Xa3cRgyOpgqRwQehoKO3cuWmLWnZGKlSVMGCCCPYQSPfUS5cRXVHZ VuLtcAwGEgwfMSAfcK9D2l6U6u/2VoNJZvKFTs37HdVFKlPvBMHqWS3bnkZIgSa4C6m+tg2Fv3BZ aZthztMlScccov8A+o8hSqlSvSejXpdrOwNDqNHZdlt3Wa4rKqkq/dMowRkbu7PONnBk1x9Z2hc1 GrXUWt1lhp7dg7XyQtoWznyYA49cZrM9y46oruzLbXagJkKJJgeQkk+80FbB2prgP/mGYlrzEsAx JuqEuEk5JKgD580q7rdXeLm9qr9wupV91wncC28g+Y3eL255o9Xr7+rP3jbV2WkKISFPdoEUkTzA OfWfOppe0dbpNdZ12n1NxNTZ293c3SQAIAz0gRHEY4rdp/STX6e4HtC2sPpXZRuAf7Ou1Ac5BwSP MAiKx9p9oXO0b1l33BbOntWEUvuChEC48gSC0es0htTfd7ztfuM1/wD1WLkm5kN4vPIBz1E16TsH 0hb7N2R2PrHVbOk7Vsai1cICi2m5t4Zp4lgR/wDlniuFpu1NdpNOdPp9Q1u0VuqVAEMLiqrg+YIV eeIBEGs1q5cs3Uu2Xa3cRgyOpgqRwQehoruou3rdi3dfcthDbtiANq7i0evLMffUu6i7et2Ld19y 2ENu2IA2ruLR68sx99auz9f3PaF7Vaprl1rtjUIzTuZnuWnUEknOWkn21D2ndVuzLmnHdXuzk223 w0sLr3A0ERy8RnilXO0NVc0KaJ7s6dNu1NoxtLkZiebr/H1CNn+fasX+zr4ZmuaJluN3jlheuC7c uBmHn94RzPOc1jsa+/Z1d3VFu9vXUuo7XCWLd4jKxJmSYYmfOiftXtB9f9vOtvrqtzMLqOVKliS2 2I2glmMDzND2fq/sWoe93e/dYu2omPx22Sfdun3UGl1mp0i31015rQ1Fo2bu3BZCQSs+RgflwTS7 ly5dYNddnYKFBYyYAAA9gAA91S7cuXrr3bztcuOxZ3YyWJ5JPU0FbOyO0LnZXa2k7Qtbi2nuq5VX 2lgDlZ8iJHvo7+v77sPRaBmuM2mv3nG4yqo4twFzjKsSPX6zWd9Zqblq/buXmddRdW9dLZLuN0MS cz42+NCupvrYNhb9wWWmbYc7TJUnHHKL/wDqPIUqjuXLl1g112dgoUFjJgAAD2AAD3Vu7P7Y1Ogs 6u3bZmOo0jaRSWkW0ZwzAAg4PiHT8RPNY9RqLupuC5ffcwRLYMAeFVCqMeQAFCblw2ltF2NtWLKk 4BMSQPMwPgKLUai7qbguX33MES2DAHhVQqjHkABSqfodVc0Ov0+sshWuae6t1AwkEqQRPqxXR7d7 a/zSx2datrctLptFa091C0q72y4DevDdeJI9Z49SpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSp UqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqVrH2MmO4vz5d+v8tT/g8/cajy /wBYZ/8AbVToonub/wD3h/JVzot0dxqPb3y/y1D9iA/0b/Mf66/y1P8AggsmxqP+8v8ALVE6IT9x f/7w/kogNGZmzfEf/XX+Wr2aLcF7nUAnzvD2f7aK3Z0rsF7jUA8f6wjj/wC2gK6NSd1m+In/AJw/ lqh9hJP3V+B175f5ah+xiJsX8icX1/lotmj2gmxqMmI70fy0I+xkwLF8n/z1/lqH7GP+RqJ/85f5 asLoixAs6jHE3lz/AO2qI0gMHT6j/vD+WqB0ZMdxfn/z1/lq50X/AIOonr98P5apjoh/yNQT/wCc v8tWRo/D9xfz/wDWH8tUDoiQO41E/wDnL/LVg6Hravj/ANYfy1bLol/5N/8A76/y0IOiJzZ1A6Em 8Mf+2rH2MiTY1APQd8M/+2qJ0PSzf/7w/loo0Ux3N8YnN4fyULHRAn7i+YMf6w/lqA6Ikfc3x7bw /logNF1s34/84eU/7aofYjH3Go/7w/kqE6KJFm+f/WH8tVOjx9xfz/8AWH8lWBoym4Wb/Ofvhj/2 1P8Agt0dzf4B/wBYfy0JbRAD7i/n/wCsP5KtTomMdxqP+8P5auNGG2nT6iRk/fD+WoRpFMHT3x/6 6/y1Q+xn/kXx/wCuv8tSdEP+Rf4/8YfyVf8AwUwLGoPl98P5auNH/wCBf4n/AFh/LQj7GTHcajmM Xh/LRlNED/pX4HJF4Y/9tWU0XSzqP+8Of/1q3taRNk2b8sAY74Y/9tBGimO6vz/5w/lqo0e3d3Go jp98v8tXbXRv/wAjUD/1h/LUZdGs/cajmB98M/8AtqRov/B1E8R3w/lqm+xj/k3z/wCuv8tT/g90 CxqD/wCsP5Kn/AyQLWoP/rD+WrYaIf8AJvmOYvD+WqP2IT9xqP8AvLn/ANtT/gonub8TH+sP5aqd FBJs358u+H8lQ/Y5gafUf95f5atRo2IAsajImTeX+WqJ0QGLGoP/AKw/lqTo4n7PqPWO+H8tXGkw Ps9+T/8AXX+SoPsRJ+51GOvfL/LVD7GwxYv+zvx/JV/8D/4V/wB14fy1caL/AMG/1/5w/loQdET/ AKGoA8++H8tQNoj/AMjUf95f5asfY5g2NRP/AJw/lq1XRs0dxqOY/wBZf5aojRhZNjUCOfvh/L66 uNGYixfMjH34z/7KTuGwAiW6ZxBq3HjkCCDHv8qE4UEZjFSCZg5M4FWCqgR7wRUYMSSeCYmrjcCs zngdapRDcrgA5+VMJItgMOgz8z+lWtwoQPEQBQsPHtCyN0T+nyoAshiAdp59Wf6VAcqQgkHjpTlu BbYO4khjE9KUQVQtPPQfOqAyCAB7atsmYwBLRVKCRtn+n1mqyTIzGBRHgGZxGKEpAnBA9eDUKkiS IA4HrqXF2kggAjy4oiojIggwaooXcQOlQrhcjI+JqgreFn4mrAGDyx4qREeRBwfUKoKCYyOnvqwc AbfEQQcc1Sno0zxPlUAAEkHoJ4irCQPF0GAaraVMEwQY9tNtuy22GIJ3CRjA/tQBmZmIgA4Huobq kKM4GKG2TBC8mIppG5gQTIyZ6iqgbjvP4utVtMkNMeur2wSxAYZ46VQJBY5jzPy/SoZZQ0mQOlVE xJ5OTTpbf6uMdfZ8KosS5KA7o5HQ1d5xcCBQSBiT8qonc424JI5HIxQwQq+HJyI9vFRcEE8kH5ir uOLlwNMECBFACSZnkZA5qRGWHJgAcVb5XLR09XqqMSRKwBzVY2dPV5kSavZERDcfD6mhAEjJ9UVZ wwBE/XFTB/ESDEmogBBJMGcGasAjwgjgTIqlABaDHkRkVCSqqWOdpielQFQymDnyq423I9gmeOKE +JSABg8e+iIgjqFI6cVPDtAzkTUtkd5IEA4iq6AtPt8vVR2rhR1hSTz9fKrZ23swIM8+ulhW8MH2 TR7QOQefF766Gq9H+1dHp31Op0223a2G6veqz2d4le8QHck/9QHlRaz0f7S0ekuajUaTatsp3wFx WuWd8ld6Aykj/cBmstrs/V3tHqtfYtbrOj2C8+4DbuMLiZMkHioez9U3ZY7SNr/he/8As4uBxm5t 3REzxmYir1vZ+s0Lacam3sGospqLR3BtyNO1sHrHXNZlAzsG45EVAJIU4DcEfCrc4GZH4QB9eVGy xc8AOeKWbZLscyASIxTbenvnSPqFSbaXFRmBGGYMQPgrfD2UlCAA/ImDmaNEJSQBGQfXxxQYUoF8 UGD5H6mrCbXyc9AOKi5YCeZxNDEXmUxJwSKoAEZLArE4qAFJIjz4+sUagxBOViPyqh/pgEzmBHSr MeIBQZEzRanT3dJqb2n1K7Hs3GtuAQYcGCJ9xpWFkAnnmiOHUFTtGSaJhlmyf0H1NAUBbGCvl1PS iJld8iB+Iig2wJgjqI6VZ3ND7p4+vlTGG1QMEySW91AdoPiHhP1+tWACRIJnrPuqihyYYKM46VI+ 444kn5VSgMAAGJ6Dzobm7YCQYJyT5/U0NuASSYj1c10dB2ZrNfZunT2l7mwoN29duJbRJIAlmIAM 4AmTmtA7C7VNzWaZ9GLVzREDUNfuJbW3JgSzELmcZzyJrH2ho7+g1VzSa609rUWfCyNyDH5dZ4M0 7Udj9oaftj/K7+njWl0tiyXU+JgNuQY/iHxorfY+ue/q9MlmbuhS6+oXev3YtmHMznJ6e6sCkFdp IxiBwavaQZgCMAnyGJq5O8ndgg9fmKlsd4CAYPXpiBREmLeIETnn10tCWYyDJ6jpmmXrF3R667pt Uuy5ZdrdxZBhlJByMYoBbD3NgJJyPr66VCYMAZHX69VAPEWAiBPHX6/WiKEKwMRM+VCDgEiTxHsq 9iqQDGZGKEsVESZHwpjKBGzJBgR5fvVDG0iMgAVW3cCAT6seqnfZXbTPqiPubTJbLYjcwYqI9it8 KW4QAAQwBgyYzVESWCnCg9OaEiGwZBEfKKK4JjxYA6D2/tVrtmTEGQJ680CoAymcCCYq4ALEnMyP KTkfrU2gOYaCJzRYHi9k5464pcCIM88xx9YolUm4EI8JP4fWaO057zIzncI9UULqpU7TMmeOOKE7 s8DEeyoTJkCczPr+or2XpNpe1uyOz9V2cdPrdSb/AHT9p9pXlZkvMI2IjHG1SQJ5JxgCD2fSqF0v pdqXEafWtoPst04TUQFJ2Nw0AE4rl+g9nQ3uwu37fadxRpWOk3b7hRSQ7bVZgCVUtAJjAJProtfc v6T0M1P+Z9kaQaj/ADwq2lKNat2j3ONotsuI4MmQZzM1o7Q0er7T7f7FXs9dPZUdg2bl0tphqFt2 gTO1GDFjwABLGYnk15r0nd73ayluy37LRLapZt3NOLNy4oJ+8cAAbmM8ADoOJrjQwU7jAE+uMR9e 2iDAKcbTkg9RVFsj+IeocgfXyq7ZRLid+HNsEFlR9pI8gSDB9xzXoLN/sZ/R7VlOzteLf2zT+H7a kltl6CD3WOuI6jiM8HUHTtqmGjV7Vjd4RdcORjzAAOZ6U+8gTS6dlIIdGcef4yP0rDLB2AiDxPSm K07RxjHu+jQ24ABJyIPHFQQLhDYbdyKtZ8UDB6k1cjeJEggiPV6vlVbQ4jMk4P176psjwtxweSfr NbNHd0C2nOu0eru3CxINnUrbWOYg22kgz191dL0mvdmHtrta1a0mrXU/bL03G1KshbvDPhFsHOY8 WPM1wllU3bRM+Un11JhAPw4xNUMWmUZMmPVFWwk7QuJj9vlQsABzzB4qEneJkQRj2iic5BgQDHEY qsi4viG1jPPrqysiQSVYz5SelRRuWB0Bg8Dr/Stuig6DXW4O8pbKyeM/tWQKxssZOJJAHSBiqE7i VBAELilXvwLk4wPhVWVLhhMLia9P6K9nX9bo+0dQ66vU6PTi297Q6UsH1b7jsUgfwggknJA4HUdO zc7V7U7P9LU11i5/m2pOkufZktEXNquOE5hV258ok5rlen9y3e9N+1DbdbiSikqZAZbagjHUEEEe qvaekOmT/wCL9Pf0GnsXd3aWl/zC+wDXbDDZ3aAEeBCADuE7jIJEQeTp79q5216ZJb0GmssNFrt1 5Gub3h4zucrnnAFYjpNf2d6LG7e7KTWXdXppsm32chTS2Y/1Xuqkm4RwN2PxN5V49tzqAggE5PlV 2l2kboMc+zE1Y4NwRG6OOeP60LyRyp24Czzn+la9Lc7Os241mj1N+4pw9rUrbUD1g22zz191dD0o udnHtrtVU0mqS+NZem4+qUoT3hk7O7B84G7E8muMhAM2x4ipAj2ZqnC7vFyTgce8UH4sg5MDHsii ZfAzKo3GCI8jiqgjCcyQM8TRbfCMBnUdfKh2kcLBGfVV7la6WGAZBHsHNUIDDdGZg9Z+hTLEKUa6 rsgYMyqwUleoBgwY9R99d2zc7HPo7qwOztdsGrsAr9uTcSEvwZ7rHBxHUcRnhX20zagnT27tuyfw I7i4R7W2rOZPA6UqZmBA9X51ZEtAErPXy/sflVsxXdCyAYMiKEQbcQPEMDyqguQzYESQevSjuKAW Ag7szP4s/wBaq626fCZJOapGIU7jAYY8uv8ASiRThbgAyc+VM0jC3qtOSo271JxkcfvR3rK2tVcW dsO6mPVIikuoFxyPPjj64NQFvDA8+vJ8qraPGI9pn41GFtQGGTMho5zQOFg7VE9B7RRsoRmJBkcN 7qgEDcYmZ+PNCQWxgcBscnmaJNvPhUMSBUEMSH5JyBweoqAzBK7pEE+f0aYjCNjBlfkmOcGksTcd QBGYEcARRpcZVa0rObTEHaGwWAIBPSRLfE0BAYdYEKMezNPLu9i2FYfdgiCIiST/AP8AVLAU7FGY 8x7KgMgqcErEEcmgbJYMQuzj4VTAFmbM7s5+vVRuSTKQZwD65ql/ApOI6cRUtJBG0bpODHqqxsUQ BJAke36FRlG8W1kESRPTzq7zPcu3Ll1mu3WfcXYyzE5JJ5zMzQqdviDGVjBHNWACVEExEziqgITK kSMiZgUY3KA2RzMedKAmS3GDxREorN4jA9efrioRCzEMcjM4+vzokVckmIESPh9e2qJl+No28fXs oSAtwhrmREn1eqm2rmyxetyVZwAT7Gn9qG0zyyjGZI4nI/rQCG2lSApaSCflQXRFv8SnxdKq1+Bx 5wOJp1zIO4DIx1zFUBChWUSTiRAq0kkfhAmARwKltQsyVLHI3CqUbwysIEYHHOZ+VWyKSfDJ54xz VcMNuZJEcT66NPIgTMgn9PfRoFuW+7IyOhoXAWGYjgGD5UowVhTAOSD6qc7NdvXLt5zcd2LM7Ekl j+IknzJ+dLtttuSQQOuPjVgL+IwckHPWoQqll2ndMCKWCQ6eJtpBj1cijkb9vE4J+NW3hO3dtEgy fPH9aJcSCxC8STPMUncYJ2yBnOIPGKtVYmW85/rRsAPwgsBnnjP18ane3FtG3ufYxFxkBMMwBgn1 jcR7zVKJQ7iAVwZ9dWSoOeYCnyGelUZ2sQD03eyhUHdJAEDaxJ+dUZwJE5PP11omUyrmWBAgGoVO 8yFMiCAPryoj4idx3SIwfbQiBG1IPE+dRdoDSWGMGTmrBWQeSMk/rR3G7zUOzncGJyT1+vzoXjdL MNy4OOcwaEPMeGZlvbV21MEkcCQ0/CptEKCxEc1O7i541kjAA+ulQrvYMwxgkjyqv44ggKOCPrrR biTvwEUkx59J+dCYNvJhDA459dWqNtniZXjiIql/AAx8IyPZRW2a9hYBC9OeuPnUQbiJDK4kj5UL En8I5Egjn6xVsSGgEGTMR9eXzomSbQZfxeY6+uhIICuwJYjOMjNQEpLiAI6/X1FW1phuUeKTM0Ql Y3AEdfWaBCzXtolQs8dKsJuMp55BqQEKAzK8DzqiQdxHTkDrzVKz/wCmw6g58/qaoqxaB161ar4i MeZnMiqhgZOSfOiYsT+GJEEnrUJWNrALDSPX7vhQrK7gZOI45P0atlHIAYtMfH9qksRuGFMHPSKs AsAqgFRyJiavcoRWIM9AfhUdWUyBJP7/AEagJ3HgEEdec1PEVhJEvMAcYqMCd0AALmDiDNJvKVUf GpYGGyeRgdcGmlljdzPE5j41Mz4vGsGekeuqBJAleMrHqHFUQzplczGD18qNjDRgkCMGOnSokjw4 ncOPIiqCFtpOOn60fVPCdsAgwPr6NANwYFQMHny5o7iNtIyGX4eqPrpQNu7sKFMj+LzqESzNwTB9 nT69lHkAs5EgcRjgx+lCOT93DEiAeKExIO0R5DH96sAlhI/D5n2T+dWAsncoHU9B9ZoWja0yRETH JFX+HaDBCnw+v3++rYYU9QJI9lB4WgAbonqZo2CzyQo5IPNDJBIwTxxz9RRKu4zEzk9c1fIAtrAO fmKpGJEfwryJ9R/pVblDlSR5HM9amxtwHDMDJ944qtqW35JBXr0+o+dWvjlt7YjHUj6NUpAQggEq cGrHIxgD8M9OKiqdvd7vECCMcGaM+FSRyJPPGaEA5XJiQsR66jhtjAjxbaHwnk85OPr11SkiZEgr JzjirYQowMCZA84/rUG4APuPkfOKs8YkGQPbVheBJk59sQaq4AWAc4PXAnJihY7RkEjBHx/qKKSu dp45JNbNRo7ll9NbaGF9Q6gZweBTdF3Glt6uxrbUXnthUBEbWIP9K5wnooIB5PPA/pUIwMg7RnHy oV/FEAvujn51r7o2xudBDoST6gYB+RrOZaREbifDwR1qoBfw+IkEt0H1kVE8QaWOT1/KpuAuIwMS JMeyrwcmJnA46cflVZUQIiQVHmeIqMSVLjzEE1AxVC2ICxVBi1wKo4PJ6VIImRxEny9VUpBAk5Cx njr+kUUFizKcN5+X96jkG2SRMYmfr1VHVV8REg8z04qgy97nlDx5cf1olCgglgFxtP11oTIbiQAT HnQPLZAGZg9TTSsJIH4ff9f1qWym4DcNpJJEVS22LeFQygSR5/U/Gteht3LvetatljbUs0dAImsr gF2H/VwTOPL86Ve/ATIMt09lDYIG45xHFOeEPh2BgOT0olaDBg9Z8utBI2naTxGPr1Va7CxzE9Sa plAc5iTge+Km2JV5mYxmRVPHVmE5OODWuzpLl/TajUYVdOBIPkZGB8auzpijWL960Wsm4MkGDnPy Bqdq3bT9ovc0ilLLRtWPw4/vWQE48UZgfp+VWxXYI5PXHv8Ar20zToC7uRCqDI58h9e2pfA74MUY FoxPT2/XNLMhMZ2mDFWQGAFs4A/D55/tVFh3pDAccGq8JYqCQMH1A+yqADEAEqOo59c1eRBGSeJ4 4q1UkyVJXkiYI5oRunauRiW9396IlTdWUMcYM1J8DEtJ6T5dKtQTuCys8eoGqIBdZIXg4ziqUEOp 2mZzHUdam7aEUnoSc4/tVqu23NwmYiBzRqoQKeAJnPHl+lBIKgosGAW+dCzAXdxWYkZGKtV2yceq fP6/OrPiO1YA5gmAec0e2WUbQsc9D9YNaNWhRxbdSjrI5+vo1l2sPMwR554xQbAT6gY54iakFnQC NxbaJ4+smm37N3T3TbuIEuIYInzAP7mlbS7/AMUmDk1cMEllXAMGeuKpiXZpxGMUdm09+8tpIAcj BPwq9Tpn0t97V38Vr8WfP1++ur2dpr906LVXbwt2WYhHYztienliuhf09jVtrdTv3tb04ffAHjhg R+VeZLBVgEDzxPs/Kqyxubog8t55ql8JIbpg+7rXTe6h0WmJMhbTFljI8bdfzrnO3OyZPM8n2VSu VBaDBEewVJncwOGgT66EwfBMMRBFWD4QIOwjMnihuAKdqxGMjmrkecjac81AD3e5VxjH19ZqbcbG Pi4jn31buQWAYkdSBxUBQrAloPX4VN8kjbEzI6+f71HDG0ojw8mTUBA8JO6ZBU4moFh4bid0zz5U IJVfEoJAmY5q5IBB/hxjrUMs5IWCevn51T7goknnH17ahUo4ByQMD11v0m5bGs2rB2II8vEJ/Kn9 lawWG1eVC3LLW84BLR88VzyyruIG7eCIPJ4ik6hwyrCxAAmeaGxEPPMRPl66MbgS4jbund0Ip50t xdL9oCBrbEIGHnFKC914mMg5n11DAB3btpnnoc1Y2spUZBJ5/egJYRBCiZ46+VaG0dwaFdW4+7uk qpnMz1Hup3Zti/q2uWbF0EMm5gT/AAgx+tdpbdtuy9Lprl8XGm0y2gBiSNwJ8+a5Pbent6btK7Yt k7bW0e0QPnXOkCcQDIOPLj9KvaAQFEsCTnrW/s8oLOtF0g7bEZ8t61nvOTc2qfwjM9SPofGkISEO MnLfrRAxbHQggbuSBJoQCE3MPEJIkZn1/CrjbBkQDPunrQlo8KkSMcZicVXigzAJxIPvmrUEEKYE rHzohJa2JgkZxzwaEGQuYIIA/SoMwp/F/CfrrzVGNvgMmMSKhi4dygzEjrRbhtBtzIBzzmaFYa2B uG7gT1+v0qwYvAczySeZxMVW4MNqiSPIY4NEm5doiB1J9+KqA1vLCMnHINW3iDFODjNGu0MsAFZz mnawk9pX1VfCLzkiJgTEfOtPb2pXV9qXrsrvYqRHAwOPhXPZ437UYQcY4Of2FBaLAGFEHz84rrdr di2+yuzOzdfb19rU/bjdKm3bYKptsBywBPPkPfT/AEh7ItdnanVafU9qm72lpza7202nYI+5ATsc EzGPxBZHwrLouy11XYvanapv7P8AL+6GwLPeC423mcRHkabquwb2l7BPaOr7y1cTXfZW0rWSrL93 v3GTPHSPfXQb0Pu2NfptNb77Vd5ok1T91byhYmF6zG059dcq52Jr9C7nVW301xbJ1CLcUqYWOh4r Bce5fJYyxeCWIyTH0K9L2Zb2tY0wfvLWosRkEhDBJA9eDmtev7Me/YSxorirbQPuAOWBPWvHXbRs vt2EOPxdI9op66WezNRq2eO7vW7BTbzvW4Zn1bI9c1l8b3GIVlJMg/0rralVPYOi2rDm5fVsTxsI /OuSH2bXYELgR1qkLEAAHb0A9tXs2sAy4GFHnmiIbcJG0CZgc0KghTtgADI6GoAS0ASd2JNWsQFC kdPZj+tV3ilipI2EkjrihyzKwmRB4ya2dp6f7F2prdJu7z7NfezvKxu2kiYzExWX8RMECeVqyytd BwI+Y6/XqquhBHIBkcGPoUW8BMASTAM1XhALADaJzVADugTJJxn3ircgPBAPBkHmqWNoxggyfLn+ lS5thNs5HE+Y+vhVltpK5ZiT+f8ASt2jg9l9plh/CgMY/j/tRXrQ/wAu0DKPxpcn1eM8/L4VzgfG YIAJHu4pd7dsE+fHlipYEkwJOOfrziu16N9i2/SDtS1oTrk0pedu9GdnIVjgDGNvUjnE8UXZmhbW dla7V6nV3NPoOzxbdlt2xcdmuNtEKWAjmc+Vc/W29Na1Vyxp9WmqsB4S+qMgYee1hI6f15rsaz0W 1Fj0rudkWrt27at37Nq7qlsnbb7zbBYTjLYzmDV6f0Ve8e3FGq22+ylvnvO7zdNrEROJg5zHrpeu 9GdeqfabGj1R06WRda4bRCkZJMxHAHurn6+1d0l06LvWcWTI8pIn9a09lW37vUXEco1sLtRcFwTn joOteo+z27lltSpRL2oskg8AAgRA8+K8r23oNRpNQRqSXLqPFPPNczaEiAQxwZzWnXaP/L+0tToj dNwae+9jcVjdtbbMdJjzotEhFnVsSQosFgY671+PJpF1IcuwIIPQfXtpbCQ4YxnEe81cMpWQ8T6o +uKgMss8jhf0qkWFaSZMTj6+jQwonCiOpzNWyC2xyS3QDmKBgwbackHw5g+VNdw6MVPBJmOcU5dG zdnXtabg+4v27PdgTu3LcaZ9WyI9fqpAG4rubxERu+vfUgFGMg8c4niohROvE/DP7CgxAE4Ofb7P nReEEwJIjP8AuqMNyhdvkMDoasmDJAAmD9e6rdwu0nEmWjy+ooCFVzLGens6UQYEMpaSDyIyKK0h a7b43Egn15rqKoftHtd2AkW7rKeRO8foPnXJukoxIABOcjPnQs34txB6tB59lej1HZdjUXFuC53b FogL5D19a6PadzQXezexNATvuaS3qN67CAGZ1K5IgkweK63bva+m1w7TtC9d1J1l/TNprLI5GlVQ O8J3DYs+IeEkndWP0e7U7N7G0vaJvsWuau7YW0iWwWDBjLrIKyshhOJWqt6u3oexW0ej7U1d25c7 Ue8+ot97aa8nc5Ytg5eMTk+fNa9Tquye0e0bd7Ws1/T2OzrCMLtu44u3lL+AttZj+ISwDdetcy6R rLtzvdRbv3rqKn3di5btWUEhbSKyrCr6uZzk1dnRaa1qLYt20BIgeHMHpW62pG0C2BtwMwZzJ9XT 504ltxhmG0SYH4pzXJ7lu/33bVssbu47kDDHmDjpMeutt3XbNFt7rRFm1duEOjs5At3cxtyQQM8i fXSbdm1e1l65dtWjuSClu0FAI6gCAOnTpWU91b1Vq5c2Iou3sn8MbLQ/MGs+o7JsXEtXwhtWz4is TtEfvWX7JpbWlud34mFxBujghhMHy5FaTasv2i9y+gRAmxWC4cmZj5UWi7NtWZLqtxgTE9IOPiKf c01lkVdi7TBMKIPn9eusD9m2LjOUgBsRwFE9Kj9maVSp/AROGPMdfrpVHSWd4a4lvcogYnHT8qLS 6htMrWwNHEbvvNHbuk9PxMpPTj+9au2tbb1et16suje02rvAPb0lrcV7ww28LuPAzOZzNYG02lFm 0rtbyf8AZjpP5z76AaTQgl2uDaRyF4jk0DaLs8EK94zwMHp/ao2l0G/adSxIBMBZ+PxFT7N2ftWd SsRiRzQXdHoSdlvUBbkQFAiT0/OlJp9CLId7+wsASGBniaM2dIouTqRwTGwgj6gUJsaRbtsm5IcT JXjip9n0puwbo8OIC+2tljRD/LdatlmubikR1G7Mj3117XZiuNLZvCVtaa5vAP8AqHwTHxn315S7 o9Q1wqtpmVmkEdR6qrX6J9Pavu6sAL4RSeCPF+1aPR/S29WNRbuNEFCMT/ur1Hopb0HY3bGm1+qv xbRWYuLZPKMMASTyPPpU7A1NjR+jGs09nVXNDe1S6crfQODKsC4m2C0kEjikdvPo+1O2dbq7amzY e9NoNa2lgFAZiORLBjnOc812+1e2eye2O39JqNPrntW9Fr7Vw2xZYpqYCzdgLO5Y2S2IXB6FC9sr etekDXtZrLqamxq009tzdYHe5FsBDhcRGBA99I1raC1pRp9LftWTetf8bct6a9310f8AgKypATAB O7xRGBWf7Fp2L37iIxf/AKfZ+xrZYtqETu7awygA8YnPy/StCyLIxAI2gL/DP9uKx9oW3u3rYcB0 WSWYT8PiPhSUU2xtstYQF2JjSWrh8ol1by6RR6+5c1es1zd9YFltZe27NNZG4LdaPEE3GY5mTPOa T2zpLbaW7bsWxb+7e4QF5hSTQHS6fXW1UKC1q2pZ19n4fbMfGucOztPbu2bb3o1EQfDIBGTjy4+N aNOlm5Ze26EobziQmUAP9hUfs6xe1Nu7aIKBYIjlhAA+vXW0abTopCWrahQNsLwDP7/Ksl/QaVwA wC3CZJ28+8UsdlaSSxkbmlz0H6eVF/l+kVQode7BB/Dn6z+VD9n0iOjm4n3cFd1oMMeYOD7DzW19 YLXZbW/tGiJfV2jH2DT4UJdJIXZBztzGJ9ecJsae7fe62ottdYeKLCoBj/aoAAx5ZNLGk0DATfT/ AHYTpQPo+zpa4dRAWJleBz+tT7F2aFAGpAUYAj3/ABqjouzpYNqckfxLxVDQ9nbYGqAUDbIFIt6L RDUXw90C0AptsB5zPzFPGj7OXdGqXyJ24FLfs/syM6qCvMDmjOk7P2eHVL1AMTjnFHp9DoRcs7Lw ueJYG3JGK2WOyr1rV61+7XZeFxAOpB8U/AVyu1ezza+zJp9OyubId5zJxJpFnsu6/wBn3W3PeOQf WPD4vma9PbyYJkExJxz9fKheyphl3HcuY8s+7pS3RluIQ8g8joZIrHctW7jQxEBwR6m6R863rbDa FNMp2oxILDkDE0w2wsHeVCnII9+aYAi8qTcBMCM4jHs4+NVbdjcXfBcL4SBEA/1/Stf4W2yVIGM8 kT+lEPA7jDoWEDyxXLvI5u3/ABFWL7txHOIx8Pzqrl4hHuK4A4M5HrPn5/CtWgQXGciSGVSGI4g4 x860olq/pUdjlGusDEiYUVk7RuOunuBRvUFQ3WUxPymgv2VvadmcwAogKIMjP17KK5buNpAX/EQA w9YzPxpCyEA3zDCdo4xx86u26tsRHQg48J4j+1BaPeLCwGXM+X1NJVyX3bsusYz5/wB6Q2XgQeoI HE9PXyaQ4JZTtUFWiG6Z5+FAi7tx3E7iQQD1xT/uxp7ZAhUcqPXmD+dLFxUuMBbY+IdPPH71n1Vx SjqFy4IBPn9CkFe8K+MncIOInzoQSdMrFhIMiRMgZwKuzcLXrXd/hNxCd3MT/Sm6vaQhCiN20MBy sY/WlBAzNscswtySOeP7fGhtoIEPJImPKSKhZH1CbGYNEkheuP3Neg9FmdrOoZgHZbqzHu/evRWg Ps4dYQtvB3D8RITA+FcH7Tq9E9pH0qkSy255Mn+tc70j1VzUdnbGtbFtanaGj8Rhvr30n0VmdTHX YI//AG+vfXomspcIYkzAwPaOnuFJa2wtsdxVts9OY5FIvtG0mDcMx64/tV9nWLGnvKRbBIRgvUj3 /GtVux+J2Zt91iSDkKegHsj50aBFUd4dyDdJI56592at2KhlgC1GQw5B+vzrShK2g204gAeURTYz bNu5O1hz1WJrJrpbuHAIUMSQBg4In51nQsr93cbeS0+6M0Nq53jFC4drbjwj24z1rfqrcm9aWZNi 8QojqjA/nNDaIGktFOqoCOIO3r76yaffd74XAEulyGJXny+UUzS2GR7yqSLZO7dHDcn2A4pW0rf3 Dagn8IEk8/rmg7zu9oyTIBPUDOfZUuOFdHYTuUGAZ60u8XRihKldogcxn6+FK1DbkJkloHQSRg+7 j51nfcSBAyDkeo4B9Ris6oQFUsOpUKeMn6itFpba3WIWWdWyeQB6/Kllra7IWQrFQR1wR+lR3VkA 2QYI2+qY9+KxORvuXG/C5kADp5/KloCuqJM7WSTJEer9aiNmBlywbI9UTWsWX+y2pVSrIFKxMeI5 +fyrGiJ9mXe+NwEARVXfDcZiQwaAfIggHAor3+k4aAZACjyn6+VP0alu09GDcLIXEDiIr26lxeS2 gVIR14JBG14/Kuf2uNT9qOpsKlxBaYOw4Ixx8Ky2e0Lt37N/w8d8rr7AOnz+VPbcS2+FEfw59nyn 5UDXnt7Q19JVgTJgATn9a0Xtiq164q5Uk44A/pXHa6r2i4G3ggT1munphOnEkEQxBnnPPz+VN1Tr avEqoMzA8jGay3NSbSNzsYkBiYifX0HrrZorJZ1LBfOCfxDOPdWpAVaGXCiDAOevWpaKEOVMSdxJ 8j1rFc2XHLBhOZxzjH50kKi7kdlILAQcAeX61u7PRt15kbG2c+/Arr2NN/8A4254FQh2VYEwDt5+ FYblobTvIC8ER18/ryrK6EB9u6NpWVHHWgv2lbYhcjPE/EUFyyjAFmIKyQPLOf0pItbXXAtrGFnk T/asl62Qpm61tNswvSP70gWWFs2xcggfw8n2UmxYFm6ndNLMMksT5fXwpTI/eOA26VDbox6/r86q 34lV9gndk7sGcH307aRok2tnvHww+HspLFhgsV2mGMk4859x+NKu2u+RFnbgCPLrSQiW2FpCQ6CQ SMR1qnF3G0BsQADGY/vQ2VP2rTNuWdwbMYUEU66w7m2zAkbRAUxtx+35UFu2yP4Vbc1viehUcH3G qAuWSCBkLmBxH51AroPu4yBGZ/tXpPRC0r6PV5YQwPsMSJ869XY02/Qs5HDHHlIHFcy5ola6We6d +0bQwkqD085rgemOn7rsq0wZTN8AhR12sfr3VzvRTfGq2hYlMnmfFGK75c27gK3Sq+sfr8KbYPfa cI5RthM9YzgfCufrmt3NS1rYAUAMxzJ4/KpomJd9oJEtO7+ESK6rqq2GIgFW9Z6CspvltpRYMQFH EEUNq79pc3AVjcARuOOORXUFopaSIO5Y3CTPWat2Q3k3AgryccnrSdYy4ViCRnbHB+hWNg29WZlQ +Q6wPr41LdsnUWzCKxeRmQPP69ddzT6dr2vUGDAdS3Q+EiPmarV2wl0wo8TYhSI8/wBaw3LSqzBG DYhpPT6irIJ72dygkKek4FZxp17sIXw5MHn2VnNkWixwUCgEkiB6vPrS71tiqlHE4BYZxyazrpyt wu14ZAjd7Tj68qyXdMru9x7rFoO3cT08h9cVWoV9inxeEghfMHn9KBlUXAHy0HAMFfMjrxTdMsOA QBFp1hTjGKWykdRBICkTAPnHtpYIbBaHYCZx5mI6YFZWspYBdsBjB2/wipsYABW3MInpif60t1O6 6I2hV8In4VqS6w0yMSQe6XaqjB8TY+QpBC31ZkQ7VI8JzyDHxmo1t13m4F8W0iByYo2lpLDKCSRz IMx6+a0dmJ3vbOkDsd3eADHmDXvtLp1bVi2JIJaCckYMj9KVqtCHXaWNpRhlGQRPT3VnOiQbtrkR t2+DjiQPVj5msL2WkbF8W2QZ49WfrFZdRZuWg+1V3ESA3E9PZRC8V7tGGWysnkTx8Ky3DAuALxJM iIE/3+IrdYItaRSASm15zgZJ/QCs32kXtQTbUMB4mE+YPHvAx7asJu06EJADKYHlNa+zHubUwqkD EjqYj8zXX8M+GZeBjPP1NQIiqGIB2iNvMDpXM1Sgs1y0HcyYDSIzB+v3qMbR2EW95fHh46Cfyrod m9yH1IS5EqFyOJPT411dA9ldE7IZO8tMQuQOnmZ59tZXu2bjKAG2FyAT5DGfjWS5c0yLc3sQuSRJ n1wRSC9tB4iWbgzj1Y+FLu3BbfvC5lR1XAiTM/X50C9yqqdsqIPGB6vyrHeVlbawDqV6jPP18aTd 2YCTDS3h44EifnQeDvWJBE8x9eqkm3aDZYuF8fI9/wCnxoGIa2SBkAwCZGcfCqFrdp7aAlk3tuzM 5n8qzhWa7NwQVWIDdKVfARHUZAM7eSRj9aUXPcKLjxiJjkUG22phILQI4znj2miDONfYYAgBgA0R M07UW1S0toyZYjBiSJ+VRdUv2gMsNFsgFTkNtj9TWQsy3lLLFyfEMfD2UzvLYxyVI3SM9a9Z6GMo TVByCzMMdRgnPw5r1unuoNG7AghmP4egxWS9qLG/cck4JiI6z6sSa8r6cXFudi6faTK3wDIifC2f jNcn0STcmtO0tHd+Hz/Fiu7dsvy2NuQRxGKUjva71mUbFmQDzMfPn40GofcLbAAhiRPq5/apoBcN +5uXAtsRmM4xFM1msQOUYQ+4Y6jcBIMfXFDalroDW9rhQGIP5H31Wn327xC28gHp1kkfl8679qGt AMQY/DGMfQowi3CSTG/EnE5x8/zrPqhbYqpBUrJgDFZLkBdrsN0YMZimWtjXbaggEOpkGQRiu1Ya 0vaJYliQSSFBk4IH5fKj1l6z3gBy204AxA+jWG4baWmJLHr7Pb8qWdRYTex3hFGcT6/1pLm0HTbu IXy65x+vwpQNtmLv4m2iJA+ozWe86tJhlgcD4VmvtbJCqDMEYERjB+VKum0ZgTIjjmk3CtxgWJCg bSsxt9dKUW++YKu0D19R/ertoe/Y7si2yiPYOnuPwpF5fDCoAt38eeOmfrpVOACp3QRhiemP61it s4vXAdowAwA/i86ALb33GLb3nOImmOh7l1UeEiAI4p9jatq2csotKwzxk0m023TsSVl9pj/djp9e VVqWLthYtIoVTPJAiqW6htKxUkwAN3UggVs7KYL2xpDgIbgDE4yePZX0OxdtHW2ySPwluYJkEcdK PVXEdmVjIJHOMj6+VLL2xOVwPgc5rj6fxJucgrnHnzHypOpUMPGhAc42tmef0pVm0gVYJYCPC3T6 /as94qbhIt9Cfbny9ppNzUizpbakEi5c2CI56n4GaXqrw0pL3LXd2mYITPiyBB+Vaf8AVu3LKnaL ceMnzE4rZom+9UlW8ROOkV0TZtsVfBjiOmMn3VGUldhhiqiYMflxwa5t+4tlmDW2Z/xEL5Dk+uo7 IqB4jEtP8M858629n3LaO3iXewBAJn4fnXS0epVdM9vu/FJYSPCBj96wXNabjXGChiAzLAifr96z 6m/sXEH+GCsknpxQXdYXB+7yriQFnk4pSar7w2zJO2RI4xH6fnUW8EVVZQCZz0gVi3hxuAgHLLEE es1du54TuPQzg55j5VgOuD6pkNkxGcH15491EjXGV7ptgbyfCDPH64yKEXGuoqNY296SSFHAxz6+ lWXa5aTbtQC44OfKPjNYu82rfXEoGZlON3PHq4zWV9QQSYAaDMtgAn6+FCLttoJhVYDpyev5Ux3S d218gRPX6NX4vtdsndi4kDEZbOTTtSoZwoO5/wAQYnz9XvoAyFlvEjwmPKIBilI+5lLwJxB6ny+d EIZ7m1xPPsB5ieten9Edtq1qRcG4GOTyYNen0GoQ6Y3GAQFsgDg4+vfWPWa1XuN3jIVDT4R0x+8e 6vL+mF62/ZdlUcM3fKx9Y2nPz+dZfQrcburCnonxz/WvVXlBEW1B2j8RPsrCtq09wt94ocTtJ+vo 0N/7tQrACF5URmlW5XUSoztkjjAOfyrPau/a9Ol61Znc5Clv4YkCpp9Ul7Trdthi1y53ZWZgxWy2 pS4ASWGWJXpxj8669lVu2VDQCRPi6YJmiVBaSFgKQAFMCDOPzHxrLqwLcvcU7Fz1J+ogVitlndm2 srqADujxHJ9/IpqFFvb2uKWRzk/XOa7Gn1CJq7R3JBVmECNwj6+NBq9bbuXQ67TIJUBeQePyrM2q HeOx3wBBBAz/AH5pC6uWbcsqzkIwXk/tk0m7rAtosbRAV/8AZnBj86ZdvBmLEDYBux0IrJfuK9wW 2IAK/ij20vvWVe7+ODyay6/Uiy3htlpXEDjjn10oO9654Le0FZJPIPB55iarey3mPcgBVJJnzGAB 8KOy0MoKbWe27knnArJcJsNbZiD5HoDgZPsNZtVqDbvuhGRAJ8yRSWvi4WJAyMNk4oy6NZJAZySM 7PXNWYuW/uyWUsDz0kYp9m0vd2JOCjDngBj+/wAqzqoCFCVbYQWI5MSfhiqu3hcTu7ZATZBb5nPx oi2/wAwevQnitPZVtx2no7jN/wAwY9de9s37Q19pUUBW/i9cZ+QNN1mvTYotMhTmT9fU1zXv207z p3ZB9k9fr10nTm4tuH5Ak9eAP6fGtWus2fs+iu2O8dtZbvsWvAKALbKo8IJid3n+wTqrOhtaDXaj Stdt27Oos2bd694Rq3eN21SqlYmeWkAn10lNFb1PZOt1NsXTdsXLCWrSfxG5cC5wSecRFHf7CNzs cNa013Vay1rzYdLDi4LMJuJbbOQYBziY5puu7Ls6a5a0zd3YCaGzeuHUXFtqjOzAjxREbQAKXqtI bEJsU71S8hR1cMjTtYQePDzQaRA1wnbtaTJHJjIn410rSC4rCNqjHiHA60YtqHCYJiQR5cEfIVzr lglrguCSep9nFZe0dBZfs0kE97dvraB34BKXGkjqfAB76bY0oDC5cUd7bUgZ4GRz8fhQbryPpgl0 7We4pZsyPL5D4UGstdxpX2uSGPIPAOJnmg7u6HttbvQswZUHGcj1zFbXVAhLCWGPIkA4z7PnSTdt 3EP3bIAv+3iM0kNsuC258TEzOBNVe+zuwlSFE4mJHH0KEpZCtD7AXgE9T9Digv2zuO0bi0SRx66E 2e5S4ttV3DOMTJqtctq12jqrAkWrN+5ay2TtcqDjzis5s7raIQZ3MY6DrPvmk3bBu23yqMwhi4mP LFctuzNQ/iUDaU5+P6Ua2bjLbt3LeIEiIiPX9c0F3TXLu7aDjAEyDjpRpbYvbBUlty+KZHJ/amJa 7qyvhYG4ATcPAx/SgsWVF8hcgAg4zIX+1BsDFZuIxgkfv+tUQveTbg5IOOcYrt9h3k0+m1L92z5D BdvQ4+Ug12Lr3X0+nVLrWRfuuhYL02g9fX+dZ9VbaINwLe7srbz/ABGM1xfSeyE0ashHdpcVFA/h MNu/T4VPQwsrasjgbD//AG/rXtuy7FnX9pW9DqGvAMSYtqOgJkknGRHB91czTHTXtEmsuWbl3UXR aGn01mQWNyBlwrRAnpnFL7VS3Y7W1em0t5by6a6U3kiOFJBiciYPrBwK3XuyEtduXtEHZNFb1NrS 99duKrObiIxVeJbxHAGOaHT9h/YrXbT3dFqbOm0drUXLBaR3mxjtkkQQQJx0NVb0CKbndvpmeypv 3UXUW91pMeJlmRAInHWsoSLiq9sQSSJEQeZ+Rrp2VC7FhiWgEngiJzT2tood2KkfxDiR/Y1m1tl2 a3zEjnrzWS5pEbxZABkFSZHFZRoQup12ntKzWV1j20U5wjFT5chea0XbWxyEJG3T3AqjgeHFDYss +ms3GujctsDGAMDpWZFZmuk3CjmSVjiPKfrNa9IrdwvfsHP8Q24BHQfOo1y2jOgtsSc7ufXSbp2u XUnaCSBtiDzQ3HtPp5z4lBkGfrypduxZ3qFYkyR5+/PqqbUe0WVxcUtIAyaUNODF64izJAkcTGaK 8uzR3b1xYuDUpaTxYAK3GJP/AOgHvrOEBYbJjaQTPX6FKNgBVTbC8iTiegrm6ns+9c1VxrRRgfxK uMnFAml1FgMCADAO6J9v6Vf2Z/s47sMpPOc+2l2bT24tHxbjIAPNHG26qsogWSQs8ZIxUvC3cNth KOTOPmPrzodR4WtkEbQimOhkfviqc3BuVUksfxARg8fn8q09n7F7Q0zMzwr89Ses/OvTaK73ly4t lXBTvSNwORtaI8hkY9VJ0dru+yrbi9vtPaDEk/hkZFC9tX73ayt3jjb/ANVscr8m+NbVLi2NpgtJ BiByIn4/KtN2+L7dm2DZuRpLOoFxzG0l3UgDM8LnHUVm7YuafW657tm3rwlkC1prTJaFuwuAxBFy ZJklongdKb2X2y3ZGi1doad7j6lraja+wKkneSwIKnaTBEkGKzagaR+xdP2Vo9HqTp017ahBfW3A QWysGGMnc3vycVt/zDTLrV1L6O+bWm7Os2LaLbVle4m/+DcJQbuJBMeVYbbqt67qLzaq5fvndd1O oRFe6xxACswgCIGAOAK0acqNQ5EAtgGInH9K6QLxA2gZDGPxAer4U8DcgCQMSACa5z77V9rlkgOI 2kYggSM9OZpp7T1rWbQGu1G4aoF9txjCd1dOT5SU98UtWvX2vPfuNcuBwsuZJEYmiGiS92cLxBU2 70gjpgYPxoLibZ3iYA3Y9VJChXUGA0lSJiTzj5/KqdbjSWO2GjI5x+8fOklHDAgjiDIgTiguW9wF xWGOvWRih7sMMqS7Dk/XGaVcKWw079wlxt6xmrDD7PLnIxgRR2dZrbKsmm1t3T23lx3V0rJiJgeq KPU9p6rVavXI2t1VzT3dTdKpcuMV2d4xWFJwIAgeqs52gMB4ieYweIIB8qUmmBvO34SwIIIHi5zN R9Myqu2VCNG7kRGKz3bRCJJAiOR6+aRcWboCsZKyCBj2fE1Q06F1YSBiDxHl+dZ0N25YtB0AChcA 4IijVCX3A5IJI64GayXLc6gBwV8PPHWhYByO8QqAeg65+vfXpvR20Tp75KyGO0dcQMT8a7n2ZTp9 xVfDuB3xiQsfrSXsgsStvdncSseRgfOvP+mNk2+ybU2ysagZx1DGsfoZIOtYcKqmBz/FXsuy9X/l /aVvV3le5btB/Dbgs2CAMkCZPnWfR3V7P7AFgrqrOtaxbtLe0yo1y1A+8jcwEkYkGRMiuWluza32 NNYuJbteELc2hvgrMAc+c9etdzW9u6btHtq12i2i1YfQ31+zlSpmz4S5Kl4VpBgrkiARisFq6ltO 3b50Di/2jZ1SWwqpv+9cldzTECROenWj7Qv2dTp10iWdebCAPfti1bK6m6BILObgJQdF2xOTJqmd Lu3ad0Nzt4xH1766dhtwDKFZWyB5RWi0TkuULwNzdM/2pGsSIzkZXqcSayhrgS3b+16qyvIFq+9o GcSdpE8DmhY6jWa68763WlG1l1gjam4FKC42wbN0RG08cVp0dlbnaNlbi5hjB6wpH7UhNK+nt907 AhWiZzOce4VHtJESAEEEz186plIEoJDZgmcVldH7phuDXM5Ax1x9eVQqXba7L1PvH0aQiHwKwJUq CoP16qEgISzgwrGcZjpVWWBusgLbRAkiCTE4Pv8AzqmuEXA9hgGtvukmII4I8iINNu6/WWtD3P8A mnaPeXNVbO4au6TsCXJG7dgbinXOPKkXPGDcu3rtx3O4m67XC2IyWJOBFBftC6QGBABkNyFOM/l8 KM6U95uUbiwgxzgfvWXu3QBC24lYkj6GazNZIIiCeBLYMkkx66UdOEUXnJLZhmGROelBp0bY63V8 aIAY6yxjn1Go1soMiXTnMzzSLlsbIuQ67RtaBkQKA2wbtkPDL5e7mtfZK7tfbmLjMZAgSYHFe201 kBmIBMo2T18BHurPp9GtrSW7YUBrUDaByY4z7KYdJaz935D3YpVpTtH3auQSTtq+5KtuYC2O7I5z zkfKkXBtx4lbhgPYeorHatOykHbCEyQK0aexcNsIRw57sHlRAJ/WtK6cbQCNzOv4W4A6j5mmHSMd giAqkeIeoUvs5Xle8hNwJAnj2e+u2MW9oAJPDfkfiaoIpBAxOSD0n6+FYdg8SiIXIP8AuoO6++YM wgjA/OhssVu3WiEkCI+ZrZacjs9yWt72uGAGxO0dOv0ax3iWuNceMiDA5HEe2lsyqdxMAeM+H2R8 qoAFF6uIPi5H1FS54kuAKOMRkxFZ2UXLtxnULmAQfXWXU37tu2Wt2u9KPthf4hIords9yrNb2ux8 Sk8Z+vjVEW3A2ggXPERHOOPlQXCuCpCmSDOev9aDMBlk8RiD5Z99WbotsFa4ivPUY93vql1CC6EE sCAAYxgedXfus029u32H4/nWTUFi6mZgZESZ8/zpPeruUqA+d/lgmBjrWU60Jpu8RIhgobqT51LW stLpLWf+WqgERJ+gachIuuxQRsIHrkHHyFZLzDv9yybirxOCTiKonvdMWw244WfVP17a9J6Isx0l 4MytDCJ9VejF7dpmWBAuk54wAPr21jLuCXRZVmH4TMCPnXnPTG5cfsiwLgYffDnr4TWb0IHi1pgH CDP/AOVequWXKMFtBG24J9v9RQXQpuZfcWghhkT6qw3FdrqsjFmK+LdiPXHvpmntmQxIMghoESM5 /KtFvTnaS8qqgNA6ieKeNLKOUX8Yic8QY56xSXs3LepEIAoUMWGPr+vqrsaUBUViQ0DjGDFMKgvJ BAEgR8I+IpF+2vfKdwDEdOnsrIEJloWCTJ88Gq/AF2hckbSORj50/T3gmsV2dUQK5OMrAM/KKHUX CyOEAa2fwtMmI53Tn21mYMpKkKHAAD+vP176pWVmIdiNogxgSSD+1FwACFw3M8VkvW2DKkAru69M fOgvRb2Kihg0gBTkRmfkKz6bvb9y53tprYkgMY5np86adm7xKQymRAnmRS4RV5yyk7p9lAuSV3bo I6euPjUBKqrXSoUYz+/lNCdQvdht4c4wg8qadRFkOqYIweCOvuwKz3mYqWgLt4nj64rD3o2oqKBn cRHEzH60DahS62u7DyGhogDMfnQm6W1D74tqqqpVROZJn51BfW5vuWiNu+J8vX8PzoNS9vaJC7QF XB6wIP150neVRvDwYmc4rT2QdvathSQGBgAdMc/nXvbN0rdQLG47oA9n18Kz3CW8AtqWGYmT76Wb jCdvTxCT09fy+hV20VQQj7EIgCBPu9uKpWuFwzMrt/uOAIOT7OtJvAhSZtyR4owfUKz7HL3AzoEz kHoB/etmjEJFy5BaQp8x9GnBwVCNbBUg5PQx/U1b3CVAYwQdo58/7VC1pbhUkgqMHp7q3NsVzJML MquJ8uPfVhCqsS7Fg2VJPBPFZLttu9cl2gtxPGaWtsvbYXp2EncScHHFCUP3u0kDJKk8nj69lVdD jRoCEAN9jM+SY+QNJvXHBASMHB6TPHyodxW9dO4sIgzEA+XzrNrbmq+16caVQyOD3hYcD6/WrK6i xbu3HJuH8S42n1A0KMXYF7ZUAkwzcY/qaM27YaVwN8wcQY+uKJULGHG6BAM8ilLYbbudwcCAMASD We5pJS4ylp3AKd3EZkUsKQzBp8Qyf9vPw/rUa0pUblHP8Qmf6xilLprdlQi2yABuImRxNXctON8C LoUkg9YrLc053Frm8MykQTk5wB8Ky/ZmDKSt0EGBDSOf7UN2xeu3BaCmJG4zxn9oo9Rp40dtbiKp CqCTgTx+9LNp1/AGC5E/P9aAA98yJAKrIkc8Z+cUPiF7ZEQpJGeePZxFei9F1AsahZEBpM12L41F /s10sAB1eRI5jbInyNY79u49nu0uG2xzvXHOSBXC9KkvLoA9y9vVrywsYWFbj51foKu467MH7vJG P4sV626X3kC7vBhiPZE+7HyNC4Z0G4WxAlQeZzHv61hdD3m83J3Nu8J4xFM0h+9DvztO4jGAPy5r oF9jFkh2iQTx1/pVq+3CgKrDMziI90/tQhkRC7EkFowZ6/3rVZ2GySjRkqDGQY6ew05U3uh3Oqjw 8xuOKTqFYqACesGefLmswAe+Bloby48v70Ny2VG1phf4+pPs8ulWlsteuWFBllZA3Iykfr8qyW1b 7Fbt7wJVZj2D96F2ZiruzeEwqrHi4OfnU1FwnSXjabdcVSAogyQY+OKRZXXXrdq7dhGmWQDnyg+d Rrtw3WUWmG2QG3ROJpi27f3cCGXiPZx/SqCEIFUysbWHl9ftUawz3gFYIDA9Zn8sUm5phde2oJz0 DEYA4rK1k25IMruLAc9ePnIo9gZiYOenO32fXWk/ZrQbvBbO4YlMdTA+VQ2wtskrtQZ3YEGJmkan T3mLo+4WwDnoTj+tZb9llbvNtwgwrbTBJ6YNB3TW7K92GyZWeTnPymis20LttRli2pYHmdzR9eqk dzsVgoWZIAXjnik3bbG3LJzBJPQRx7eKK5vLNIBJbEj1/lmtPZW0doWwW3PIUGev0a9pZud1qENt AY3NgFuh/cVisJqrfeHVCH3ttC4MMcSaz/Zb5/8A9t83N/Xjy9nFdi0bN0L4ZwImJ9X6UN2FdoeQ YkjjyA+JFLuMrWNm2RnI68/vWO2VWdrAkwWIHJjmmK3hhVYEEnnBJ+hRupZZBlcAEjmgNwMNzfwj mY+fnmtvZbd5eDTKr+R/aa6wVCwQLDQFG0R1Imrs2+8BG47ww5Hv9/lXPu/e/wCqJOJA/P5j40sQ CWtglc56E1dtVRxuDBojzI5P6UyyIsE3WQo6gKCPV+01nui2ULEbkVp254nPtwTilsk7SVIflgM/ XFaEs7bciyqgSAAOOP60q9cUFUYeI+rmBn5mkMqMVhSTvBzjypbaYh23LG4fikZ9VWth2s7VJErm RI9/nVXrFy4Sp3IMS48o4FKOnvLbgxsIO4Eeof1pfdvEBQqyJBWOtUFvDT5YDJJx+LigKO10EiTP lyOSPZmray7W96lyA0wJkkx8qzlLjFmWD/8Acc7aQ+78LNudT5QPLPw+dAqRc3gkLjPvOI6dKVuu XLVp3tnxoDzz5/nQNbugooYeEAke6KS1sjUMxczt69JPHyrOFfazNAJ/KI/WvSejaqti/MHd6+fX +dei016xa0bLe/343EDdg8evArM17SW5K20ziA3twK876aX7V3siyLYEi+JI9jYrP6BFf+PDcHux 6v4q9jcFtbQKkQpkKvLR1paP3bFj4yJBPvz8/wAqxOCSQx8WcTz5eyhVhaQFB5DBzBYD8prQksNo JmQIP5/nS9+0MvO7I9fu6cUVtwLvdqfVBafZ+Vd5EHchSPFtALQJkEUW1e9QSQr8Lz/bp8aTriyl bUyH8QJ9vHw/KsYsRcIKndgYNEU3Qbo8cxB6VSg/akRA6zzOR7arUsm0taUDdI8OcdP0rPds2+5V lRto5kH2fRptmzuMLZEwZJE+uPjFHcYWVZnWEXMeQH0KyMVCs3dvc2rMKPxYqmsM2mVhYnZnyzS7 dllLcgx0zHsphsuAZXfueYA/Os32a8u5luEvHJGFaPy4oWRgwcKNznB2/L5UEXkuErBIB46HP17q p1uQQxDjdnGPOatLVxtq53EH2EHrPnxSHs3F8DSVDRJMbvKT14pF3vERtqBipEe6gcN3O8KzsRgc RzmkLbYXmOD4FyehBM/n86EWjmSAWgEzPHIis2ptXPskAz4YnqfqKDubi3AUkQYiZA5pvZ6ka61c UwoYRuwJ9de407W01ysCR3jbZHSevwor9/SXboeEcwIIbnjH51jF+y38SHegODzxkVqsosLuztjx HEDn5TVO21t1tV3bceXMc+VIvtb2qFuKP+lfj+dZfu2A8UqxEzGTitenss7GIIE4Jpl20jKJOYgg ew1j7lmJzNstMleRA/rW/su197DAeASPUek/nXVVoUzDBcKRyc4x7qLTgrc2kAJOHnk1jvmLjWtn hJJEHpyMe+jW2CSGTZExmfVND3PeXn7ucqDBp2n0jXdGEtsrIGIEr8R8DWK5pnNlnVwGC+HrJqCz dnMQDtx7cH8qhRhbUF28Yyeu7GflSb1s+K2Le4iTzx5UlLTkt3gwOpyTzn5VLguFTszG4TwCI6e8 VYu3RdcghkXkk+qYPuIqtzGGkAyYIyBg5n2Hj11HO5SNmF9ck5il94gBABJjj2f2qiVzuU+EmB7h H166qLTXCApnGB08/wBKqFCsCxiRlTETiKSXCuqsF4mR0rJdS24UB90RBB56ULBGAIVQTAIPnSXV BtQyAFgTwOn6jFAbYt2l/CCVE7hwev50m+E2FkTxByAxisl2O88SAeYXJ9vqr0fozpjfS8ZAgkAe WK76dktf0StCkpcEyZ3DaKU3Z1xCqNbUKRtBLYECRivMem1kJ2Lprm0jdeAAjMBW58umKzegIk66 T4fu5Ef/AHV7NlVUMAYiQM9fL50l2mRcdFYCARyR1+dYbm7vJAEEEg7uDk0So0i2rwZG2ePMzW/u VURcIUY9X15VlNkTCyXIEeQx/TrVWrYVlIQBjEg9fV8671sBAqLtiIhhHv8AbM0WTcDohJkgA4Hr PsqtYI7t0UNCwc8SJH5Gs4F0yNk7pG4njiMVLtu21tgzMrEjqMfUGrs6cDWwI7xlPTIEGT8BQarR Mtza+2CQQeBMwIrObV207PCsAsDEAj1fCmPZZQqkncmSVPXI+dLdGNxo/EeNx4pLWLgJFqFySQcw aGWFqSzwVGCefqDQobjIQDtlp5ijL3GeCUBH4mng8zH1wKVcOyySFBJEAE/h4EfX6UBYKxNxSpUk gLJ3Zge/irdgWYbSniw3xINLud0EhVg8CBmmJtXasHbgxOcz+WKzX0G1sbhBmc8kiBWS4yujb2QH /avT2++foVZVGYldhicke6KF1222KlDAKmRBmfP31mtr928jBmJHrpJInxogmZ8vZWd4AZcTk+wE inaC2LnaVi24Rg/IjqJ/pXtdN2eW1dpSVZDyCfUYqf5W6MyrbWI8RmOM9PbQnQEzItjcdxzwM/1r ANa1u5CkQYGfOup2pcNi32vb0623axe0qW7OxU+yK6rO9sbyZOAz5K1ydWjIF7sDaQRCnzMV0u0r FrSel62r2wDU6qyNNpLVtTNqEDu2QFXduGZJPAxQo9m1a9IjavWbl/T2tbcTbp3AtlWO0SyBSVgD BPHXmh1jWNNpdRqNS2otWbY8J7tCt+8eLaQ5YtM/wiAJMDlAY7xcusBsMCADn9q0dnuzXW8OQCBJ wea3W4W4TG4sJMmOKJL03BtiW/ijz/I4FZmJu6lvHB37YmJiIyeB66bdtXxb0/dXdOEfUIrff242 93cMAz5hTAzjyBoHd7DsBcR8Alw0g9emKq1rDb04XwhpYKBgdP06VmNzapBuEuQCCT8KAXX221na 5YeAdJPNLv6l2uEJhkhp6RnPypdzUMrGJDM2OTJpVjUXnZBclIMbZ/Cegx5iTQ6i89sAiZUz4jgD qY+Xvptq4+zKmWU+FTGM49X9BRi6NmTu5GKvT2r2otFlNiPwy95Ekz5Ez/am6uzcT7cbjafYNTeV Vt3rc7e8YKNoPlAiMRnrWW9dBAi2qk8SckYH60NtkLhTEkkT5R9Ghum2tncysNsMPLA/rSbvdrYV lbxsJmCB9ZpJ2gx3gIEGJ4maC06d2gX+PaCY44xS7jcbsyAYjr5GkXG3GZJBYmI4x/eh3LsuBtpL Sdp8/L4msnebFI2tIXgDn3+ddv0f1n2SxqWY7be6SfIYz8TXcPaD6TSr+BRdu7E8US301Bcvai8c 3GOJWcAR18+teb9M+9HZNje8g3lMeZ2tmsnoVeNka0r+Im3H/uNe1tazd2PrtQLtuxdtGzt1Bt94 EDXYIC7WliJA8J91TtMbu1u0k7lLC2ruxBuWduxTOCYkkkDGCMCl6PS3tX2H2oqd0l1GsxeulQLa B4uNuPA2BiffVLd0dzsG3qrN6LJ7RZFvXdM26+ncmIVAzAT4hMYE44rXrG3au1asi46f5fprqLYt De7uzgmHKmTtXnOOJrHeuWvttzR6e61w2gvfFkEW7hyyEgkFhGYMS0VTXLRupZLYH8JiefL3/Ous eA7DgAj6+Xuort3oFBx+GeZ/pNDqbrkWyGUSZY8AD6ms737Fi0jXdbpbBYx99fS2SRzAYjifnS72 ut2LuqTUdo6EXV1d1UsjUW94XvCFXaDMxtxEjr1o11N1LrbmBNtDLRzgn9PnQ6jUm+xZS20kAery Ofj7qzC+6iQ2AJUEdJx+tENQxtLDFucADoWpP2htzKdw2gMTz5SPyoLt+8wbYGznymCKjOwtSQQA CBgeHNJtXrju3eKPBIIE+fHrrT3h3wxaSomTk4GcfWKWrObq20C5AABIHlyTTGe02k7xNX2aQuqQ XLn22zG0pdgFt2JIXHq6waBdRZm8bL2r6q0s9u6txfwzAKkjypG4bxLwASBtJHH58GnyFbdtMQGg cjnFZYtO7W1cA2/EB7eM++s93ayg7SzgZjOetZ1uCFQ7hI3DGAYB5phPiG7wgpMHoZOayb7ZZkLO TyQBxz/Wl2Fm5Ekx5jz/AExWYybsfi3CJI4Jj5Vo0D7O1LBiNr4I6mK9cmudrrXbU7rQfcAJjaOI +dQ667qF7xSwWTgZ4xyffS9+o6PEeMSvEzI+dcnUtcLQpBZW5jH1xT9T2rqdcLy3nsol+7aualrd o777W1G2WLFQJVSdqjj20NwkWLQTHhjPtifzp2o7c7S1Oq7/AFC6e6Rq0v2w9tvudu3wp4pAO2TJ iZMCh0+o1T6HWbWsC52lavi8/dnaO8dmbaJnAJjJ99M12pfVtabZo91iybVkvaulrYP4mxcC7ieT tzwZobSoAAhJYgy3rPnHt+VauzrhD93dIVjtBZj4ZGcefs9VdLO/axgN4QDz5805YaW6HMHoOg/O ufq9yB3lQRgsP1+dJv77tiyLaqVXUi9BbgC26x8XHwppU72MBgxAAnj2/XlWjuiNCXDSm9pM56fL FYu7DOyhdz9GnAodP92EYgkqY3CWnj96o3FDhNp/AGkL09Xu/OkXtyqBDEExJORz/Sl2LZu3wXcx 3gMyMmMD9fd5YoXYXF7piR0J4n6/Sk3Lo77acud23GIMY/Kh71UtPICQqsZxHQz8qhvHujsgttwJ igbWG7d1F029hv6m7dAmYDOW/pTr1y79kR1tk+M49UCk98bTyrQzkyYwT6qWdXaa0ZcHedsE/U9a Re1O0qzsy7hjyWOfr2UhtdadCbVwO6EyBy2J+H603R3vtOrtq7AL4XSD0n+1FqL8XVtm2xads5Iw Jn5Upt1sjcwVUUsWByYEE/nSNKU1NlmtttIaJYZkDn50rvba3G+83MvI8o/eu36OGxqV1NxsxAzx Ag8fCvQ2wr9mkd0Ln3rMhOI/CJHxFZVvi4SVneCyEEQG9h61wfTJ1fsmxBn74bSOo2t+WK5vomxV dZzB2Agc/wAVeg02uuaezf0rizcTUFJW4jEEo+4HwspwZ6j1inJeu6nVazV6i8Lmp1Db3YJsAIhQ AvQABRkk4yalntLX6RLtvRX1sd/ctk3FUlgEaQBmM9ZBBBOKpdfqdYDp1TS2bVvUtrAlq23JTYAJ YwPET+UCtx7R1K6y7qd+nW4dJb0qfdt92gkzKuDuO85BESKwWLSWTsNrT27dtAtu3YRlHJn8bsZ4 6itKsyX0Ygsh27QuTI556GK7CnfaVrbKQwmQZHM/H96ahDAbZ8XikHny/el6ttpQYKkkbQY99Ybr v3w8JgwT1g8fPFS3uPfFlWbmqu3iu7gNcZgP/cBTdLbFy+yliC4ZTPltP70u8wb71RvGWMc+dZ7l vbfbwMN/QAxjPsmtLjatp2XcQhbCzJlpH15VmurzKCSevQdc+6st6e8lA/dgxtjgTz9eVG++3aUz I2mR1B3GM+41mvXFtJ94CyMhZ/DO7GQfnVLcm6WgMVKnpMTBqheXvHUEeEwc/Xtobmqfw2dmO/W6 X3nAW3cWAPbc+Xrp2kuvcJIQxtJx7JArMbzr4X8MBoj2fXwq/tam4ivcjEjyiD+tIfUiHdG2AAlg p4GJ/L86zNrUVhbF4KzcTjZ5TSzqyWPdnZsIksehGK3Xitq1ZuoHub7eAuTyT8M1mcGGuW5DEBmn yjI+dKFwDWpYDeOMkHHH18aHUOiEb2UGGOTxEftS9Jf2do20IYqHmB08MwfXgV7nSm2uvttiVVyw 8/Ceayw2lZ9PcDS9y4ygCdssSJ8qcbnP3jHPQDPrri3Azb2Q8xIjiP7msqCMydpaYk/QreTGjsEQ VCjjjk1h2XMoWJQgYJzzE11LFwWuyrCXzzcc48h+/wCtJ1F9LZChTBUkt0UeU++jtXrVtgSGVCB1 9YrodnsHuM2WdFEZrUzDYQhdjyCTmasXXN5dwwpJ8X19TSdZcTe5a568jmcR8azAwGAADgbfPqfr 3U2wwJZYkhCSflWy1YuPo9ttWxcLGODK8e0YNYtj2ztAdGP8UYmef1ptjcupSVK+IA+w/QFDqAxM Hw95APqwc/IUhtzW2RjuJEHMzAPzIH1zQ2d4upu8K7gAeZrJdVrjC2rEhSS27ocmJ+FLe14QSvkD P8PnWa/auamy1s3N+4HI6DPx6VmDORaVka026CGaSIH6zWfU96Lb3t91RtgKoE7oj+ldtN3+XWS2 PEffxXPay3dv3exFQyoUYUATFIQOz3luRklVBxIx18s0jWqEFx+8OFIVSsc85Purl6QN30opP4p5 H1zXQ7F0+7X2XF0sVI3CPj+Q+Ndi6ituRGSSxLAiTI5A9lY1BAhoAO4esxOPzn20FtNumvMXHidi u0QPw9Pga5i6RrbMtvcwdGCHbycfCvQ+hqM1m+pQv95gziYED5fKvX6OxcPZd87CLhZgvy/YVma3 dKnwi5tJhp8+DXmvTZXXsixutBAbynnrtb965HoqNw1QBggo3w3H9q611ZYBiQvnMGOOladFzeKk SLfE85HypZC3LneEMu3En4/rT+yJs692he7Sy845gfXwprXbS2HuAM5XleS3WIobNwOASufMkTE0 +zeS4xAnazAZPr4rsMVVslgQMCcEedB3txQQoIBJjy4/KhvkNYtjgJ4vCfV86yXCxYQZG6WJ8x9c 0JErLMYBxJzM445GOPXXQ01rdr08LEKCDtMA4FZ207adlL2yAFAgYz1+PNKuy3gyzSMEnGQZ+vOt AFzurDKdq7CskYiT+lJi41pjbAV3iQRKj6n5UhyQ4KS25Djgc/2+dR5KrtI3FJyJxJNc7u2WxA3O QNxgmCaJUvNufCqUgiIOT5+YrnhXtalyyki4d0kwFMcfKlut42VtqWRxtJaML5j4Vs7Ad2fWKHeF XG8dI/cGpcSe7ZMAmTI5A6fX61h1Nu6j27TANbJIbwyIiQIonQ9wqsdmIMSYH9q4Wri5q3KeMTge cCntb765tvfdsUXpu3CvUqNmkssJKLbnxeWTXOdXG3cQsqWIAx0il7GbWWPwtwzECSBt59kx8K52 vsNeuvctFif9ogCAMn4in6GyzdvWZViGaQDjpFe90tub9obG7u4hEzySD8adqEvDU3GI8JYiGMeU H86zbXX+H8L+fH1+tcS8uwkBiQIEjn6zWUA+DZcRgSd5Jx08q6S2VTRWrVws223GAeMjkeoVjcMU AUeJpgcbTGPyqXWd9LbQqS6qSwHUmf2NK1JVN11tPC2yW2sRnzwKx6TXDU6lbNu0w3Y3dR0z5f1r 0XYxuFmNxNoiSCcgQfKtjPulwBtIAEcrnPtoLTrClgwBgkHJiOppepCtcPiAcEY4E/r1PvpIb8ZU LMzHtODW3s51N91dNq7PFJ5/bFdLRanTroSrXgAXIndkYpN28jltt4RECSAJ+opOnv27moXunDXG PiA68Y9v7UTqDcW0ARCo2ASDz1pLptKjKqCcx5jp86BLU3dpnLCYMTn+3xpdwoiM0HxRBHJA+orI 0JuMDeRh24x5n2z8apr1tQxC7DEYzmkPfshLm2yWcLugYJ9Xv4pVu/prh2MpMQTIOK3XLaDQ2/AS viyDMcdKxm4o3KlsmTPiMe74flSZtvdOwQRt56AGGzRlLFu47Pp1YDC+qOn5Us3dIbgUaddo5jj2 j4ii0d7S3NeiaXTFC5DzxAmM+/8AWtN21bCEd2iyxI2n1z9e2lbLAuMWQHnkdYil2nt3LT7bKbQC GY8NM9aphZ8I7pSxIzMTkmJ9grr+j9ywjaruwLTMcgfXlXe0l5PsbFbhKm4Wyc/XNZ3vMGP30pEC CPPn34ryvp0+7sXTDcCReURPHhNcb0RwNWwMHwD3eKa7LywbxKrqpKAHMx9fCtOgtkpeZ2AZkCnb nM/nmgvjcVKpBgE4yfbQaIHaxCOGazjOQTGPnQwQpmyxyYbjECuZd1y6VzYNkb14M+GfMevrXW0b XS9lhbIVobxdMxHy+dd+43hFsAbgqlpPI8vV0pW8G6TBEGc5AyRipcdGsqP92JjMx/b4VkZioDAB lAkDPnNTe8yAJmAfl9e2u1YZR2hb2vtJQg5xwQDV6jUWHcRdlTkxGMH9+lZbt23MveCh5MDknn5Z +NPRnuJadWbxg7QI4zB+VIa0VRlO4zALDjHqpM7WDKNzlAWKjJOP3qagIuI/EhEk8jMH69dZ7jqC GQEkyIOMRSRct3HZCrFVlZ6T9D40s3LEDvEDNviCeDxWS5esrekh0G4ciZ+jj3Vv0Nqy5uG0sBUO 5QYnmsz7MWgr/h68DHnSLrWpBcNtbxCOR9TU7uxHitky0EYG84PvgD86G62hSSLADRgg9I5pLvoL dte807M6AEkDPlj3107pLaayip4nScdF9vvrKq2tu24rKAYWTHSoDYt3wluypcrgA8fXHuoO709o kvbXYpyk9TA+hRWG0q3tPuBD99G+JEg/0P0a9hYvI+vtlbplQTziIj8xU1N/pbu4kD3T9D3Ui5dH 3vjJyDgDPs9dcEoGbxsJ8gIBj8/dQLorAcqbRUHIAxPu9wre9tBp0ZQTNsj3S371iZShImEOB5/W ahtI9hGV4JkEA5GZ/eia3p2U7kmGj3yJohZtAlDaAeBuIPn+mBWrs+01trrgbd5AO5fXn20VxFW0 GtSwXKgTjHED2fOqtllu7jOwEc+04oNT94rRumQQAfVWUjfbO38W72wZwf1qNcS3cuFgDvYKABO4 xW55/wAsDWrMtbZpXzEQT6+eK56Xr9xZvWhbgmAW/OtHZ3eL2lZU2xIcQSen94+Ndd3updMbFBKh ARjiYHzrLc75z4toH+08EHmR7BR2bdw3wC3BA55zWS+l6Q22RkjpHQ/OKzkXnSVnawKkHPX1eWaB 1fAfB6r58/tSL2m1BXILMGHHljI9VK7m/hFtLJSDIgyMR866zWz/AJbaUjxeIgR1xWQq0MzoQzTE dccfn8DWVkY3G8C+HAAXPmfbxVtbvGHKEss8DE5mlm3eG8i0AeCQOg9vAiDRaW3qbWttb0Hdl0G4 riJ59VbLlthZtgoJQDPHGYpBt3I3EYAjPEx+35VSWrtu0wS3O7qOnUz8aUbVwkG4AJaDK9cf2obT 3LFm65s+Md2VAxOf7V3Ee8ujs20U7WusLgkmF28fGPrnmaa5qO6t7pkFlJbJ9RE1yvSt3fsu1viB eER7GrP6ILuGsEwBsJxP+6vQXdJbdjea2GIGGHIHXPzrZpbFtUuhVJwHIOQTuU0m6O7YoAWgY9vr +fxobFpWnxBQyEjP4Yj9qJLVruwGyWJnPAI4+EVBY04Bbuhs3xz1JijXTh79shWXxTMTGRP17K6F xVe4SxAuHBA8JYZA+GTWQd7v2qCFUwB58Gc++nOxa0gBggiT8f0rEZtkAhtrEx7frNAButqbinLS gOCv9etbuzbiu73VH3exjxyBXOt6y7fcG3Y+6jDTgiMR7oNE++Adu5OGhpgev412NM10WNKRO5LZ kwdo/EfeMxUYalQ2AgLdI61nuC4bqJuWUM5AOBg/I0eqF3ukGSdsgAZME/pWYW7pVZhcHgZpSh5v KxI2qoBOABP18qWbdx0UjcQTMQPbWPuNRbR27qSPEN3GCT+VdHsy1dVr/eIRCEiBgjbFIu2rpY+E HbEMRn146UAtFQNieCIHqoHR2tBSkeLIHM8Up7dwbQbAMBQBtmBIx+tLuW75cm3b/iBYbOPOukLL FtPe2Ek2NrR08RMZ9lKI3uE2QSS2R9eVABvuowU+AiGOOkx/Sl3EuyWZNoLYD+cAD86Qbeo3W0Vd 57y3uIEGA0kzXZ7Hvbjdum0YQvtJkkjJP51lY6kXrSkNL2PFJwH9dN7y/wDxKBjxceH1ezBprack SbMgGVJyf6UwWm3CFaDhnJkY5/Wi1Fq4NNaBQE7YaROC2RHkYrIbDlrb3FgpLGB1joOtS1aS8bI7 o5LMVPSI/rW46W73R8ARWEtxii+zzcUQSgHi93SmIR3jqQwQEFMe+YpSt3dxQ1ud+c/HNDbLXHBd QVypC+fnTlU37jeHwiDHWYyD86Xc0Ld3ctm1uDdI3SIzS7mlS3AGncEEnLc+2rv27r2tOgwBcYtg xEflMVzb+m1LdpWLi3B3aFt6gxyDE+qtOg0d+z2qt4XN1oiO7niTjmu3hwTBZSqjcccUs2WRyCsA 5jdzE1Vqw63U2sQwjy6kR+VZnsi84LEIDIgnof14NU2nm6ArgKMEKfM/Lg1T2W3qSYMAn1c4+R+N Dc07khd5yARHQ/QpK2UUQz5DGQBk5yZ91bLlsppUcssSYI6ExWK/bZm2bsknbHUnE/n8KBrZncjQ zdeQDj+lUbDhtzXS05Kr7f1k1HtuLaurqNwEsRz9eXrobNi/duW9l4Ab1MgxwQTj10+7YZiu55SZ hoz6h6qyNprwu41ACMR4WzEHj686d9ncFgLyhyQG/wCvEZo007m13isGnkmlXVZLB3QTvBacYkRH wrcS9rs8i3y3MmT04rLcVwksdkLt2rjPT9q4PpeD/lqZJC3lBzgHa1I9C0LrrYUsPuweeu7p1r1l vTFcBDB/hBgDjNOtIdtwlQdySBMCCRj5isj2XDsSB5TEH1zSU0+9RaYeHYQHkZMGPnmt2m0hFte7 tQANwY9TTDpyEckeM8jofVROPs9tCA27cA5A8zUvuqwUUxBPqEmf3pV26wYJtCEgwYmPXTd+AqJD FxzkHHT5VbaIblZbe4cEnMiD+9JfQ5Nw6dy5MhoAzET8KPT2u7W4iKAxtkDqSIrnHQ6o9kpaUhLn dAAtzOBx8KS/Z+pvdn2VS8bd0WwCxJO4wP616C1K2NOzjKoZC9fxZ+fFMuJcZSRBMeYwePyoLmnl 2ZZYMfPmQIoL6XCVG4klIBiOWM/kfgKWdMTaZbbCTILKODP50A052N498gcnJ5x8qHuHW2HV8wCc jrSRZgzu8DCBIkAU/SpuDbGElGBWepB/QGl3LeC7XBtnaPOOKS1ogyGYkrMCM80vbdup+PZuIA6R 9GiSzcI3Y3hZM80u2LzlR34LTLRwfqKbdF219nDXlJ2PuHnkkAfXnWUaPU52XraMGmZ5Hl8/lThZ uAqly8pJaefn7c1QsX2thheS4W8JYnzMTHupF0XbavNxdyZPQHr+tbNAZF1QQrQ8wcdelAzai+q3 kZN9xQ0jHsH1500sx3eNc+H3+VbBdVnJ2BSckkdZNb+0i+j7H1elGnuq9u7o3uXyrKtxnvjcgJwQ qwDBI8R4M0lrothd9qBsksP4fEf6Vp7RW7pfSlJsXb76zV2riOJW3YtBUUyxEFiwMKvnJIrENQi6 T0lNj7X31uzrmGodVUSGOFIctg4BgYHTiprtXb0WkL3NMJvgpo0t3wbl+7iRsKAKgMktuMe0xTe9 tb2GYjkdcR8cVkBDkgJsaADtJwTnnyzV34cGAdo4E8xz8xNDuLhgQVDEKpHQx8afZRCwVgdk+KOB 06U2/atJbsBe0BaVtWoYDvPFFq74fw+ec48PnEhqzZt2ztN14yWCEBsesD50tFOy3cFpnEMpluJ2 wT8IolfwMPse8CJJMY6n4U2wV+0DbpCrEgTODWiAlv8A0CNoBAHFZju62nhQuPfz8aK3C3VJG0h1 kA8SeI+utZ7u1WCvaJuTzE9CRxSyysjMLRVW5weJ6e41V0q+4tbcg4IA6zTNPb09zJvpZAG2GDyf WIBEUF63Z7zW3G1lu7dGqv8A4Q5YDvWxlQJHHMYxNDcFv7CIkD7z8XHAj5frWbdZUgboEjkwfLrV OLDQ6s8KwPt+sfChYqmmEkm4wgkjjnpQd5YC/eFlH4ZI6SKdpjp31CBWctuBURzkc++pea13ARwT J2iDHvnzrM+p05t+MspZyFG0iT/XzpiXNI9pLhYtJ4IxPl8fyoNRqtAsIW2CYCxz1n1GhbV6VsAs bULkLwZ4n4VusMiaZCXPd3HZbZJ6lV/lasg1ui7wAP4yxQiI68++uJ6W3bN3sm13USmoCmOkKR+l T0BcKNeCJnu/Zjea9xpla3a1Ot+yXNVb0qF1sohZrr/wrAkwSfIgAZxR6u4f867Z3Ibnd37YWTMA 2rOB8SffTrWnbV9m663ZY2gHsXGgMx2Jc3MAFkklVIAHMx1rnPrLV3sHSam5ptZatntJhZsqFe64 7lwN0lQpiTEmIA9my/cu3O2EtWrTXbjdm6Y2rFy4LcktdmSAwGBJifwjMVls9oabV6m4dIGazb2p 3offbuXMhthgFkUwN0CcxxVa3xgBRzEMeQfb7qtANq3Bx0JPI+v0pauO9gckSojg+3r1NWhjb3cA MQQQOg6D5Voe5p9OAzm7adjGLF27MeexSBz6piqXWadL+pS5qdRqLo1l8eDTXmCzdaBuKR4QYOYE HNVpyh1LMiu77fLDQDA+dNtalriB1t5ZAQCJGaC7dBUm7pCRMGMkCtVtU2ps05CgAD1D2eyqYq67 UDg5EgTgHz45pSzuA7vY3MHrnNDde2ttWdN3hMmOIY5rLi4HhCGAP7z8ql1bJUWXWSCSfDIBiJ9l AXtuxUBkVn2kshgYGTA4oL13SnQW+71rJbTVWw4bTagbx3d3wgd3J8+IG3PSS0lyxfvMLFy46Krj d3b2/wCExhgD59OlKvMd4HMATPn9fpSxA7wuziYiBMDrFApsjugXZwACABgnj+tAzLvZnkLAIMSf VVhtKzd4Ll0eIg+GMceX1NNcqfs5RZDK4LRBVQTyD5zS9+mMCWCOMAfp5Ulb+idrYW5clvESFMgZ M/ERRNf0gFskiCx8cc89fP8ArWe+dDfTurVyW3AgRz4sn4Zrodkmw+ougE7iGUgiMncYHurHp71m 32dpRqrj2iqDAHq5rR31ho2P+IQk9fOfnXTuWWBDW7KwxHl4QOlB9isnTuiINOuouW7t4WraDvij blDEiTnOPjW2+tp7SIuJJH4efqaSU13fXrqay9uv6ldQ7FbZG5VAAjbgQoGIJjJpH2W7/l+o0p1F 5ftQureuwm64Ljbm6QJJIwPZRaixf1d1rx1Lo62u5UrYsEhR/CGKFomTzzNPa2gARFHikYHX1VNu 6+IQK3WeOn9KztaT+JpCiYk46Ek++o23cxCAkDAOJ8v0FabNlGLBi4PO1D0z/Squ6VX+zD7Rcti3 eF47lkmEdfd+PPsotXEC2upZmY/hMDEHj686BU26OCxAVm5x7DSjb06j8d7kkR7fP3/On6e2gvjb ddgGkKwHTrWghXYKLzqG8UQandW//wCWxKqsgTx8fb9CqS1Fy2hbcpYlmOZE8frQMssrABypggg5 H7Yone0iZsrI6bc+z8qVet2yWINveIMAcZ/pQ7FGVVWxAERNI0aw7s72rve3bl+O7iN7lyJk4z8q eEt3dOC1q2jSZgdIH17qzuiHaWtJsHKwADjM/OloiW7siwrbiBg4OOY+PHkK0fcNtIsrJJ3AL7Oa W72thYaa1EEmY8uPjUTuvtSAWVkjauOvsp15bCsilULKBuAXnPNZzbs7wWsCVYtEA+rFVbW2zt9y oWZnbJwBx86e1jTuCy20cnzA9n6UspprRtgaW3BG3CjHT8opotLb0yt3YKq25QIxif3+NIv2tKoA NtQWMmQJz5Z868z6a/Z/8otm0oDHUDhYxtb+lK/w/BZO0VCbiTa45H4816ltNa1mmZNXp7dxFYND IGA4jHnk/GtuntI1/V3nvX79/UuXdnULEKogQAAIUe2OtJfTXWtG3Yv3URrtq822PF3Z3AZyM5xH FU1jV6m8G1mpuuiXmvi2FtqN7IU6AGACY9ZkzRdzea5edtTd7zUWF0xGy0ypaUk7ACpBHiIO6eaL T6PuSe8u95ChEBtWkCqOgCKuM/KiuKYAa2Ssycer+tDdXY4FyFhckcc5pJsm3afcm7YBJMDic+3F MS34xJCorAkz0JH9a1jTqZQNeWADJH61en0bWkuzqXJu3rl4hVgDe7NHX/dFAtghiS53BGz5Y9tL 7hbdtVBIUAKokZgcfnUTSDug2+6GjMkEeyta2kVEIZleIkD35+Jq0shQf+JfJjr7Me+qOnUsW70v yCrHBAqmS2iKDDnuySPPP7UrbbW2CbamMsSPxCeD7qsrbZyyhSTzg+oY+FIBS4gKqDJOIMYzH9aC /bW73CqbaC1fF5pWe88DJHP/AFn4U2xbsK4VrNslUImOcEiguWrQ4VcmRjr5/XrpT27a/wCpbUlS IKmT76gXTvAu2EKhZBYeX64mhLWCwB01osuckckGlzZ27/s6SYBE+XX5mtVwWhprdw2FUuuF2/hk mZrM3cBdx0ygISWAH4hHUfH4UMWWdFtaZE2nw+vmmt3JXaLSZyPIdKVZSysltJbLbBjyj+9aNGLd zUtssBDEELjMH48ih26VVANhGMSDt+vOshGnG6LCGH3iBz7PhXT2m4q7XW0G8XjGYptnSw33d+2d oKmW6nJn660+7vS0pN22yAn2kjyj2ViYYVS6CEiT5D11XdXdxIuISQApmJ+o+dNuXLoJdXVdxIAn qJ/QUp7tzvAu+2DJI3fwnqPf+9FZAa4q3HV0cEc+ukuCQFRQCVE9PrNLYXATJCqCzMZmn6F+7Nxu 8KrtkbRJJzj5U1r9w3GUakeEBoK5xFJ1Ooc2p+0JcYAwFETOOelNW8yWrbMw3OxHHLTxVDUaiQz3 UjjAH166DR3Lh1X3jqYUiVHxrYt13kAWnXABx6/6VbNqF8S2tPkS3maCy177SjXkVNxAMHBM5pT9 542tuqoTA8XmYxRXLV9QSl20SIkk8mKprblMd1gKy+z96UlnUEP3LIAZA3/wgZ/M0Pd3TePiQfwY PPiFafs/3VsBkDbjkHmY+eTSG01wsWFxdqEwCfZml/Z78hrr22BP4QcEiMnHqq3AAbu2IaYlYEnj E/WKUbNxg47wqsHDGCYPP5U7T2nF9GuXVI3bo3ZpuosbAvjmFk5yKV9lubo7wFlOJaPb+VFa0joW DMobg922fdQtZKOhW4RJwC3nge3FGdNfJ+7v21P8JMERR2rTPpVN0BjvP4WwcdfPFAbDgvtI3kFu eprzHp9bZOxbBP4e/WM/9L1k/wAO4A7SJYDFsCeP4q9rb04Bg6i0bhECDGOT9eytqWrgmL1stswJ GKxXGPetuVTO0GIImSZ59f10W1ktMXFy+6W6HPl0in2kvd2EFxBBkGQJH70Oou6i2ofwk8AA4IjM 0om+0GbQEAY6CnahWVC1tlDEckTk/wBxWVrlwsottbILefJ84o1DPd3HbvEAY9fFbH1Dhytu4bhj BYY4oW1DbNvep4umwmZ8vjVWC9xnN0KApwQDJjr9frTGu3CqqjKu4Yn69dKu3rpXAQggnMdf71oL tsQ2WUnZMEYPMUKveJkWbY4Zd4Hn0j2fOqutqHJGy2WMkhTgHzNXfcOqFGQMy4YH1mkC3ddGm4p3 HxZ5/pmmfZ73hV7i9Tg4ic0lbV+3uUFcksAMiKFtNfgguhIUgjBk4pmmtuWJfY29CZ3ZGDB+Xzpf cu1s+PBBHPBiMfOqexf3m2HUPzu3YiqW0zCHIP8AFPv/AGrM6XSJS6QoG3dIj2j4fOrey6sbffAF h+Ldxjmtn2V7tu2BdBCpklo3SfVWQWrpZrfeAEHZhpHnPzplvSXdy77ius7fxdc1Lli6GYm6JByC REeqlPZ1VyzFrUKAM8g44itWi0d21ee3cvI5dSVg5A9vupdywskhlgN4tx5wKAaG6sfgOz/r59Xy ralu6RFqyxUDdJA9wqbthfdpNhJBJBHw+vOmgKdNbhBuIY58+fzrPsfDC2m6ZBIGATnrzFLeW7rv kG1DEiOuKO9pwwKIPFumCBH9v3oVtXPEXCkbRIjIPx64q9Fb+/tsVRcScDwmc+/JqG5tgBUgCCCM TOKQdQVeCiAxkhfhT9FbsXRcZ7qKVxJwYIx+U1qbSb2Jt6ixlc7hP1zWa5a7q2ls3rACjbuxgcUd sG5pgpRHaZIXifoVn7i4CENvg8tmYIj96PTaTu9SpBQnMbRGYEfrWk6QoSSlxlUCIkGOCPlNMFnT 95LWLm7HJPr/AHqAISndIy7WG5SPXzSrj2UI3i4SBAkYJpLpYJRtl4kk5AmAZo9tgWm2pcJXbgYM 9B+VUqaZTvm+zHDEjPNABoCPA91iTP4OCPd66etpFs21LPKuc9Zx8sVluNZUMoa7vbJheTIBqF9L 3i22a9OILLHzolXSoWQXLo3eXGfo0AugxBuCB/EBI+FNsNYN5Q127vZ/EOgFDrHs2VZ1kxmCcH+w pZbTFkBNw3ATu9Q5/ar0/dltwuMF5Hr8q1P3KiWuXSFGdonjmsziwrbiL2Wx/SnwE0YNrvWJY88j 6/SkTJa4WYNhZJMwATx7Zryvp1cD9iaWHZpvAif/ALW/pS/8Ng5/zLZbW4YtwGH/AN/wr3At3bcF 9Gs7pEkA8VendXNxzbdfDADcHI/pQ90ELeC3Bjy8gT86Bl2qyhFUsNu4RgZ4q7di0yBkLKA0eEDk CBSrli4rFZJk4MjP9cUT2CxPgVTkA4zIzT9RNtbRRbZhYHWPUKzm+y2SBaTExgCrsONQ4G0LvbJ2 xkY/Stw0tqCFvW90g5PWOKH7KiMxt3LZkcCOhoLVspcgOhBHHn+/sobtl2CnGABPQwaUdJcd9u+0 FjBHT6gVqa2xFhkQskcAH6600pKfe2QwJjyoe5tK+4WyjxggyRzQoqiztZW27SDjAyZpO5LpzbvA fr7OlUn2fvAdl1QDOQfnQhLCQha9tHiUbfXNVc+zMpYtfRhwFU5NXplsXNxs3WYXLZAnidvzoQ1p bQD3rrMhIBjP1FLD6U5a7fIPmn9KojTyCHeeCB0zVXDpwrbHu7SJIA9dL+52TcZxtnbjHqmtLNp/ sdlg53lCQTz9eqsqnQbiLly4CeQFmYHGPbQjuWvqLO7P+744+FaLwsi2GDkKWBZvMRJ60t/sKX3Y PciBuaOea0dnJpUZn09y87BCYYRu9Qmszi25V+8eJ8K/XPH50C3LLbZZvGxDQvTpHryPga0faGto 3d3SoGVA4YRilXWY3VDXXCcltmQY5mtBvoLKvl1g5HJY9PlWT7WrPcVFchYWYPlPHv6U/RMt4qlp O/AnwEcniD7DXZYao21UaBPXgYpF1e0HtHu9ClpoIkRWZbOpt3bj3bO0kEQIIn94/KrKXnYMmlUy Dyvz/KgW1qnsn/gllp3CORFMs2tUSEbSbIAEgDPqo7iXlJX7L+HaPEPZ+lIYO1tj9ktGMgDn1/Om 2lLKGuNsBwVCdeh9VV3On27ftN4Z5gkzTETTrcBt6liZ42k55q7dx++ZWu3EWARgkez5VL7ulpmT Us75hSpG720qyzMAV1BcCCIzA61nvEIqu7MXZ5MidmCPjmis3k7kfe53HlT6/lRIyC24a4QTA3FT 50y3bMXLisXtp+Ju6YhYyZPHBrOLlq0ztbNs/wAMFCBJ+hRtqrNu2rCNuT+EnPSD76Q+sVWVAisS JLASB6vV7aV9qtcOFbaclx9edNuPbcFbYQDkFYwZn45pS3mtoxa3aLAHKjI9uaOzqLTOiG0BndIX k0b61Udla2HLMcxjMQOfqKQWto7XO7dixnpERzz6opmlezlULHMyfryphvWlMFm3ZkPHA6++guOQ Qxj8Xu9taE1Nl9OCWVSrSQBBilM1nqXYhhOR868x6em2exLWxWB+1LMx/sasf+Hlxrf28ozKSbQk f/nXs7mocgfeuW/h3Lmi095Rvtm5vYKfC2I99LvXUMBGYiQSoJEkfXypYvktuO6Pw+JIwZA+cV3N GL9uwBb0KxtEEjn11ZGrIj/LrcH2YNZblvVs4W/pLZOSDjyGY+uaFldtot2RtJGduQI5+NVasXUU qNIDJkGOMChFrUW7oNzTlQpLRHH1mnAXFtM3cu5JWSFJAPA9lCVvM2dOnqJ5n1fXSgsqy3HVrfdh FwxyQePfThZtq25rrgT+HbgVb2rGwRqWUiOV/OaK4dhtql5gkEAj8z50RILLOruR1G0xxzSC5ZyF umVaZI/EOozR3GW0q77jEgkeXNKD2xe3K7RA3H24qb9rE95M5BgwfqKFFV9Qw7xpnaF2knpAorwF pgtwFGOAroRI4pSXgSQqgBVIO1cE/Q+dK1GoC3f9NWBIMR7J+VJbUo14B7JUEAjEA9D19dNDpctF xbQHdgFfxHGY91LuXRbJ7tLR9o6ilJrU3knToWnHhrW923bs2tlrcTkY6HmflWX7Qt3I0yQeDt48 j+dUjqb4U6dVWcHbjIiPga1b7W3wgMDmYxWS5dZrX+ipxiE9YrR2fqEW4yPaRVRZJA4z/SkXL6hS QOsR0jNLF62sbbRG0QMTHzz0r0lnS6s2V2OkMCZaJ9XHt/KnjS6plhzaI6R9eoUi7oNQdx3WxGfb 1zilPa1KrJ2xPAGarTpqnvfj7mB+NhESOnmcVsNnUlJt6+ZOCRNKfT3mlG7RI6GCfdS7umvBdyan vQQZkcccyaS1vVjcwv8AhAGBjPWqFvUFRt1hDFZ2THqP5j2U7S6fVXUde/e4Cu0lbhQiR5gyDmqs 2XudsdslU3L9rUGGg/8Ay9mmXdDe2ErY7szkrc8+tK7jUW7ult2LNu6bwul++W54mABUB1BVBySW Bk4A8rfV3bZ7MRNMNY+qs3L1xdIEcFRtAKOzoAJdejT6qpX1yX+zbH2PTLqNRpb1+9adsqy7AEDj Ay+TDcYratzWqi97Y0ofbLKrTB6weo9cCobuoOTY04AySTxHNTu3a4O8sWt3Moc/WKA6cJ4Rb95E 0TWGe4AbS46iM1Q0+zewVQNudwxXL7SW7pO0NDqNPb+1dod3dt6GwUAs2pK95edgJAEgcyZgDJot Po20Gls27jLfNu2itcYeJyFAJz5x51u0+gs3b1sXXtnqUUZMf3rJ2Vpftn2FtQukC3bTXLndi5bZ 2VoIW3cG4KJWWJzIwJFI7Ftf5qdDdfs25b01yybjX2CItzgoFQXHYSCZk9PXgezrGr1+g0Wrezpb S6jTLddrZaCWgwFMxCnndyOBWl+xkMA3LYlp/B8qq12PtuK3eo21pEJ0oH7JZ3k3pgmAF/MfrQ/5 TJhrjDw7cCTzTl7FFlAq6hQT0KniaG92RaXc9y6knliOYyPnQv2SsMrXmgmFz6qW/ZmxFVbpW20i QJM4j69tMbsqbn4snMbegEf1ry3+ImibTdgWXOd2rH8Mfwv9e6kf4V277ntU2CgIW1+PifHFfRF0 2sLBmNnmfZx+1S5otQxUhrIk+InmI/tWdtHqxeY7kMAZxHP5xWc2b5CXNrEs4ABUY6eVdBLWo2Kp 14DR0jFWbGpB2nWHGQc/RoG0d0ho1ssM8ezr7qyro9SmEvfhEkE5praXUZ/4lhGDtbNCdNeuHa18 lt2B3n4v6cUHbFi5b7IuFgZbV6QKveFh/wDMIeOAZJ45x5Y2/Y9wkWzHSWPNBp9GF1Wy5vKk7SAf VPP60rsl9TqPsf2tdIDctM77BctMWVoIFq4u4KJA3E5kYE0vsa/qe1Bort7s10092ybrallS2rgw UCoLjsJBzJ6evB9k6vtHVdlaHV3dPoVXUaZbrOrMvibIUKZxBGd2T0rYLmo3BHs2J9RmoS77g1mw YkZxVvbBItiyMiOARQIkADuhBx+Hg1RtMVhbG1gedozQHSX2vk2Li2ru0hHRRKkgicgj1/WeB2Zp m1On0v2NX0/Y+jsNa0neLtfVbiCbzCAFBjGJMkmJrrjSpdm0CqAY3R7x+dXd0r2r+ks2UsXjeS6X LWrnjcAbQHUFUHMlp4AAPTLdZLS9m200v21tXZuXHGkCvIG0Sjs6CAXBna0jyqgl8Hs6x9ksd7qd Nev3rTOSVddgCqy4EF8na3FMu9kPf04GouW7VyASF8QB9RIE59VC/Y8IpW7bAHB2cVTdnPZVEWCA IlhyM4pTdmFAfvCZOPD+VEezHAJ72IzO0k0pezrt6AL/AHZVuFzAB494j41oudmTH/EopOIj1VLX ZRF9/v0IcRt2n686W/YveW475YjoCI9nlSz2HO775huI/h4j6+deluubbEKBEoM+sxSzqGGnL7Vk NcHHkxFO0x32pIAnoOPL9KBrhaQQI7rdjzIP7VHuEOg2rDMOns/elWmF0Xke3bKrb428zMz8BTgR 3pXasSensoLVw3LVtyACyqcCnXItlAqLDPBx7T+dZu07p0mg1V+2ilrVh7gDZBPOavTXTe0yXXVd zMZAGKHR2LVhtTdtht97UPcuFnZpaNvUmMKBAwIxTixDgc4HPvrHe0Gm7S0rWtUL3d7jbKWtRctK waAQwVhun10zW9l6PWW10V1LiaZLRUWrN57KFSI2kIQCIAEGldp9naS9oF0r27i6e3bNsWrV65aQ qYBBVGAIjoa6Nu3btWltWrSJbtjaiKsBQBgAUgMAlk7EkgGY4mZoL77HtuFUkDqPnWx/BbYqBgVl 7022thFUAuqGByCs1n+23DobV/Zb3XLm1hGIDRTNVobOp1KF7mrTwxFnV3bS9TwjAT66ZZtW7Siw qSi21YF2LsTkZJJJ4p9sKXuJsWEYEY6wDNY9N2Xo9FrH1Vq3cfUOndm7fvPecKPEFBckgTmBQaDs 7SaXtC5qLdt3vtbCd7fvPecKGPhDOSQJzA61NL2dpdDefW2UuPqbkWTdv3nvME3fhBckgSZgda02 9Q/f3lhQE2RjzNP3ESQAMTRLEKdolucUq3cJdjCjaxXA5yKGy/fXlLKoPdK0jGTNSzcPevaOVVVa Tk5J/apYfc8kDxKzH3Gm2gsfhHiyaJQGa4D5xjB4rw/+LBn0Z0h/3atCc/8AQ/71zv8AB7J7XBAP +if/AO9fSAAUbA60u3cLXgu1R4ZwPd+tHfuG0jMoEwTn3Uq/dNm0rKqkkqMj2D9aRqtS1gEW0T/Q d5IzIp2pvNa1CoqrBKmSM5bb+Ro7lwpuhVwyL7iYotK/e2FZgJPkKDV3ms6cXFVSe8VMjEFwp+Rq 95JsSo+9/F8KRrbFnUDTJdSV79bsKzLLKQVJgiYIBgyMDyp1u6x1T2oAVLaMI9ZP7UrTXzcusCiD aJBAg8mppeydFotS+rtJcfUsgTvr957zhQSdoZySBJmBS9J2Zo9Hq31VpLj6h7YQ3b157zhQZChn JIEmYFK0ug0ui151Fq276i4wsG9fvXLzhAN0BnYkCTwMV1toJIIkEREUsBf9owxAx0qtKFbTWrgR FLID4RETk/OhL+O5KKdoByPWR+lRbrNqEQgQVJ+Q/ellu+VEYQLylWKMVYSDwQZB9YzSNFobFnUl 1bUuRaU/fau7dHiJnDsR0HSn2mCm5tRBsJCwPWf2qa/svS9o2e51Ivd0QwZLV+5aVw3IYIRu980j tPsvR3uyntNbdLFqywFmzeeyjDbG0qhAIgRB6Vep7L0WssjRXbbppkRkFqxeeyhUhRBCEAiMQacS untC3Zt27aW2FtFVQAq4AAHStCNvALATuYceRI/SqtnvPxqp2xGKjEG6isqkHccjiKTpdQ1/QG7c VSwBxGOKHW3Ps9yybarLsQSfUjN+lOuKphioJClh8qVqLxtam2qoniZQTGc7v2FahDKCQOKzfaHx xyw48t37Cv/Z ------=_NextPart_000_0004_01D0ABAC.F9FDAA60--