Return-Path: Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by klubnl.pl (8.14.4/8.14.4/Debian-8+deb8u2) with ESMTP id wAEMF9bC012369 for ; Wed, 14 Nov 2018 23:15:15 +0100 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1gN3IO-0003Us-9l for rs_out_1@blacksheep.org; Wed, 14 Nov 2018 22:06:00 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1gN3HI-0003Tw-Lt for rsgb_lf_group@blacksheep.org; Wed, 14 Nov 2018 22:04:52 +0000 Received: from proofpoint-cluster.metrocast.net ([65.175.128.136]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.91_59-0488984) (envelope-from ) id 1gN3HG-0007He-AZ for rsgb_lf_group@blacksheep.org; Wed, 14 Nov 2018 22:04:51 +0000 Received: from Rob64PC (d-69-161-84-15.cpe.metrocast.net [69.161.84.15]) by huckleberry.metrocast.net (8.14.7/8.14.4) with SMTP id wAEM4ltB053202 for ; Wed, 14 Nov 2018 22:04:47 GMT Message-ID: <01E0D0326E4E4B3E823D2CBE2E98EDC6@Rob64PC> From: "Rob Renoud" To: References: <5BE86903.6080607@posteo.de> <5BE87C91.7080106@posteo.de> <1UQdmM51gp.72JLQAKj0yF@optiplex980-pc> <0B79F81E329D4776B77EB8F1165ED920@Rob64PC> <5BEA9C60.8020603@posteo.de> <5BEB0878.8060908@posteo.de> <5BEB3818.8030603@posteo.de> <5BEC15F0.5070406@posteo.de> In-Reply-To: <5BEC15F0.5070406@posteo.de> Date: Wed, 14 Nov 2018 22:04:47 -0000 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal Importance: Normal X-Mailer: Microsoft Windows Live Mail 16.4.3528.331 X-MimeOLE: Produced By Microsoft MimeOLE V16.4.3528.331 X-Proofpoint-Virus-Version: vendor=fsecure engine=2.50.10432:5.21.6,1.0.8,0.0.0000 definitions=2018-11-14_18:2018-11-13,2018-11-14,1970-01-01 signatures=0 X-Proofpoint-Spam-Details: rule=notspam policy=default score=0 spamscore=0 suspectscore=1 phishscore=0 adultscore=0 bulkscore=0 classifier=spam adjust=0 reason=mlx scancount=1 engine=7.0.1-1810110000 definitions=main-1811140194 X-Spam-Score: 0.0 (/) X-Spam-Report: Spam detection software, running on the system "relay1.thorcom.net", has NOT identified this incoming email as spam. The original message has been attached to this so you can view it or label similar future email. If you have any questions, see @@CONTACT_ADDRESS@@ for details. Content preview: Hi Stefan, Jay, and EbNaut Applying small adjustments to time (+0.05 s) and frequency (-100 uHz) was able to achieve much better decode of the same transmission. A lot of trial and error! Tnx for the tips! Content analysis details: (0.0 points, 5.0 required) pts rule name description ---- ---------------------- -------------------------------------------------- -0.7 RCVD_IN_DNSWL_LOW RBL: Sender listed at http://www.dnswl.org/, low trust [65.175.128.136 listed in list.dnswl.org] 0.0 HTML_MESSAGE BODY: HTML included in message 0.7 HTML_IMAGE_ONLY_28 BODY: HTML: images with 2400-2800 bytes of words X-Scan-Signature: e39ba0db4036f4dda6b86b94bb0e598f Subject: LF: Re: LF EbNaut tonite Content-Type: multipart/related; type="multipart/alternative"; boundary="----=_NextPart_000_005C_01D47C66.0E99B5D0" X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on post.thorcom.com X-Spam-Level: X-Spam-Status: No, hits=0.9 required=5.0 tests=HTML_30_40,HTML_MESSAGE, MISSING_OUTLOOK_NAME autolearn=no version=2.63 X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false This is a multi-part message in MIME format. ------=_NextPart_000_005C_01D47C66.0E99B5D0 Content-Type: multipart/alternative; boundary="----=_NextPart_001_005D_01D47C66.0E99B5D0" ------=_NextPart_001_005D_01D47C66.0E99B5D0 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Hi Stefan, Jay, and EbNaut Applying small adjustments to time (+0.05 s) and frequency (-100 uHz) = was able to achieve much better decode of the same transmission. A lot = of trial and error! Tnx for the tips! 73, Rob From: DK7FC=20 Sent: Wednesday, November 14, 2018 12:32 PM To: rsgb_lf_group@blacksheep.org=20 Subject: Re: LF: Re: LF EbNaut tonite Hello Rob,=20 My congrats to your first EbNaut decode! And even quite a distance: = http://k7fry.com/grid/?qth=3DFM18QI&from=3Djn49ik00 It is interesting that you captured such an early transmission.=20 As mentioned, it is worth to play with small time offsets of +- 5%, 10%, = 15% of a symbol length to see what the maximum SNR will be. Even = applying a small frequency offset can help. My Tx frequency is accurate = but as you see, your phase pattern is turning by -60 deg = (180,150,150,120) during the transmission time. So this is -1/6 cycle in = 1536 seconds, or -109 uHz. EbNaut can compensate up to 90 deg phase = drift i think. So, if there is no decode or just rubbish, it can help to = apply a small frequency offset and try again... 73, Stefan ------=_NextPart_001_005D_01D47C66.0E99B5D0 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi Stefan, Jay, and EbNaut
 
Applying small adjustments to time (+0.05 s) and frequency (-100 = uHz) was=20 able to achieve much better decode of the same transmission.  A lot = of=20 trial and error!
 
3Dimage
 
Tnx for the tips!
 
73, Rob
 
 
From: DK7FC
Sent: Wednesday, November 14, 2018 12:32 PM
To: rsgb_lf_group@blacksheep.org =
Subject: Re: LF: Re: LF EbNaut tonite
 
Hello=20 Rob,

My congrats to your first EbNaut decode! And even quite a = distance:=20 http://k= 7fry.com/grid/?qth=3DFM18QI&from=3Djn49ik00

It=20 is interesting that you captured such an early transmission.
As = mentioned,=20 it is worth to play with small time offsets of +- 5%, 10%, 15% of a = symbol=20 length to see what the maximum SNR will be. Even applying a small = frequency=20 offset can help. My Tx frequency is accurate but as you see, your phase = pattern=20 is turning by -60 deg (180,150,150,120) during the transmission time. So = this is=20 -1/6 cycle in 1536 seconds, or -109 uHz. EbNaut can compensate up to 90 = deg=20 phase drift i think. So, if there is no decode or just rubbish, it can = help to=20 apply a small frequency offset and try again...

73, = Stefan

 
------=_NextPart_001_005D_01D47C66.0E99B5D0-- ------=_NextPart_000_005C_01D47C66.0E99B5D0 Content-Type: image/png; name="image[4].png" Content-Transfer-Encoding: base64 Content-ID: iVBORw0KGgoAAAANSUhEUgAAATkAAACUCAYAAADoFF51AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAFu9SURBVHhe7d0H2G1FdQbgm6iJGo2a2GKKscfe RY0VbGCJiqiJXTGWKKiRqGhEVBRNFBBURCmGoqLSe1NEFEOwoSSKdOlwG73cOznv4Ifj9vy3cf/z F2aeZz1779kza9asmfXNmrLPWXD98lKWXr28XL9seVm+fHlZNiLX0HXXXVcpz8uWLevUqVOnGSM4 dP3115drr722Po8iynUj/Ko4NsKzyy67rFxxxRXlmmuuqekWXHDZ8rLdcVeVsy9aWpZdvbQsWbK0 LF26tCZy/d///d/yq1/9qlx55ZU1bsmSJTW+U6dOnWaC4ND5559ffvzjH5dLFy4q5borylkXLqk4 Bs/E/+IXvyjnnntuTb/gnCXLy+aHXlFOO3dRuf7KRWXhKNOiRYsqGrqedNJJFeigIqCTybtOnTp1 mgm66qqryq9//evy/e9/v1x00cWlXHtZOfXchRXHfj3Csz333LMcdthh5Yc//GEFwwXnLl1ePnLU leWM8xePQG7xCNgWl8WLF5fLL7+8em0SAroLL7ywXHDBBZU5hOzUqVOnmSA49H//93/l+OOPL5dc cunIk7u8nH7+oopj8Ox973tf+exnP1sOPfTQ8stf/nJqkIvHJtFxxx1XfvCDH5QTTzyx/Pd//3en Tp06zSjBJA7Y0hFGlWsvL6ed91uQe+lLX1o233zzsvvuu9ep65QgF+LNXXrppeXiiy8eoeYlnTp1 6jSjFCyqjthoxrlshFs8uY/+BuSe9rSnlTe/+c3l85//fHXMVgpyWehDprC579SpU6eZJHi0cIRX cOv0EX7Fk1tnnXXK6173urL99tuXE044YeUgh2xADOM6derUaSYJLqEhyD3hCU8ob3jDG8oOO+xQ l9lWCeQ6derUaTYSvBqCXKarO+64Y12/6yDXqVOnOUvjQO6Zz3xmedvb3lZ22mmn8j//8z8d5Dp1 6jR3aRzIPetZzypvf/vbyxe/+MWbDnKZE7c0Lt1NpZvKe7rl69Sp08zQtIFcAMM5uquvvrp+Q4Z8 EbE2wSR88EWOs6wO78hiF4Z8vtpYGQ/vFi5cOPbdimhN83Xq1GnNaVpBztXnFT7eBxyefQwLSJKm peQdvltZnCuAwjsANVXaNi73wFFeR2Ha+zZtm76tE9BK/DDt8D5gv7pA3KlTpzWnaQE5BsyDc07F QTufT/zHf/xH2Xrrrct//dd/VQABJNLxoBg/cJEXaAABQAIM6zmX33g/0iG85UWelXPAAQfU79F8 WiYvfm3aAJh3eKYsZQCegw46qHzkIx+pcvpwV5AO4ZGzgIkjo3j3eEYOZXmnLHmG+ZInenLt1KnT 9NG0gRyjBx5bbbVV+cu//Mvy/ve/v/znf/5n+fu///vyyU9+sgIMoPOTKEDCz6HwjoCCq7yJx0sc QEocsAAkgg9sN9hgg/KoRz2qnHHGGTVOevnwBzJISF4yisPDpx3Pfvazy2abbVY22mij8spXvrL8 7Gc/q+kFaQCToPwvfelLZdNNNy2nnXZajcNTmlzxdx/+gvzbbbddefe7313OOeecKh9dAcSh/jp1 6rT2aK2AHGCKp4ICVEDsPe95T7nLXe5SvyPzbssttyx/+7d/Ww488MCa5thjjy0777xz+epXv1qN Xx5XwAMUDjnkkFoG8JIun2EAQSDiA1ynlu973/uWxzzmMfXHAXzO8ZWvfKWmx588fgpqjz32qF5l ZBGckfm7v/u7evpZvu985zvlXve6V3nHO95RzjvvvHL44YeXn/zkJ/Vj3yOOOKJ873vfK894xjPK n/7pn1aZ/TDBbrvtVvlKCwTJuu+++9ZfZgGW8n33u98tj33sY8vtb3/76nUK0gLETp06rX0KHt1k kOOJ8Mp8+Q+czj777HLWWWfVeID1wQ9+sPzN3/xN/XRC+NrXvlb++q//unz9618vRx11VHnKU55S C7zPfe5TAdGvB/Co1ltvvfKWt7ylvPa1r62A5eDeS17ykvKa17ymbLjhhhU8/FSKQ33Ouzz60Y8u z33uc8vpp59e/v3f/70C3rrrrlvjgQxQ/au/+qvyoAc9qP7yANkEMtz5zneu4Cuow0Me8pAKegDy SU96UgWwvfbaq947V/OCF7yg3OMe96gK+qd/+qfqQb71rW8tT33qU8t+++1XeT7ucY+roPqFL3yh nq7eZZddqjx/9md/Vr75zW9WgFdXulJmp06d1j75hnXRCKeWXbVkzUAuiMnL+da3vlV/u4ln5Mqj AiRbbLFFBTWejLD33nuX+93vfmWfffap6193utOdyj/+4z+Wl73sZeWjH/1o/dUAQPTyl7+8nHnm mfUXTuQBlNb09t9///Kwhz2sxn3oQx8q97///av39cY3vrGCHIEf//jHV9DceOONK58jjzyy7Lrr rhXMTJV5gKaywtFHH13udre7lQ9/+MP1Geg84hGPqHmBIy+Pp8izJBewBKLK4EWaJiP1f/CDH1ze 9a531fW9Bz7wgTUPgMSDDKa4ANGan6k3L5CueKadOnVae5RfIXG/aPGS+lNL7a+QrDLIcQV5bD/6 0Y8qZYMAemYdze82/cVf/MWNntxnPvOZavQHH3xwBQsAAwBMDQEjkAOKPLaAkbR3vetd6/QVKAET npV1PmBy8sknV5DjKQEeIPjCF76wenXINFS5PDnAJWS6Kv0973nPCkCmwKampr6elUVWU2RTU+DH e3zve99b74GUn2x5xSteUX7605/WcnmVQI43yAPlyYn/9re/Xb1R8pLJWiG5/HpLp06d1i7BIU4S J+LikZ0Nf09utUDOFTDEOwFK7eaB6ao1Od4Q7+3pT3969XbsgvJyGD0AAnjWtgDA85///CoEUDOF 9X2Z6asppGfTP1NJ3tnDH/7w6p098YlPrFNfYAN4eFemiIAQmqsMMLNWJvBAyWoDgheHv3KAlHsV B548NlNRoEdWgLzttttW4AK0PEXgalNFnLr44NfU9l//9V+rRyifUYWnaj3SOiOQy4ZGp06d1i6x bRuSPLqLL15LIGeRnecF4CCpd4zY+tcmm2xSDR64mWKaKwvW7wCZwv7lX/6lTvlMcS3uW5cT96lP faruYnpnZxLYOCqiHEApP75vetObKviQB6jJD5wAoHKADK9SpQEwDxTAKY8H6tcIpAdyyhLUxxob YOWFKR+Yk1+5QHH99devwCWvOO/ks+b4b//2b1Uunp9RBQF9Hh6QlU7Z5OjUqdPaI/bFFivIjfll 4JsEcpgrRDzy7GpjwnRUHh4ekLK7iLwzxY1n4z2gFC8dDxEwSWOx3rOy5JUHYpv6yYukbfOLcw1F vlzxw4d8F110US2/5aVcZUgrf6bi6mzHlDfp10UBJpnkwxOvNp84+qiLoaOy+/GRTp2mh9gge552 kHMVBzSAAmLo3mX9DmAAB++S19WzeO+lSxwCSCkjgIOSFqAM85OVHK18KPfAqZUjHhb5wyvgLN50 09U0286sPAJe8pIxcskXQFN/ZbVld+rUae3SxEAOuWf0LeUdauOTr82zorhVyY+Sts03pHHp0cp4 uY7jO1U+9+PSd+rUae3RREEOrQgIZrvBj5PRc4CLZ8ZbbOOSps031fM4Gpd+mG8Y36lTp9/SxEAu V9OzdoqGsraFR+K8n01EJvKRM9NU9fOceiJ1My119Zy6JY2pqmf68Yy3tKa0CFBmWht9SCtPNkha PvJEvlbeTp063UATB7msyTHSTNfkFSePNIkfGm7i2vhxcYkfNx0cF+8+lDjglLWzEEBp1+LIHTAS 14KbeCDkHeAKqOHpXYAeec4aoHgbJdKJkw9JQ5+RXXneZ12zU6dO44kNTgTkAIRdT583OTYRDwc5 FuKgrOMijByJDxAwbFfPLWAgZWSaGPBp0ypXHB4pU7z3gMQ7/BLnWToB6OQZH19TfO5znyunnnpq fWcX1bODwAJFOubiPJ5zefI46+cMIOXJY5fXcRNn7AAXQHMMxjk7Zwfl9wsoztFJI4/vYB2JsZss D1nVER951SP1FN+pU6ff0kRADsDYgXSEwjedPmfKr3YIX/7yl+uXDc6nJcjPwBGQcWXg7uPhKNMv fLgy8qQFVu7z3nPyuQ9v8nnOr4S4khOY+PTs5z//ea2TcqW3c+oTMQd8BefmfBEBoBwFcW7vec97 Xj3/55dMgJtPzhwApkDBAWU83vnOd9Znyndw2YFhvzVPNwDNOT6fpvli4tOf/nTN4zvXBIDrm9l/ /ud/rnUnYwe5Tp1+nyYKcjw5DG9xi1tUABC881XBggULqvfDSwEwPCQ/Y+R7VeDkEK/vP31F4HAt UOGV+VSDF4gf8BHnm9N8EA+IlAGkeF7ifCfriwoHBMntqwP55eFZnXLKKfWrCUCjHgIZfHvriw1f SqgLXr6jBWRkdRD4G9/4RgVU39Y+9KEPrVcARokCb01d/XoJcPIpmc++HCAW50cGNIjDzT7+93NU PFy/hGKA0Ah08g//8A8VUH1CF3BvG7ZTp0430MRAjpfk3gf4jPzJT35ynWb5CuLWt751ud3tbld/ dsgnWj734tXwkvwfIgEZuV/z8MWBXyNh+EANH594AQnn1HhhgMbnYEDC51V+nNNPHvmVEOQHAAAQ bwhg+ZUSFfWzSoANoAYg4wGSn0flw348fD3B05LH97Qf//jHK+Bl6ur7Vu+A2jbbbFM9NF9PkN9P LPnA3zesvD9ApgHI5bMwehR8g+sbW6BGd+oIBOnG97ymzQIZuxfXqdN4mijI8b4AxJ/8yZ9UALP+ BLD+/M//vE69gJyCeEu+A/UO6FjX8lNLwMCUltfECwOIvif1qZifPQIoDJ7HRmiAccc73rF+UuUD ex6TdSwemw/7eXAf+MAH6u/BAY1XvepV9ZnMQg758rjI/4lPfKL+wIBvUykDYPkVFb+GAuR4cuIF 3p0fCFUnoAmcyKr+ZPVZ2Itf/OL6DS0vUjmAWTr6Enw+Ri8+TRMAtR8DAHzqKETHbaN26tTptzQx kAMYFt193wmsABgA4u0AMJ6NRXTffAYcrOFZF5OfF8R78u0n8AIs4q2HmX7ygnwArzJAg7djbYsH 5btXi/d+RcSPZ8rLK/QrIjwp5fmeVV7lAWOA4tdQyG8KDeRMV+9+97vf+FNRfg/v3ve+dwU04MuT A5zS+hECYMQbFHiBPFg/GGB66RdQbnOb29R6A2zl8Er94ICpMLAGgg94wAPqOp7A89UgPh2jG8H0 um3QTp06/S5NHOQAnGkeoAEKjN6COjCyJufe9PFjH/tY3aXk7QEbHlg+6gcsfvLIdM0UFcjxgqyj ASme2yMf+cgKLDwtH8bzfIAGUOP5AZdjjjmmrv2Z0gJE3hWgtSbn55lsNKiXAJiUbYPENFcAcjwx eawD8gTVh2zPec5z6uYC2QUgyisjr+DjfuDKY7VpANh4cTYYALd6W8tTb3oUgK91O/L6wF/oXlyn TiumiYAcsiHAkHlqpmtAwVqV9Sw/tAnUgAfPxAYDQFOwYxQ8KQv0m2++eQU+wAQwpbUzKw4A5SfH 8TO1BHbW8kxjfSDPq3I0AwD5VV6eHO8IP+Dn11HIb3qpfNNi9QJwpqxk9cshQBBoWxP0HM9OuTxN nqPyeVvSATHv/IyTMnl63qmzqXOOv1AyefHwyynAU31yvMVgQVYerfziO8h16rRimgjItQWKR4xa ntxL6xqjtrsIFD17B2R4MjwjoCBeevnFATwbBHgCFVdAAMTEk4kXBVj9hJL1OT9NLkgvLRDBVx6E P5lTB3KgxCWNq3hg6B15Iod3+CZ/eIqXBnlG6ugKwNVffnXNe3miP/eJJ8tQz4kbxq/u+/a+pWH6 VaGp+LT3K0o/fDcuXZtmKlpZ2hXxa+PbdG18p9lFbGwiIJcrwIl3I3hm+Iw5PBg7wJAGDyAhjWfx 0oqXHiiJb9MCAECZtDwn+XlGpqQ2DEwJA6LSpDx5kXvvIjtSJ7ziWbkXyAtkU6464Zk6R07BVVry CMqVTt4EfJWPb8rGB+GLpFdX7/CP7pKerNK5Dnm4j87Jg1f7HqX9vHMvnbohZQ3Tr4zG8VE/8fh5 N8yjfPHt+8gur6tn6cIvaVo+ocSH57j35CEj3YR/myayRO5hfcKnzdNpZkk7TRTkGDUjznvPyLsY LRBwn2fkXjzyLI+gsyV9ygivgInyAjw8pHiDZAjvUJu/5Zf7lKtzqzMiQ/hExvBTRkDdlSxkkscz 46AH8rknlzK8b+Vp5Yhs+EQe+fMeD7xdlecqPnnJLF558svb1gFfgczSCtK5V2+8XVNeK984kiZ8 0vYAQb2jB/FJG57k844cgmfv5BfwjH69Uw9yhk/Kz3PqLUjfpnMlS3h4H1m9SzrvxJM9vKRBnqcq v9PMkXafCMjlvWMf1tGsd1lU94mXNTCGyLikiwG0eRlVOpM4Z8x8DQC0Ajg6WQw2xiy9/4qwDsiT U1khho/XqhBe+Fp/Iz+FWB9zqNh6m3Iiu3tp3dscsZZn48Fmi40RwRqhZ/zkcxbOT7jbfPHvY/Kq CwOml6GsnsXTHT3YRFFngOCdMm2AeOcZP+/plXzO89GJM4SO6ET/rjxc+a05mjqTU1p1Ro7jhM/K dBg9GFjw0e54RDb8yY6n8qV1lU/55LBWa9facoU21r+cb/TXktLTLX42giw7qEMLOCEy27AhhzVe ZYjzLnWnTzrRNx3dwT/9yFV7WVdVDrm0mTop3y67c5r6I95t2Z1mjrTbtIMc49LpGLZdSzuINgAs zjvF79MkRiBIF68nPISMsAKejoz4i0EGKkgLUHR878kjMBRHTpxPs/vpauMAv1YRKyLyS8/4/RWi HVvy20SxK6vO5BbiUeTZYWe7xero8y4KZUjImTc7vfTlvTr5IxwHpgGdcoGfchlh5GFADEndnetz ds8urXh6c3zFp2J4upKTscY7YeDa4fWvf309MO0wtY2gBKDtmIqNG2ntfEvPmG3+qI+jONoJ3xUB HZkEX6b4NzX1J5+zhjaEtJdP4PwPhwFLUAd8bSjZSY7ubPLQLYAT75iRoziOCzk+pJ3Jx5PWqR0D IoO+QF8GGDve/gjJBo++RSdpX0d56MIuvHYhk42vBHXRPsoxcNKJQ+X6gN1wJwcYi/bKYDPUR6fJ 08RATscFZDrCOuusUwv13j/UO/yr00hrxLYLytPQMY2YRk67kDo3oJTOJ006GBDQeaUBYr4SMJoK DJonoDMagRm7c27SCoBjVTpiQJoR+hrDpgXj54WkHoxSHXzp4BgMEBPUx1lA5wJdnZWzewrE8HFG kBfDaJ3vAyQ5qGyThKGpH/2RhU4SyM7r8C9ngIIc9A64ABEDdR7Q2UReUIJP4xx98X6rrbaqx2IM BgYRjexIjt1n65c2ZwxKdq8ZL1ABEr5EUdbKjDkgx/P2tYhNH98tA1X56c/ZQGXwkJ0JxJNXBZAc M1KWA+T+stKgoR8YaHze58cMnH8kp0HCsRt9h77tkCsfgOmf2o/37fC39/SlLO0ryAeIrdkqB1+6 kh8Ym3VoJ/IyGGUZpLWPgdPxHkeT8iXKqvStTtNPEwU54MMYHXrVMQCBLw0YIu+Buw+8XvSiF9WC GQbi8RhdnUFztEIn8jWATsYj8I53YDR1No5BG6GV7d7VuTTpAABgBFoMoFXGVJSRPp4cg+RVMBjg iRevwjk3Z/J4YqY78tnRBVTSqqcDwurPE5Ie4AEbdWTkplzAz3+68nQYHANTPlnojEHRlzryPgwc 9Aa0tQNQ521oC16Ody3ImXoCCYDMW+Il+QbWs/Z59atfXQHZ4Wf18945RJ2AvDw78it/dTw5PH2n DETpxwDG63KkBzjwxugKYGljoOVTNl4zsPNFCcADPAZKgyGQpjudk8dHt+rtmI0+oXwDQ4CM3gwi vNiAnHbVhnQJ/HwXrFznOU1J6UC74+/8pUFDGfoSXjw5/RD4xZMzYHSQmx00MZDTiRgaA3QI1igL sPz5i6u0vCOemCmW7zt1VOsnTv1b+zC9NZLqdMBDGtMq6yE8PECg0+rYjIc8Ao9LJ9Vpc8ZtVQEO BeTIDyjJw4CAstFfh+aFGfnJyICtE5lOMkDG4RkYAUEgDkyAmbNzPDnAAXycEeRNMGBy8mjICkxc 7Qrz/oAfwOOdMOyAnHQGAyCnUYGc8ugjgVw8ILLQJ8BQDzriqQJdB6tNVxk5kMNTWwAodVLf1QE5 3xrzHskZMNdmBj5lGhh4icAX8LrnjfLWfEdsaUI/oUN10u68dPoGPPoEkAQ06qe9ojvyIUH7AyZg SV/aTjrB9JYONtpoo1pWQM7gSQfAlzHQLWMA/HRhlqFO+i0Z0hc7yM0OmrgnZyQ3zdQpfYVgFOfR EMIiPhA0NQIkPAkekk7MwHw6pbMBDIZg6scDMPUTdGhlkcO9jsZr4xEwLvcCw0y6VaGANEBhYAzJ qC+ol3J4poyBh8dQABa5gJf1HTIzTFNQ4Gjqdstb3rIeCAZy6mHTwZSI12LKG2+UDFmTo1uGBzTo 2LQPAABNacSpKy+Xd2Y6Rcc5B4joRlvwauiGrrWHfAxXGUDOAWmGTeem+oJ3preWBrT5qk5XbTj5 4kO70WUCoAayPHreNgCyXqbdeb68WWUDY5/2eafdrUMCY31FHpsEvDN9ixdID5ErV0Gf44krj77I D5Sk96fnZPSlC31oL20CSA1I+rYpPKDlmQJn+sKHLniABqj0sxXppdPkaKIgZ01Oh9Z5pRV4dKYx QMz6nNHQyK2zWFTX2XVca09+tkhnM4UllLUhApq6MiLeHQ9Hp1WeAFCs5fiagVFbNyNH5F0VCsjh q2MzEl9XABFrWTw8YODHBMgOWHR+3hKwsQYIlICDOkgPXBirPIzLx/sMKAv7DJr3aiGc3ICULKZe vA8AKPA+gJAyvWe0vGEDA48SAAIr7UJPQJQOgKu1LcYOtL33pQYD5hn7dE4+O59+TMH0jRw8KwBD Vh5QC8TjKCAH5K0d8th4jTocMArIAVW6U3dtxcu0mWLwyLohuYGU/uK7Z3q1DJD1TEDP05YHD9Nc 5UdGQZuRn/7pkoz6IH3o4HRhympKTId0xLvmsfHeDRj6r3bXttKoi2d14FUbePSXDnKzgyYCcojx MW7AxZDdCzquBWbuPo/GFIkx8hR0MJ1HJ2T0nt3r6Do3T49XY53IaI+P/MBIJwMGRmQ7YngyTAZj jUvHZwCtMqYi8sdQTNdM3ZSFACujAgC8OAvrgMvGAY/OOpJOb7HdVMZ0UzBtMo0FKHQBfICTONMf cbw+oIC3+pCFzCH1A9jqxfsAxgIQYeSmZN4BEzKS22DBCwW2PB9T33iN8vGUyGkX2hodOaXRHuql fvStjVdFh5FTHbSBtjAVBKC8XbJYlgBogE07GkCAGhn0I+1O1pNPPrnWz09peTZwyK9N1RV//cXy hPe8POWTk24MFNoBYFtHA9LWz3RweuKpmyZrBzqQxns6pi/5gCNdG1wAI50aWPUFbSe/mcLqDKKd ppcmAnJtgTpbDsu2HdD0KUAIhACV9/JL7yodwkec9/LoiDo7HvJ7713K9N75KNMh6zXyZvq3OhSe jIGxmJa4KlN9xSuDjOoFEHgpASlyKJteGD5e4uiOV8GrAYjuwy/TzFYORB+h6AVFp/jSoysdScf4 yap8cngvjrGTwdV7dVI2XggPsqmvPOKkTfnjZBq+Q8rEB+jipU0iMyDRNmQFIPQGtLRT5MKPXlI/ eb2Tn8zpQ+GnDm35CI/oKs/y0TO9yE8nZEi7IHKQj7HIpwxX+VIf5ckv7bDunWaOJgZyueoEDD7v 07F0JPeM33ujbtKIw98I6V6czi2fNNK7985VB1QekhYvaUxh0Zp0wqRXLl4hvJWhzNQtcXRhM0Xn Vz/xWagng2f88FW/TLGlESePECNLnZJeGeKVy/Ddeyc+vARpyUc2OgpQKB9F9+Kjf0QO8YlreeZd dO2qfGXhgyKPd6mLgI9yI3OrU3UBaKbwvM+8l155gBJvPFzxb/OTCwnyeB+duSYveQCduNRNGvLL Jy5tMyyDjOQif+KQfPKnvE6zg7TJxDw59zqXDqGDMB4dgxGkw42j9l3uXZEOJ+DBALxry2vTxtCm 6ojDuORvn1N+S8P0iVM/xsMgki/Xlh/ZGZEgT+LpkH4CMgG/FkyjP3nci0+5dBwAk0a+8HOPl3fJ 40oOvELSkAUFPOTFVx781C/vxOGhbHrGX4j8AQt1C1+U8tzLm5C0eeea9+GRdk9fSL3TJ6VJ/ekF z/QB14Ce5yHJj8bFD+NCydNpdpA2npgnp5OLs5ZiAdsRAFOAGGKEQjpliBGh9l56z3YwrcOYvsQY QkkbMqVQtulI5A0ljfvI3MoQSpo2zzB90riSyZWhiWNogEC6yKkuDNX6JHJPJ8hCuR1GHiFe8vIM rVvZrDFVCmBZq0TW0WzOWMtyFEXDqa98DrnazMnUEDmAqwybN2QJmIbIKt5UWhrlWsfzWZbyyWka qkzv8HK1hhavzLk/sognozLkU777ABg51d9aKz7yqjciB1DF0+6m6a70aUv1tq6betOlPN4DV9NS O7J2YsUBQ+XrP8ojQ3h1mj+kTacd5JAOLY1jIJha6LWwbBcyC8rS6OBAwegazwS5F9wzdEEZFnzt iDE2gcEoLx5D0sqfM14MFX8GQGadPWmlIzdZE/Bs+XjHOCKfsvBKGnHS4CsuvJVlrRGRUT3xBrp2 88hmAZ4RC86SORxrUd0BVEdsAJXNAUdZxNt9Zdx4Wyx3jMECuJ0+DWeHESACeAvq+Nk9tF5o3Qkw yYOXdw61kktbpO3IqA52e+3kKsdmAX4ODmvz/KS8d8p0/s+mDzByFtLOp3iL99of6NGbwQkpR3vS WQ6FRyYbFPSZNrO5RA4gKA4BKGt4dlptTtnZBnTpSzq5DS+743SXr14MtPqPjQXlk4ks9NlpfpC+ M+0gpwPqaBaDnRtzaBYo6WiOLDAezwBOPh2Zh8Z4GSdDsbtKSADFeJTFEBn5He5wh3qeiXcSQ1Gu fI5AAAblO6PlOIkdMIEBkJuc5OY18A7wlcduIw+KLBbcvecJKtuCM5mUET7q4L086gLMeAjSuRdn h9JRDboIGCrLcQ+fnAEn+gKgdiId32DMzhI6Yc/rYPi+7OCV+YLC1wdkAFaO2DisSs/KFQ9g6cxi vrR2crUBvnaEnZMDCAYcRzh4bAIdIvoQ/I+F/+MAQvj6wQN5HbGwE+mMGQ+dx8SzAxjAzJlAO6Da lfwOgwMk7QkU5SGjdqNb/YJsANjxIZ9L0YlgV/1Wt7pV+cM//MMqR4KBAXg5TEz/5MNLmYL6O5aE lzR2eB37oVPnGLV7yu80v2giIId4Pt7zvByydK6JITB+HdpoylgE4Gbk520wdMbrSACPwDko3gNP gTEanRkXD8iRDdMoHdvBXCf95XecAkgBBkc6dG5BpyYjgOE5OIiMMn1hYMokF2ByYt8VsAEr5/qk d34K6PEgyMLDAcbKJTd5lc2QyM2bAXKALICmLozUebeAMq/K+TlAxANhmACEB8b7cZSBLk3RNCDw 4+VtuOGGFUgcYmXcDB4I2OV1JSd9m845JmKgcRRGYzsuAozJNAQ59QTEjpCYqvKoACow4m0BXO/w pGN1MD2kN3VRV1NFXhgZyMxbA1bK02f0EeVpQzy1AV0bEOiIRwtonbnT1gn04R1AdfQG0GnbeKHq rq3Iq285mqO+9MUABOnJSIZO84cmAnLiYyw6namNT2aAASMEavk0SSfTSXkapkQOWxrtnY1yCJc3 wdh4KgwIyDmcyWPg7fgkB0g5BEtwZZkGMjxeAM9IvgRHT3hPzmUxAqAmrfJ8yM0IeJOAwJcIwM+0 kcfEIwJYymK8wBgI4G+KSEby8Z4YLEXTCRCJTuKhxEjVAZAJDscqVxn049yXwUIA4qZm5AQQplvA w6FbegOKPBR18wxwEMAkl2maoA7KAG7KBigARjlDkDMw+TEF7aZOrg7H0rcfFlB3cabeptq8M/oC fsBb2/HgeIvOCxpkWlBRVjwv96a3psD6g34jv2cDjWsGRUF+7Q3EtBkQd+aO7OqiP+qX+kOO9pDd vfNu+q208QA7zR+aGMh5z5CBmoVn3ojpIzDjCej0jJR3wiAcFrUgnhPwvCfGCWAYkBGeoVrbY6Q8 NV4eb8gU1ZSE4TNABsEorQcCykxXBVNM0xggYqppagpkTH95IDwSHZ/RmNowTGDJIzSdNQ1TFs+N B8XIGCoPlSfloCjDBkpZa2N00gREgA9PUF5y0BOA4J3y1DSOsn0Sp7EcICYPPSQ4GO1LAB4MLzHn 2tSN5yKON0VXAThyGEC0AZB24BdgaxsyRb6AnDVNQM9z9D6/1KFNAKCy6B5fJJh68m5zeBdw+5pC 2+ABoAFYykIGAfktPxh06FXnU2egDZDxAFhtfps09KP/aR/1Fo9X6mAKb1pumcOgRqf6B29b++DX vbn5RRMBOaTzmIYxVl6GDsy7Mb2w2ye9KYT1Fl4VPrwsnZl3wDsCgry49ueIjNq8M94XT8RmBvDh 3VmAVwZw5PGYMjK4LDoLppCmhLwoAMFggat1Qp//mJYBHd4gEFIngMy4ASeQkB+YMioeAiMFFEDB lxyMlIEyQs88FEAKyKQNyOHDc2VsplgMEXDYkVQ3p+2VE+AC0PLhC+BNzQEbEPJlg6vBgB4ADF3i QTa61S4GE/rTBrxrIAIgx4Ec0PYTTDwo5RoI5KUP7UJf1unkdzgXkPOwfX7HmxQcliY/ADdw8U61 ByAygBhQtCXvDWBqO8sQ6gpIgaO66jfaVL8A8GYDvGfAJ04Z+lM8Q0Bo19Vng6bmNruAHVDXr0z1 1Um9O8jNL5oYyHlmLAyCMfFufMbjMy9GIVibs6DMo2DkDNFnMzwQi/6MWMdmONbDgBKg4b15Rvms hsAMSRxDsp7DOHVsvPAnD7lN2YCj0ZxMvDmGApB5mTo9MKMIdSSvaSg5yYevHVLvAbL6Uqo0+JEh a5CmkKbU6kYGIAfseH6mpcoxGAjqZ81KvZGpqMGBB0I2Xizgph8Aw1sUgIMy1MlOqoazJsWQAa71 MDoBHIxdufjTlzagF+2VtqNPg5Q1MAOU+pjW4s0bp1sbFwYBOuF5k40cdA2UgC4AwQsg0otprcGF /rwDcjYrgBW9ksm3tQFBepKfjICPV2YQA/jqYWqcehsgeNd44m0wo0t1pWsBmOqL1m71KbxT7xhI p7lPEwG5tjCdmKHyLHggWZPivVgv4sno5IJRmNcBQHhTOqoOitzL4573ogKmrAxUGcoCVoSWTjzv Sdl48RjIJp13QIBngQe55VG2tGQHUIDJPf7e460MxiEPY0epqzzkatOQNZ9+Zf1HPVMG8k5aBqrM 1C2ejjLomVfHYwL8PBfeD4NWH18LeC+tfPirj3zqaXoKTAEH/SqDXOo2NHTyIboGjDxlPLQf/Siv fQfY8FceENdWvCQ80i+kpQsemPJbXbjXHuSXF//0HfJ6n/anH3VVjni6lo8eoy881ZWHTk48yIGU Q46U0QFu/pF2nRjIIfEMEfFkBF4CQ+WRme54lk7nlCaG5z6jrXv8dU7BM0pHFZ8yeAF4ySsuckW2 8EPK9h4faVMv7xiHe7zci5MG38S1afCKDORp49yn/Fzl9d59gM5zZPMsX8p1FQAZ/QEY8tKX9yH1 kzd5UOoJBNoypFU2GULkE6eegnSpP93i0bYDft7j5Z0471NP994DIQFf79r3kRWvtCkZgKpn71xT rvvIJ2/ypQ7RPXlTJ/K1Okp88nSaH6QfTATkctXJhBiCoLMb0Y3AOqrndGqdUzrkfmiAIe/a55Qn fijDkNq0w3dTUcuTTAEWRt2WE55Tlb0qNFXe8FZ2gvJ5NfQvBIjoVPoYtvgAxVDe8Es7IO2SPMkn rTTaUlzKaGWTzjtl6g9pUzKFl/LatPghsqZ8pG5D2eSTVtBH8JUvsqWMyJY8qL3vNH9Jv5oIyKXT m0ZIY5fVGoophHQBvHTsgBnjMs2UzlVHFy9NeOe+fR6mGcYP43Ifap/zfpguz+pGiaY9plBDcG/v k2fc/TAtHeDFcOm3zdPm482YhpnSpnxX7WDqaG1KAwM/gEBO63umuow/8iLlePaOhyhOGwAX/LSb aah84pSDt86RtOGlrdJ+yiQj/vKZPpry8j7VIfxMmZUR2dpBYyibd3Tv3o69OslrKqxc9TVwki16 cu108yL9ZtpBDgExUw0L744x2BV1MNgiuqMdOisDjNeWkd56jXTtoU3vpU2ZAUhXZTKWpCFH0sSD cR+wlFacd+7lZ1zSiGcs0qEYbtLj7yq99TDKsiYkxNhdpZdWnQL28rTlilO2dCh1kV6ZkTdyBAC9 t8BvUd1xCAd8BRswjuLYYXSI2OaEYyTSirOobwPBBovy6QlZ69Ie2sinUeLIYnPGzqzNBpsB1ty0 pzT4IefYrL2pm7aJbDYBfGkQ2YCxQ8N4yUd36ue4jjIim93hVjbgarOCbI7u0Cd92ExQVx3VzqkN CWkdvLYJoQy7ssCWbNFjp5sHTQTkGCRjZgCOUjj7ZbHYorHdPmeveGqCOKM+XoIjHU6428ULOHkv XYyJ8YqziBwwMJpn8TlpeAnK4UWIZ0DkI4vdOSO/ePImvzTyS8doXSnM9BqgeaduTv/7vMwRkfCn AzzJhoACfkgZykTigSFPA6gnrUDpAD47jMoLEAt4WY9znkz5vBnBbia95YcflUcuO4mOqjhO4VgM QFGvALqy7Yza5QZOyuSBOcJizdQuquMzdo4BmHOMdnWBnU+8AJNALu3gky3HNBys5mUJdlMd2yAj vZGdx+Us3ROf+MQqm6MvdmrVNbJpPzu3ZAPqBgOepONCygCi2kdaO7DkBIqOmNiYAX6CPiId+TrN f2IzEwU53gaDUaj3OqvzW4DGjquObfR1Et1UixfyB3/wB9XQgYrRWRpfFzgCwIB5er5A4B3Y8eNR 8DZ4iQyKcTMmxxUYEl4MRl5nv6TlQfBgGAqDTX5HP4AAo2VUgJRnoHzHPZz/AqAM3dcA8qiTc2eM jQfEK1Gug8E8JQDt6IxjNIDEMQj6c1yFdwN4XOnSMRJeEPCkQzzpk+zAh57pHT/nC/EQ1Nsf/fCc TQkBqDyAypELuvTz3eSVH5jhayDR0ECBDPKpP/nlAxoGKp/COVTsvCKQda7QYJWDxvJENsdNfPVg 2ixIo2xfGjjDR5f0bsDTRmRThqMn+JCJbGTUUZ3No2PxQM7ZRIe8AZupq+BTMYejgbLOSzc5H9lB 7uZFEwM5ozGjZFRAzXTDFMoJf+e2dE7g5ryXs0tGcl8W2G016jsp70yck+yMnhECAx6VTu5bRoeD HQbNX98ZyZ2n4r0pRxzjZ5hAyZTOp1EO5zJU5TE88knrz2UAsjWgBKCjLOfh8nmZw7qmXIBW+YxW PnXiyQBFh1B9T+o9I3dUxtQKaKgXr9E5PZ9Gqb/6AXT6A4yAlI6BLR0DZ2fdAmp0CWTyTCYeM+BA QNDxGYALSAwgpnh0DkgAKOMXeLHqAoC1I6/RwAGY6FzdHPMx1aU/Os0ncwESYBxvU1u3sulIPErn 8nQwB5KVSRZn+cimvchKplY2g5N2AXJAj36cjdMO2oTurfX6GkMf0n+0E9nIK3SQu3nRxEHO96kM GEPTFYZjNNfJGQ/j8rmS9RngYiRmrKYwgMlJd18SmBaZ4gA5UxVAwrBMz3gwwAoPi9sMg2fAM+HV 6PwAxmjv0y0AJ5DfZ2X+JIVhKgMg8UDxFky5GCxwcs/g1APImLrxSBx0ZfzWhRgb4wVgvraQTl2B DuM2/VJHIKf+PhHjoQJg/HlSAq8FGJGDfn1tAFisjTF23idvJVMy007GbvrLw6Vzz0DKN5umyYAE 2OArpI7a0NST9waorGUBRAOG6TB98858DaJtWk/OQCNkXRHFy1S+kG9/ASJP2CCFL28awJPNtBU4 B9z0J4GnTke8aHHItFkb68QGEtNtnnT6jS9kyKYthA5yNy+aGMgZjXkj1oMYiUKlYfw6rVEWADIm 3hID0nEZPCDiAQEw0xKdFcABAVMbQMMg8DPlNDXiyUjDsPDJ50GelcfwGIK88gA/p94ZrzIAjwoz EiAXsAGa3gNJX29Y1+KtAUVAYkrGA7FOBPB4rrwL8vNCeWfAD0jxgBi1rwikBTjWp9QLuAIwsgMz OuHF0WmmgnQO4AAJuX1yBdgFbaAOwC6/v2Y5wDRcG6g72T1rC9NqYCHwfAEy0AFypvvqAxwBPwAE ztqMXk3peZbKALI8MR3GoCYo309cxZNTdzqkW+tlAE+dLUPYVCCbQQLIko2eA952UXm7Bg6gjPQV IImAmWUBAMpbNq3mhSov64Ud5G5eNDGQM7LzCBgOsiAvACPrRNalrDsBIobHMyOUjmmqxyAAAW/M VAV4MBaAAUR4g2TgBcifNDq56Z7PhKxPAT7l8QZ5VIxVWcoFQKZhPgDnKQBOu3JkBSYCMASSjL5d 3+PZmUbjbx3RehJP1GdXPsHCD4DxYqRXrjU573ha1st4sPl4PN92Mn6GrwF4w/TKSAEe4AVwZOPl 8oiAoWDtMD9VBTxNbbUDfStDvPoBKiANuAwiAmCkc8sIdKoMU2qDEABXN+VoT14TWekX0GsjU07g p20E3hp9AVlB/6BjQKWNeKH6iTZOGdpD2xvkyGbKKfDcef/0B+DIxlNTp+SjNwNT2tZ0FvBZC6Wr 1gA6zX+aCMiJZ5iMjOcFiACHTiqdPLwH6RXCoyIQj4UhiSMkw2aAvBxg5F3KxFd6ndgRhaThPYrH n1y8EoaIj7LxZei8Q2to8lu7Mu2Sn2GoW6ZNvBQek0V4XiF++CgTX89AjMehXHVi3LwNxqc88TZa lAHEAqL48N7UXznKNN1UDkDGS5w60yXCSxxABcCMGx9xAIEeeFC8Kl4ZnZMznrL8vDCAKD3QsJhv WggotR8wxVOb4EfXeJGZfkytlZG6AmlgTm/KoxttGNnwo2v65aGRDS9p1UEZ2odsvDCDk7aLbOQn Gz3IQ+f4yKcOrWzalocqjbTydLp50cRALlfeCK/OPeOWzlRWx0feIwFPJMRw5UUC0Gt5KmOYRodn LNLo+GRKeeLFSes9I1KOOPfJI51y5OOpmV6ZrnoWlMuAPJM3eeVRjvjI47mVUTr1CI/IIQ9ZU3/5 gBqeIXmQeDwEeehVGXjhk3pIi59nZXsnHTBQx+hTnHfyBExTP7LJqxxpW/1laovEK0te8a1syoqO kg+vlIGfQA5g6F1kkzeypf7hHzmUm7b1HLnFSY/PTaWUPe7dyih5W2rjVzV93k2VLvEroqnStnzG vW+pTdPmaWmYZ5KkP0wE5JD7GJOOh9zrzOKlcZ9OmvR53z7jrwPryMnrfdLgkfJRy8N9jJMMAn4M Uj58Y2ieGSZegnteA29UnPcxTnXBnywtYOMVkPZOOeEneO+deDwE/ALEIXlTT8/yRX+pR8pk1Mrw DskTEI0s4UkXLQhER8BD+sgiztVzygh/vD1HBnoJL2VER6jNR8bUKeXKK448Ce7pJ8AlXXi3+do6 eCeuLcP1plB4kENdWjlWRtKRT/2jQ4QXPvStTVOH5KE78Xmfvqpe8nuW1vvwTZx0U8knPv0Urzad /Gkv8rUytfldvU8dohdy4uuavtDmnSQpf6KeHKPUaKYwmS5RtPcaJJT07XPSiAc2diRNR8O/TZfn YX6kfA1iCmh6Yz0shufelCik46RTZXosiMfLO/xMueRVH7pQT/Jl2tXW0bPOgL9pF88HP3yQtaxM T5MPKRulw8lPD+LwMGU1DcZTOcqIbpKGZyRfeLT6adOSQ/nkQOLTpnhoY3zUU5z00tDDkJ+ypLE2 SjYyq6/30iZdKHFIGXjmOe0TvkkfSrpQeA7jkj7vVhTnmvvwMPXWvuJaOZIXeW7jpHNVh+hQe7EF OpE2dQuPpBfvitIn5dGm4ugff21FLu2SvqkPRUb8cpXGu7RZ5NNWbMGyDRsVp8yWR0tki9xkUjf1 YltsRj/Ec1zeSdDEQI4So3gbBhaJ7aZZdKYUIEORkD+AIx8FZbTTYN4LDNrOrA0EZSeNvNLJ6yq+ HamkUZ4jJtahLP7jY93LCGRH0nkrC/nWlvJnKeplsd65q5RFRnLY3LDwbuHcO+XarbQxYcPB5gUD Vz9yuFp7c4REGovwGkCHswurXPHO3gFx6cmOlCkwMvksyPMqyWwDwJcI6mVDxLpaOjJ5ySRNNgDI Sp+pS8pQHv5+Phxf9baDSnZriDZ2bAApwxoa/jYJbPbYiNCxtYM2D+BbZ9Tm6mZDgGzKieHQGTmU 4V5Qd53PTrh4fceZRvXWhgL5Q/KlDtp/HHlHJunVPzLI2/KRVnnRUeQT1I1u1Edfj7cjHX7y0qdn 79RfufIBIO1j08cGlfVGfQ2g2KBRX6Al0Ct++qB+JJ1+kSNPdM+G9Dtrt44npe/YxKIzQblDkMNX /fQxmzPWOdVVmeLlF69N/QQasGvbCx9BWjvkdvelsYlmY8pV/ya3dVE6CEZMmpQ77SCHdBIV9dPd zpPZjXQ0wLGENBoF6tjSp8PjaaRJPMPxbCMhRo63zpTRTqNGHs/yGvGkE4CSX6t1vk1HcYyE0Soz /1XAkH0W5WCxDqDyjlUwOJ1Xh1AGcLR7d5vb3ObG3UmjGJ46G345zJygXvg7JgF47DwCE2XYIVUv 4J2vCZJHfchIt6bMzoTZVXbvsKv/PtDZbaKQ1TedZBR0ULzIpLHxoRtgEX3jrxyB4djVJIcOH0PU ZgYmXxeoo/Lp1vvb3e52tS46lGBUZzT4am+bCHjRKUPXHuRSvjS5Ivl4OMrwY5wBGbuo6spL0BfI pM7u5W95DMk79cMnXq04ZYkH7PpWAEB/TP/Rtzy7Kg/oOw/JcxK8w1M+/D2rP8DHVzmCTRtnBu3E G5zUg7cvr51lR2AMQvgk2KF3SF4f1Scdh7GxZXPKsSSAq23ZVcDXMSH8tSOnQj3Uk55iB+K1Wfs5 INuhA+0OAB1zcjjeyQP9Hg91oSP2zA6V6+gXefRpB+nphd04xqOu6sdmVtQ+00UTATmKBUIamzIc pdD44uzKaWjTGMbjEy0jvcLkNYro2HYA/TKthjZaAQdei2MnGsVoZ+QAEMBLnOMHjk/Iw3NKUBlf LeioOqJdPufLlMdTcPzBKAtEFixYUD0W74GVw8IZ8YzW6qlsndBIKqiLTgYAgJvzaHYbBXWmFwAk Dc+QTtQZYDprBzCc89K5gKSgQ+mcQJlOjOA+I3MGTT6ABORMde2cOubCqyJfvAnApBwd07ERgMeT dbwiHpl0Ao+SQTl6gqdOqr6MXDuTjz7UQz5g49gJkI6XFeCRXnu48pQZqTLlI5urtqVz/Yfx8bTJ CeAAJw/S7rTjI/RGx/Ru0MGLh6q9ya/O44xJH/WO7Dwo7QN4AQ/wpRvHZhg2ee3WGsB4I47e8FZ4 KYDEQKn/8czk1w504RvrLMXop74uUZ8MHgZAbeWYjT6p79MrUOQxO+wuH72rIzDR3s6Wtn2SrDwk fUs/dsQHwOgLdGJzDFhqX3Vge0BKmwjaSHvhFWAV4tGrv7Q53wn0AnLIDEYc/s6lOgqkD2kbdYYB QMWhbjaIn/zj2mW6aWIgJxgBnfmC7IylDUCEdwPQAAbPRiNrRMYcb+K2t71t7XSOBQAjnUvnN5oA T51BGRSuI9zylresFQCqOowGMqrpeAwDAPKEBFMofHQq4OPEvMO6GgovnhWwBXIAR4cQ5M/f7gn4 A1xfMJiWOAvnXBmDNsqTA+gxWB2QvOpHwYDDtAUY8GKAeAL9kpfR69jqTy4dVD4dzEBBd3RhIFAW eRHZ6cfAwpMCog5Cy2f0TzsJQIdBaStTFrpXL0GHAajkY1yC9nZeka4CcvSDvBOM7rwfelVfuqAT shk8GL9pr/blAdCHZQBGpp1NgXhxBgVGphx6Jbs+4qsLAV+6GhqUsshA7/qZAQRP3g6d6w/aH1jw bOjrj//4j2tbpo3pzGFlgzFA12cAI0NnLAYph7fpmEx0hBeZBF6bNtBe+Jrq5biRc4PKT9sCUe/0 I6DX9kl1UC49aQPALK8BG9ACOTYAcHlU2lYZASl1Y1vaTNocBM9AILBlNqkv4cvLQ+rCGVAHMyn1 xocueHHaEdByDsinLDwNQPMa5HQwbr/Pq3xOJF5gOJRv5DNSQn0dhdIIxaA1vjRGXQDoGIc1Lt5K RjQGqZPquDoD74Ox4MUjEPBAmUaQFaDpHMBEp8DT9MDIrWzTa3x0Yp6NRh2CnBHfaCifoDyfjjEg XpWOqeMn0It1QB2V7M7c8Sp8LQFITXudPdNZgHECbwogOsxMxzqUxmFQygMURkygz7gASmSk/3yV AUgYGEBiAJYMAIfRPoE3TBe8I1MV9ctgIPBCgAGPktFoeyM4+QJyAFYgQzxEHpl68Xri3dCndiCb Nme8+ol2BkaAlgcEIAwYQILnKABjegAMysFL0P/0u3R0JGhjSxX0zbPQjnSm/Q04dAvItKl6u9ee PC59DLjp6wYJ9TdF01dNwU3vDF7KAIR0ZnCg+0wR1QOo8NoAkH5IN/qkvq8tlKVv6PcGMG1rum/g A6xmBwYe8iCDGYAHjABVPyAPg03Q72NzZNYn6VL/yeCSIC2Z6Ae40QGQTXuqC2/TgKM++hnPNJ42 uR1LSh+lU31L28xbkENGAO81TlxpjQnxjSJAwIihs+k0OrY0RgKGROkajzuv0+nkRnijBUAwquhk RniC8hopWwMxDoFMFG3U05l0RryskTAm8QBYp7H2pKPo7Bra96xce1OVdNoAiEV1B4SBsKB8hgS0 AZfpGQAks+kEANahjaQ6pY7hWVqGwxuzxiJfvBOBMeo0ZOT56qiM1T1Zja70ZC3GmpzT/zqsQGZG S2eAlScGLACJKaGpC4NL0A46MZBmqHSkHPrSmXkYQIke6UI5gJJMATl1oxtTOkAMGOncgOGrl4Ac Y2JE+fSK0egLyiGXvqBe6mBaZCAwyGkn5ak3kPBe2drMLEB7kyudXeBtqIs+pa94JiPw0JeAJf68 O2chycr7MyU1yBm4GDsZ/QAEGckkP12qIxmAryWRDG4BufQ3A7JBiw7YjnuDhHprHwOQNNqBDkzN Dd50ZLpt3dVampmKKaV+AgwdMDdISEcWpP9yJuhQ/2dv1v/0HV68vqrv6TfSai9tzZbZoHqY3gfk DGqWhdiW9tJ3fZpoANMe5KZvQGew0qeBjDBvQU68zqYz89g2HnlGpiFcYZ1dB2JM3HLrSBRDUTog 5Zl+4cXYeCi8D0ABAE1jlKfT8Y7wzroIb0Ua/BkAHq4aUKfEV0fm/tsB5VFl1NHJlUUuHYMRGpmN qPEAAnI6hrTZeNBhKQ1f00t1pDxemfpQdjwQIyJw8E658uk00Y18yjNFUCaQBUoGC0ZGfiMzwCI7 MI0nBLQzIqsD/fFOdWh6w4csjNTAQm7ppAdGygcG5MmmBs/OqE3P2isbKkAGD3HS4WENCSAb7XmG yUcHDFadIh/Dpi9rPGRnhNqft0G+9DEDF2BlkOQC2rxAHRTwmn4zdl6PIE/6oIFWHXlj2pos1iWB pXbQf7IcoI/oE4zWYKyPGUjpG091o3N1U7a25J3qtwYyxi8vkNPnAIMrwFQ/efUpZPYBGOlYGdpW 3bQlA1Rfchv4ADCA005kUX/eIzDTXuSnZzYAxOmL/uJJsUODpTZi+Oqhvqb91jaVRUZgrz3IQgZ2 QH/ay1X/NfgASjZmJ5bt0yuP0oBPBnW1vkpnQHJeg5ypQ0ABQBmhGDZjUnmdgKIZAwMwKvIsdBZG jAewMlJpMCOTEY3gygJqRjTrE4xDeu8AED7SkCUjp3KBgIrpIGTiWRlBySqPhtXgOgcj1rmMxPKr izLw5VV4Rz7P6qMTGX2NsHSifsAZSBjhdBYjKnnlzSAQD4Ue8JMvegRyylQnurN5wNjJKk4eekWA LHUlq6u0wET56q98cjJKpN7ySK9c5eNJHvohn7IYG8PUNuRWX3lj3GSlB89kZFSM1DqcfOLJI418 7tVNOygP8QrkUQ/pyUQ2fYRXaOlDWXhqd8sL8phGAkr9gTG2npx7etd/UofoifciTnvwBOlFW9Mr OZB20rfwoT/P+qH88vj+Wp9Rf0blfWxBHvW0Fk3v+rh6Kg8gk0l5+oy2pQt1ANg8OTzVWTnpk3il 39EfkNff6ITO6Yw8SP9t9Z3A4wXo+gRdGNylIT/7IB9bxL/N756Xp6+pCxslj7byHPsmr7L1p7TD pIm8EwE55B4ZwXVAV42lMaR3rxO6ei+/0c+9/N4J4nUagYF5Dj9X+cV5FvCPHK5pZHk1nuCdBVIL 0NkUwUdaDZuyNVbqIT6dR5BGXOqIUh/ypI7p8O7JkJGeDORPXbwne3hGB9LLJ6T+AhDCFy9p1C2y otRBGvylkVc58kY/SLw4/CNTQCLlR246IKP04vARlzKG+ZRHtujPNbrJe7zkc/WMp3R4iovcAl7y aTdAzsDbdpI3dXPFQ33SNtKKS10FOoq+tEHb38JD8C58vFNH8sgv4E3ulC+9kHRI3fFP2fgI0vOI bGilTwp4e5d0eEQf4uiHfMoSlzYY6gKRTxr5U758+AzrlDzIs/i0qzLb8tRJGgGPlJnyJ0n0NRGQ y5VSNADlUgLFRHHuxQuUpWHwQPJ6n3KQ+5QhbXimQb2TxnPyoLYs8rgPv/CXR6NrMFf18S7yep96 uFeWqzTSa/QEcdLhJXgX/ZDXe886gzj3eR/ji9wo/KQhT8qXLoH+8E4+1+hP+vbeVX5pQq2OWp22 5buSIfWlS3HSx2AEcrX5Ukd5kHhAoDx5pSF/eIoPEAre44eP9NK44qNcOpM218itXtLhm5B6pw7h 0+ooOnGf9KmDe7zdp25klV8cHskfauWO7CnPffgkbWSIPK6pT/vsKi8e3onzPvmH5H36TPi0dWpl 8YzavOJTXiuv59Qt/GaS1G1inhwSL614nQG1995TkpGrfecaCi/x8QSSrn12T4aMLC0PaZJOGjJp cA0TOT2bpsQz0AnkkZ5RkFOc9Pi4KtO0AkkbcMDHFMhVHhQ5XIdxic9z6kEOz8pp6xoKH/WRp5Ut vEKJD5+kSby4lOM5FD50RA/aCgEVZaauprbSi4seki+6xbsFOmm0gTzupQtgKMv0UFmtHJEx+dWf LNK0aekOP3KZnuEpHf4hPFDytHxzzb137qXNc+KGlLwt35B3iR+mJzNqy2h5uR9Sy6flnzLynDah U3F0oy2SbkjhERLXljmMa+NnkvStaQc5pONSpsVv00Kdz2it46J0fIBil9SCrQZi2BSfzt4qE3+d tAWcNJSOkfKtJ+HlWTrp284tkEVa6eQlnzUJO252kqxzSOudtBZ1LaxasxCPp3fWJiwmO+NkR8q9 8q1NSS8eP+tcdBbZHdS1c4dv6swQpbeYrm7WbQBD6iGN/OFD73agHXuxk2p9hz68S4cjo3zqjydd ahvxnjP6Biiiy+jcFYnTntaVrIPZ7LA+pBxrQBbF1ddivGM38pCF3PJZt7ExJJ91L3XwDl+70OpB f9YQ4wHL48iQtSt1ovfIQk78A4bW7ZxB0x7qgfQt63A2XZRN39a36JyerR8J+KgH3vQR3ikvcYjM bV8UF93iIU+rR2lb3ab9Wt22abxXhnhleEbqmXI9D8sdtp+0KPqhU++tQ+rjNlDw0uekV9/IQj5p vfccOecKkX/aQY7ShZyTcy7NSE/R3uv0CRZvbbEzDIFydU4N7V4ZUTT+MUhxGieNDIgEhmfHx4J/ grT4CcoGMAxNPh1YEGd3zHEOayIMAlgJgMau3B/90R/VXV1yKE/ZjqswMMbvnJmdU5sJdpUt8OpQ /rnK2p/6CK6MzJknGyuRwY6b3S3layA7bnZ3UzdATP6kl8aOq/rapbPTZkFdoKfoUL4AM9npDYmT JjrNlV7oO7oXJ6iPzRqgYcfSrprFa/V1dbTDT9EDdby0N7JJYHcRkNnVdIxBvxHwtsvneIrjFHb7 srGiLLvv+kOMUN3VQ50il3aid2RhPcFiuB1yfcuxEccslAUI6UvbGOQE8kZn6u+e7pQhTtnSivOs /yOySSOebl3Fk4/M5BWfOHy0p2e6jX7VyRU/bSMfSjt4T6apyk17kl3ayOg9uZWjLezM2lW20aGv O3bEfoEjfnhED57liwxzhdR7IiBHoUDOTpGjC0ZQuy+Mw6gPjLx3IDPn0TScgm1z8wCNuBpPWTqM soCDrXejsJ0vn5oYwZ1zYxy8CfyAkWc7WcpDPAKVV0lHJYZg60wegwDI0qmTAMAYr38Ry+HQdB7y CTw1IMdz0MkE5fsCglEzPp1bPbwHCM492YoHavmeERjaMRPnTJTzfEDEzjJvzfEJ5wR1Sod1HWVx 0BRAABL1t92vs+qk9AKU5LMrp20cF+AlKZPeAQpQ5oU6ImC0l1f9Y4TkBg7k4nk5JuCgNlkEaXNe y3k57R/dKM/3wbw0Xrt8BgZBHzKA+LpAu+gvPH9HSRih9/RFDvz0EfrRRxz5MDDYIbz1rW9dQdFG RIK2dNZN+9GHfPqDHVtyGnzpVF/E2wBBVmCsHfQ/+sJH3ZzxNHiShXHod+Lx8KzO9OgQNvn0BWnp GU99x1Xd6Us/oltgZqcUH56rWQ3gzsBBD+TGyw6ntpROejZBP+I94w/c9U386YbNIIMUu1E38fqL PsYW1Bt/dbBrzV4AoX5ORu0wV0i9JwZyplvOcjF029I6oQIo0PkqxqSxeHKmipTvPJvO4yyPkZaC 8RIYL2DQODqAzos3T4YnAKhM9RyM1eCmnLwN57SUwTOK1+E4go7AeAVGz/jIZ2pjuglIdDbnkPAA KKZUDMY79RSAtXNTznqpc4LyHdo1nRToyAgpL0PwjuHIC1yAsPJ5cwYEhq8xyKLOyuZhAgHTDAZG v7xQXozzUfjxngGXDk2f8qiDERwISEtvOjP9MBoGwLN0IBgYkZG82jhtSnaBV+TojXaMDgCg4w+M Sd54GIL02lOb8DaV4VCtwMC1hzOMvDxyOYdFVkcvtJFygRC+AIDHrZ7qbnqMv1P82sgxjAwm2lqZ BlKgEwBUbyDHuHmKgBVIqIMBA8DSvTwGBvIYqKNbnimPiBdNtwYi50CBvz7rrKC0dCudtuA5klX9 6R+o6ddkNaiSkU3oF/qCvmMA52lJn/OOAFdfN5ipv0/cGLRva8ktzmALFA02vkjRn6XXzjxZdcGf zNLKo03oRdCveMD0L7BBfSAgMttp4iCHoYYyejoJ7asAynPI0fqW0S4NaETnkTiTxPB1Pt5QAlBz Wtuoo8PrmBtvvHEtw4jNuzAq46eRGYQvE3QaXoqRv+WXegjk0HnIRAEM1rqFTuUApk7LsPGK8TJQ AYADUfkSx8iANWNSd0F53pMdQDBWwMbAgZhO6WsIetDhDApAW0PkkxweLg+Obh3ONL3zXmcGMNGt Q7sOKwNm8jFYX54oAxjwIHUCbaLz+ywJ6DKsAD8DzBRInckNDLWLdowetLVBQl0ZjxA9CPqEdmHA vFrlKFtgQLmqK4DwJYA+47Crqa/DuQLgBBQMEkhk6qsfqBODp+N4fvokz4/M2o0xWx6Qnl6Up5+Q 23omT5ou6FR7GjSAMY+P4fPA5NP/GAjdifNOW2kzcpBbHwZsQBQoamuDFc/ZYGIgSdDPfE0AdIA6 mbWvwcvhXiDnSwyDPE9auc5g0gWQ4j0CaPrQJ8xI1M15QrpWRwOF+mVpgNz6k/QGfP2OjuhG36d3 bULncwng0ERBjofD+HRaHUBDU7JOF5ADRIyP4cbYgYJRDWmYBN6NT06M3AzOlBQYcs81jNHKIrhO wNhMjYxIDMy0hmEAOdNccpMzBk0OnR1ImCLIBxB0enIYgQOYZMKDN6Xz8EZ1JuUkeA9seQbSk1d5 ATlTSOUBIJ6btHREXzqre94JWXR6BsIjZHgAyqDghDqQN62gT9MhHda9kd16HqPEyzt6cU9nPIcY rTqavjA001vB8gJDNaXXttozBsAD0rZ0J940DzDwEBicwEi1o6matAzZO5sWPG1yCHjz0pSvn/BS TbkYImAnE+MWgJelCnpj1ORgnO4NjrxAoCwwTvkMGPqntuepAyD1BkAAQ7k8MoBiNsHzNSNQNmPQ B/RJ+tNH5QNyBpF86O6dvh3dAmi6wlc7AzlpAamBR/1bkAPigJv8vDr9Crjyvsmv3bUT0DLoqqs2 1xeVq24Aj8xsRLn0mIFH32GrPE19lW71H/1Oe2ofvPV5fUQfxFOgzw5yKwE5AEH5Gl3j8Ci479x+ 4KQBdSIdxJqJeO61K08ITx6FoCF0BtNcBpZPgqTT+XhrhGZwOheDNXorE3AY3ayz+BwJaBk1BfwB rw6qs5jWAgFTH3VgqDqK0d2ozXil5VnSAeM0kuucCdaqGKjOhj9DVh6QY4C8GnWhbOAA/AEBz8RU zTTJz/zo5IyS58RTI7sRX3odnLGQU/0Zm3IBpgHEOyM1YDClpy+NjxdvjJ4ZBO/NwIGfwcFAoM0Y XTvI8AgABfm0lfprb+0P5H2aFs+YjtSF58JggJtygQz90qlAFwDGlNDUz6Chf/Ce4tUZCAR6VCYg MnXn4fCw6U0f0mbkSQBgDJpeAL7po4EPKLoHcvoSfgZHvMXrT+IMKMpOefSpTkAQmOh79G2KKp/p sPUzckvvvX7De9T3ref5dEtbaVPBgEfHBnj1AULAR/vRP32RH3/1UTbvTZvq294ZZORhawZ6gAhM 2RygNBDqZ2YPPEv9wzsDO1ms9+rHyreebdAzoMxFLw5NBOTE66yMWiMbyaxtAR2Nq4O7l5fbbd2C p8U91hEAAABkbPiIBw6mdjqXq84hj2fTUJ3Y6EcGI2548mxMY50kZwxkMgoDTLJG7uQDSgxBGcoM wMpnpJfGJgLjZchGOp0PP7tn8iCekCkwmQBcdENvyjQS8wjUFdADSO/xATjqrJHUg34ZGKP0TJcA g1crDf4MlFehXHLywpTJCNWffug9nhcdKFtH1wbK0CbyM3iGQGdkNaBoB/l5iDkWxOAMAuqtHRiL MhkIr4285FYv64PKoze6xY+e6E//IEcANXHagY7TRq76lqm1OtGb8rWN+pNbXjpGKReI6yN0Kz9d 0yPd8aLoS5umXPWTR15p6UU/ohv39MVTj77oXfn0oA70oq4GBXLThf5s4EqbGpjUP33b4EsHQBJf 3juZ1JE3n/5MLj8eYfDDU19gC+TQptpMv9L+ePvsylq3fPoc0JZPH6A3gxX56crMyNKMdGkH+ppr NDGQc6UkDaDTU7h7DSqdUUIend29uCwuyycOhReS3vuUjS8DdC+t/N5JI23SK9s7ad1PxRugkYNM 7qWVhjx5j4c0ypYuckRuXix+0oiTJmW05ZFHPnnoJDpKndr86iRefu8EBmsNSmcWgNc43bb1x8N7 PFD07J149XPPIzHSKw+fyBw5pFVP7xH+yml1mrq08svnOboN3+QnU8qMrl3lj17Jl/zqq8zkj47C V1mCcj1LEx1Ji5ey8FCG5+grvKWNbMmHb/KJkzb5xEW34qJb+ZSRNhFHJvVKWnzwkBYPcdJ7r33F 88Z4zQYPQVzyyJ82jYwpK23gHUodBfdZDzWIee8d+dLGc4nUdWIg50rZiCI1uHy5lx65F6fBpdXA 4lo+rknbluNZeo2SeGWkwd3nvefkUY77UPJJi8jTlp186tnKL16c56RFbX2Tv30vL5kiW96nDPdJ g1dbD8/Wyni6dNaW1cqmnGH9I4s0iZc2+aIzwftWZmmkFx9jFjeUu02Ll7ih/OHpnbaQ333ADC/p Uw/vwjvv8Ep8W36bNuWSVxpx6ujeu9Q7MqX/IfyS1n3SkgklHz7uW1nkxwvPNl/SprzI6RrdKity RvbID9xMRe0cAzB8ApTJ7xq9DfUeuaX3Hg/5eZGMXnplRaa5SOowEZALeU7ciu6H6du4lobv2vSJ H3ef5+H7lsalHfc+9+PiW5oqvn03TDPueVx6HVUH1Q5t/JDH8F2ojc+73DMG1KYPtXnQMH5c2va+ jRuXbhg3jJ/q3aqkbd+v6L6lNm5c2uH79nkYN+6+panytXGAE2AFpJJuXNpxccP3CMi58vT0q/bd XKSJg1yn6aFxnXVtUm/H2UfahN3FK1sbbYRHvMB4nnO97TvIdeo0h4l9xfNam4TndPCdCeog16lT p3lNHeQ6deo0r6mDXKdOneY1dZDr1KnTvKYOcp06dZrX1EGuU6dO85o6yHXq1GleUwe5Tp06zWvq INepU6d5TR3kOnXqNK+pg1ynTp3mNXWQ69Sp07ymDnKdOnWa19RBrlOnTvOaOsh16tRpXlMHuU6d Os1rmhaQ829EflkU0PmV0fx8dqdOnTpNmvzCsX9x869jawXk/DUbT85vwycO0HXq1KnTTBBny19J +vvFNQO5EYiZkpqaIn8c7I+h/Uck8t+mnTp16jRTxOkyVT3uuOPKwoWLSrn+inLaeWvgyUFMrqG5 rykr8qfBnTp16jSTBIvMMP2B92WXXV6WX7O0nD4CuY+uLsghHp0pajYdkOdOnTp1mkmCSdbmlixZ WnHr9BF+rbYnF5Dj0QXcOsh16tRptpCZ5sIRXt0kkGvBrlOnTp1mH60lkOvUqVOn2Ugd5Dp16jSv qYPcGhAX2NWc3xpkG9epU6fZRRMBuZxCzpGT+ULqs3DhwrF17tSp0+ygaQO51tuxjWs797rrrqt0 7bXXzmlavnx5rdu3vvWteqIa4Kln9+Y6dZp9NK0gx9O54ZzKknLppZeWc889t5x55pnlrLPOquR+ qudVeTekFaVr+bT3q/Muz+riRPU222xTDjnkkBtBvINcp06zj6bdkwsA/PKXvyxf/vKXy9e+9rVy 0EEHlQMOOKDst99+lfbff/9KufeufR6+y/sDDzyw3u+77743vmvTuoaG7zznnedVfYcOP/zwcthh h1WQO/LIIzvIdeo0i2naQe6aa66pUzlTu7322qt6QGeccUb91RLAl+vwfty7U089tVxwwQXlwgsv rJ+S8Qw987C8T/r2Oi6+pXFxofad+9NOO61+m3vEEUdUgN1hhx3K0Ucf3UGuU6dZTNMOctawTFeP OeaYCnQAQZxdScCAgCBq79tnVz/jJA9A84MA3//+98v3vve9+m3a9ddfX3kmbZtv3H1oGDe8H6a3 nmj9zUe/vNEOcp06zX6aCMgBhmOPPbYCnTig4Ar8VpUs9vOkXvjCF5Z11123vPe9761Cev76179e AUjIb9pJrxzUBj8HFRnHlTMVRW716iDXqdPcoYmB3Le//e1y1FFH1fg1AQThhz/8Ybn73e9eXvKS l9Tpql8bePjDH16e+tSn1qmrDYHzzz+/XHLJJeXss88uF110Ub0//fTTy0knnVSnu/nNu9UtP3I7 MtJBrlOnuUMTBTmAIG5NQc409X73u19505veVL0rO51PfvKTy3Of+9wKgG984xvLjjvuWEHoNa95 TTn00EPr2tnzn//88vKXv7y84hWvqOuCQC5e2biyxlELct/5znc6yHXqNEdoTnlyfgzvYQ97WHnU ox5VPv3pT5cPfvCD5TGPeUwFNiB3r3vdq2y22WZ1d/RBD3pQ2X333cu2225b7nvf+5bddtutbLTR RuWxj31sXccznV0dGSJ39+Q6dZpbNKdA7mc/+1kFryc96Ull7733ruD20Ic+tHziE5+40cvbcsst a1mPfvSjy5577lm222678shHPrIe2lWp+9///uWUU06p/FZHhsjdQa5Tp7lFEwW5mzpdzZqcaae1 NetvT3jCE8ozn/nMurHBq3vHO95Rwe0BD3hA9eQ+9alP1Xtlv/71r69enWMswpqCXJ+uduo0d2hG PDlrYsDC/aqS6SVP7mlPe1p53/veV/kKn/vc5+qanAPBvDZrbxtuuGF5ylOeUg/t7rLLLmWDDTao x00+8IEPlPXXX79uQCxbtmxsOVMReSN3B7lOneYOTQzkeFqAzlk3xzzEuV9VAiR4AjpHScQ5aOzq 99xtQgAhf17hsK7pq51Vu67W8tw7hGyqig9+Lf+VEXmVZ8PDn/Z0kOvUaW7QREAOMPj8CQGiNQE5 PACJwAsTh0fOxwGgeHcJprSJcy+fgM/qlt+CHE+uf/HQqdPcoImAHDr++OPrDqfzatbEeF8/RiOP K/+w415c/m2nfecZnXzyyTem9Zz3SeP9ySNvz/XHP/n9NC2NKz/38g3f8SL9A5AvN3iLpsod5Dp1 mt20+iB3xeKycOENGVdE/utw8cjrubIevr2inDmaTu67737lm/vsWw4++JBy0MEHlwNHU74DRh6R e+Re3Lh3ng88cEQHje5H19/Nd8O7en+Aj//xuSFd6AYe3v8uz/A5UN7fpBu+Q1U2vEbxRx19zAjk jizbbLNtOXx0BXKXj0BOncfpolOnTjNH8AputSD3jGc8o7ztbW8rO+20029BbutjriznX7q4lOtv yAAZV0TLrhqlve7yctkl55Vjjziw7POV3cr+e+9er9/ca0Sj6z6ja33+DbkXV58H7+pz3o3od94N nn+P5+D5xvsx5ed+WH6932vXen/QPl8pe+32hbL1lu8vJxx7RCnLrx7V9YqRXhaN1UWnTp1mkEZ4 BbfgFxyDZzYw3/zmN9djaNbxF/x6yfLy7oOuLN89fXE5Z4SKPLqV0VkXLi1nXXJ5Of6kU8r2X9yj fPIzXyw77Lxn+ewue42uN9Bnf0Mres798HlV37lfk3fD5zat67Y77lY+s9Pu5bgTTx7Vc+Spjuo7 Tg+dOnWaeYJb3z1tcdlshGPwzNGzN7zhDXVd3RnaBRdfsbxscsDVFeg+PkJCLt+q0IePuqJ86PCl I1pUPnzk4tF1cdliRK5zmbY4bFHZ8ojFZaujLy8fPfqqWs8PH3nFWB106tRp5gluwa9NRzgGz9ZZ Z53yute9rmy//fblhBNOKAuWLS/l4suXl18vXl7OHaEgJFxVOv/yUi4ZzeYuueY31/lCo/pcPLqq 37h6d+rUafZQxa0RfsExeOZHPXwD//nPf76ceOKJZYEjFL73tKO49dZbl1e96lX15464fD6xWm+9 9cqzn/3s8pznPKdTp06dZh35IOB5z3te/bEO9y996UvL5ptvXvbYY496kmKB3cNzzjmnunV+wnyL LbYob33rW+tnUn75w/0mm2xSNt10006dOnWadeRzz3e9612V3PtqyhEwv1Tkl78XOLzriwEPvlrw Pw22XiWyO+Gsyc4771w/oerUqVOn2Ua77rprPaeL3Pu+3f+0+B7+vPPOKwt8VeCwa36A0uFY2648 OzsT5rTOmnTq1KnTbCQfIbTkcL//bfHZ59KlS8v/A7jUqamCaVKiAAAAAElFTkSuQmCC ------=_NextPart_000_005C_01D47C66.0E99B5D0--