Return-Path: <owner-rsgb_lf_group@blacksheep.org>
X-Spam-DCC: paranoid 1170; Body=2 Fuz1=2 Fuz2=2
X-Spam-Checker-Version: SpamAssassin 3.1.3 (2006-06-01) on lipkowski.org
X-Spam-Level: ****
X-Spam-Status: No, score=4.3 required=5.0 tests=BAYES_00,DNS_FROM_AHBL_RHSBL,
	EXTRA_MPART_TYPE,HTML_40_50,HTML_MESSAGE,NO_REAL_NAME,PART_CID_STOCK,
	PART_CID_STOCK_LESS,TVD_FW_GRAPHIC_ID1 autolearn=no version=3.1.3
Received: from post.thorcom.com (post.thorcom.com [195.171.43.25])
	by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id t08N3fLC019890
	for <sq5bpf@lipkowski.org>; Fri, 9 Jan 2015 00:03:41 +0100
Received: from majordom by post.thorcom.com with local (Exim 4.14)
	id 1Y9M0a-0000FO-Ff
	for rs_out_1@blacksheep.org; Thu, 08 Jan 2015 22:56:52 +0000
Received: from [195.171.43.32] (helo=relay1.thorcom.net)
	by post.thorcom.com with esmtp (Exim 4.14)
	id 1Y9M0Z-0000FE-RV
	for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:56:51 +0000
Received: from resqmta-po-08v.sys.comcast.net ([96.114.154.167])
	by relay1.thorcom.net with esmtps (TLSv1.2:DHE-RSA-AES256-SHA:256)
	(Exim 4.84)
	(envelope-from <jrusgrove@comcast.net>)
	id 1Y9M0W-00019O-NA
	for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:56:50 +0000
Received: from resomta-po-11v.sys.comcast.net ([96.114.154.235])
	by resqmta-po-08v.sys.comcast.net with comcast
	id davw1p00154zqzk01awlJH; Thu, 08 Jan 2015 22:56:45 +0000
Received: from JAYDELL ([71.234.119.9])
	by resomta-po-11v.sys.comcast.net with comcast
	id dawk1p00C0CFS1j01awkF2; Thu, 08 Jan 2015 22:56:45 +0000
X-DKIM-Result: Domain=comcast.net Result=Signature OK
Message-ID: <001c01d02b96$6048b1d0$6401a8c0@JAYDELL>
From: <jrusgrove@comcast.net>
To: <rsgb_lf_group@blacksheep.org>
References: <46D2E1AF22D14849AD1095081F7613AB@AGB>, <FE2CD976237848008CB5F84E8291A688@AGB>, <54AD702F.1009.1A52347@mike.dennison.ntlworld.com> <54AE61EB.7134.397DF4@mike.dennison.ntlworld.com> <C78AA868025844D1AA86642B40F70DEC@AGB> <000c01d02b55$440817e0$6401a8c0@JAYDELL> <8592571821BB4496B94ADC934CBC0555@AGB> <002801d02b85$7089ace0$6d01a8c0@DELL4> <BA68AA66D6B6440BAF6C6DD7DDA9079D@AGB>
Date: Thu, 8 Jan 2015 17:56:44 -0500
MIME-Version: 1.0
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2180
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=comcast.net;
	s=q20140121; t=1420757805;
	bh=W81iRApkQWVYCDQVpYKOkAtr39dXfqV6doU3Xuz8lzY=;
	h=Received:Received:Message-ID:From:To:Subject:Date:MIME-Version:
	 Content-Type;
	b=F6QFjnnzL/zd/Llxr9qqsRMEVsPZdJFhcGqNjfZsoyv+Pq7zJ5ezo8mQJFzxd5Qdq
	 zPkzUtruhNIlr5L1lmWlbh7ujZ0guDLCNMTIGUmHbHN5JtdC8/mZ391nhiDAQJ7r5d
	 SvTRG0OrdpA9WvN7p4gzEZb102+PgfAmKfOXCmNosx9yk1+R51luCGCm/tXoYsGcHT
	 Wk5ARiCG0uvE9MDSsrLSCpBPcCFHNHCFBi7n+MCvzUONPxVM3vtNaS/WYGi7OrpOLG
	 sFoPufkxKbZPSwqCzNneRSGVbsTd8HM7mdDFdQeC479veUmF5YgYpOwAYJl9HwH1F0
	 bRzSI1gDaX7Vw==
X-Scan-Signature: 08c9414f19655553e357235c441385aa
Subject: Re: LF: New version  OPERA  >>  ''Opera Dynamic'' <<  
Content-Type: multipart/related;
	type="multipart/alternative";
	boundary="----=_NextPart_000_0017_01D02B6C.76F93410"
X-SA-Exim-Scanned: Yes
Sender: owner-rsgb_lf_group@blacksheep.org
Precedence: bulk
Reply-To: rsgb_lf_group@blacksheep.org
X-Listname: rsgb_lf_group
X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org
X-SA-Exim-Scanned: No; SAEximRunCond expanded to false
X-Scanned-By: MIMEDefang 2.56 on 10.1.3.10
Status: O
X-Status: 
X-Keywords:                  
X-UID: 1891

This is a multi-part message in MIME format.

------=_NextPart_000_0017_01D02B6C.76F93410
Content-Type: multipart/alternative;
	boundary="----=_NextPart_001_0018_01D02B6C.76F93410"


------=_NextPart_001_0018_01D02B6C.76F93410
Content-Type: text/plain;
	charset="iso-8859-1"
Content-Transfer-Encoding: 7bit

Graham

The shift last night on my transmission was 2 minutes - significantly under 
the 4 or 5 minutes that has been stated as 'processing time'. With no OPDS 
reception at DK7FC, DF6NM or anywhere else in EU, and with all of the false 
detections appearing on the screen I would not put any trust in those 
detections. From here, SV is an incredibly difficult shot. IIRC my signal 
has never been received there and I have received SV8CS only one time ... 
ever!

You can try and belittle DF6NM OPDS setup procedure but it's becoming clear 
from the posts here, and in private e mails I've received from users of both 
'systems', that there's a serious problem with false decodes in Jose's 
system. I agree with LA4ANA's comments about how important it is to keep 
false detections to an absolute minimum. The responsible thing to do would 
be to pull OP 1.5.5 from circulation and encourage stations not to use it 
until a better functioning version is available.

At this point I have little interest in transmitting OP so as not to 
contribute to this problem.

Jay W1VD  WD2XNS  WE2XGR/2
  ----- Original Message ----- 
  From: Graham
  To: rsgb_lf_group@blacksheep.org
  Sent: Thursday, January 08, 2015 5:11 PM
  Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' <<


  There  1000  miles  apart and  exactly  the  same time , the 4  min  shift 
is not  a   timed  function  , this  shows 5 tonight

  19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 dB in 
Zakynthos(Zante) isl. GREECE
  19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in Welshpool IO82ho

  yes  I have  the  opds  system ,  even  edited the  file  paths  in the 
config.sys  or what ever ,  bit  like old   bike , needs a  few  adjustments 
to get it  going ,  all  the  decision  making  logic  is  contained  with 
in the  package .

  So far tonight ,  everything  looks ok

  73-G,






  From: jrusgrove@comcast.net
  Sent: Thursday, January 08, 2015 8:55 PM
  To: rsgb_lf_group@blacksheep.org
  Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' <<


  Graham

  DF6NM's OPDS is much closer to perfection. I take it you've never used 
OPDS ... so you're not aware of the differences in performance.

  Those two spots look good at first glance but they didn't adhere to the 4 
minute time differential from standard mode reception. What is one to use to 
judge the likelyhood of a real spot? Unlike DF6NMs OPDS there's no 
correlation % and dB 'certainty' indicator, an accurate time indicator or an 
accurate frequency readout that can be compared to other grabbers for 
corroboration.

  With so many bogus spots in Jose's deep search it's hard to trust any of 
them.

  Jay W1VD  WD2XNS  WE2XGR/2
    ----- Original Message ----- 
    From: Graham
    To: rsgb_lf_group@blacksheep.org
    Sent: Thursday, January 08, 2015 12:35 PM
    Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' <<


    Jay,

    Well  nothing is  perfect ,  all  the  beacon systems produce  strange 
spots

    I don't even   have  a  136  Tx  and  am  regularly  spotted on 136

    2015-01-01 19:01:38 G0NBD   2056km 137513.376Hz   3mHz -36.6dBOp  95% 
15.4dB

    This looks  convincing to  me, two  at  the  same time into  UK/SV

    00:34    136 WD2XNS de SV8CS Op32 Deep Search 4722 mi -42 dB in 
Zakynthos Island with 1w +
    00:34    136 WD2XNS de 2E0ILY Op32 Deep Search 3245 mi -42 dB in 
Shropshire IO82qv with 1w +

    As for   the  pdf ,  I got  the  impression  the  11 dB  claim  in the 
opds  document  was a  little  optimistic, I note  Markus  talked  of  9 dB 
in a  recent  post, I assume that was perceived  as a  challenge ?, other 
than that content is  solely  under the  control  of the  artistic 
director.

    One  thing  this  is 100% certain  technical  issues still  take  on a 
east / west  divide ,

    73-Graham
    G0NBD

    24 Hour  wspr  on LF




    24 Hours  Opera  LF



    --------------------------------------------------
    From: <jrusgrove@comcast.net>
    Sent: Thursday, January 08, 2015 3:10 PM
    To: <rsgb_lf_group@blacksheep.org>
    Subject: Re: LF: New version  OPERA  >>  ''Opera Dynamic'' <<

    > Graham
    >
    > I won't be quite a 'charatable' as Mike ...
    >
    > There were at least two false detections on my transmitted signal 
(WD2XNS) last night that I saw ...
    > one into G and one into SV. About the only way to tell they were false 
detections was the time lag
    > between actual and the 'Deep Search' output - it wasn't the expected 4 
minutes. Had there been no
    > 'real' receptions during that time period one might have actually 
believed what was reported ... as
    > you did and reported on the Yahoo reflector.
    >
    > On receive from here last night from there were false detections of 
VO1NA.
    >
    > I saw one detection of a G station in JA make the list! This was 
clearly a false detection. No doubt
    > there were plenty of other false detections but after this couple hour 
'outing' with 1.5.5 I gave up
    > on it. It's clearly not ready for prime time and should be pulled from 
circulation and return to the
    > drawing board!
    >
    > Perhaps the author, instead of taking the time to write a 'propaganda' 
.pdf page about DF6NM's OPDS
    > and include it with the download, should spend more time actually 
making his software work as well
    > as Markus's. In almost a year of using OPDS I have identified only one 
false detection. This is
    > severly at odds with Jose's test of OPDS. Since Jose seems to now like 
the idea of Deep Search,
    > maybe he should 'borrow' more ideas from Markus ... like the 
correlation % and dB 'certainty'
    > indicator, an accurate time indicator and a highly accurate frequency 
readout. These indicators,
    > especially when correlated with other OPDS users grabbers, makes the 
very rare false detection with
    > OPDS obvious.
    >
    > At this point Markus's OPDS runs circles around Jose's Deep Search ... 
regardless of what his
    > 'propaganda' page says.
    >
    > Jay W1VD  WD2XNS  WE2XGR/2
    >
    >
    > 

------=_NextPart_001_0018_01D02B6C.76F93410
Content-Type: text/html;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type =
content=3Dtext/html;charset=3Diso-8859-1>
<META content=3D"MSHTML 6.00.2900.2180" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY id=3DMailContainerBody=20
style=3D"PADDING-RIGHT: 10px; PADDING-LEFT: 10px; PADDING-TOP: 15px"=20
bgColor=3D#ffffff leftMargin=3D0 topMargin=3D0 name=3D"Compose message =
area"=20
CanvasTabStop=3D"true">
<DIV><FONT face=3DArial size=3D2>Graham</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>The shift last night on my transmission =
was 2=20
minutes - significantly under the 4 or 5 minutes that has been stated as =

'processing time'.&nbsp;With no OPDS reception at DK7FC, DF6NM or =
anywhere else=20
in EU, and with all of the false detections appearing on the screen I =
would not=20
put any trust in those detections. From here, SV is an incredibly =
difficult=20
shot. IIRC my signal has never been received there and I have received =
SV8CS=20
only one time ...&nbsp;ever!&nbsp;</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>You can try and belittle DF6NM OPDS =
setup procedure=20
but&nbsp;it's becoming clear from the posts here, and in private e mails =
I've=20
received from&nbsp;users of both 'systems', that there's a&nbsp;serious =
problem=20
with false decodes in Jose's system. I agree with&nbsp;LA4ANA's comments =
about=20
how important it is to keep false detections to an absolute =
minimum.&nbsp;The=20
responsible thing to do would be to pull OP 1.5.5&nbsp;from circulation =
and=20
encourage stations not to use it until a better functioning version is=20
available.&nbsp;</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>At this point I have little interest in =

transmitting OP so as not to contribute to this problem.</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>Jay W1VD&nbsp; WD2XNS&nbsp;=20
WE2XGR/2&nbsp;&nbsp;&nbsp;&nbsp;</FONT></DIV>
<BLOCKQUOTE dir=3Dltr=20
style=3D"PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; =
BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
  <DIV style=3D"FONT: 10pt arial">----- Original Message ----- </DIV>
  <DIV=20
  style=3D"BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: =
black"><B>From:</B>=20
  <A title=3Dg8fzk@g8fzk.fsnet.co.uk=20
  href=3D"mailto:g8fzk@g8fzk.fsnet.co.uk">Graham</A> </DIV>
  <DIV style=3D"FONT: 10pt arial"><B>To:</B> <A =
title=3Drsgb_lf_group@blacksheep.org=20
  =
href=3D"mailto:rsgb_lf_group@blacksheep.org">rsgb_lf_group@blacksheep.org=
</A>=20
  </DIV>
  <DIV style=3D"FONT: 10pt arial"><B>Sent:</B> Thursday, January 08, =
2015 5:11=20
  PM</DIV>
  <DIV style=3D"FONT: 10pt arial"><B>Subject:</B> Re: LF: New version =
OPERA=20
  &gt;&gt; ''Opera Dynamic'' &lt;&lt; </DIV>
  <DIV><BR></DIV>
  <DIV>There&nbsp; 1000&nbsp; miles&nbsp; apart and&nbsp; exactly&nbsp;=20
  the&nbsp; same time , the 4&nbsp; min&nbsp; shift&nbsp; is not&nbsp;=20
  a&nbsp;&nbsp; timed&nbsp; function&nbsp; , this&nbsp; shows 5 tonight =
</DIV>
  <DIV><STRONG></STRONG>&nbsp;</DIV>
  <DIV><STRONG>19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 =
dB in=20
  Zakynthos(Zante) isl. GREECE</STRONG></DIV>
  <DIV><FONT size=3D3>
  <P><STRONG>19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in =
Welshpool=20
  IO82ho</STRONG></P></FONT></DIV>
  <DIV>yes&nbsp; I have&nbsp; the&nbsp; opds&nbsp; system ,&nbsp; =
even&nbsp;=20
  edited the&nbsp; file&nbsp; paths&nbsp; in the&nbsp; config.sys&nbsp; =
or what=20
  ever ,&nbsp; bit&nbsp; like&nbsp;old &nbsp; bike , needs a&nbsp; =
few&nbsp;=20
  adjustments to get&nbsp;it &nbsp;going ,&nbsp; all&nbsp; the&nbsp;=20
  decision&nbsp; making&nbsp; logic&nbsp; is&nbsp; contained&nbsp; with =
in=20
  the&nbsp; package .</DIV>
  <DIV>&nbsp;</DIV>
  <DIV>So far tonight ,&nbsp; everything&nbsp; looks ok&nbsp; </DIV>
  <DIV>&nbsp;</DIV>
  <DIV>73-G,</DIV>
  <DIV>&nbsp;</DIV>
  <DIV>&nbsp;</DIV>
  <DIV>&nbsp;</DIV>
  <DIV>&nbsp;</DIV>
  <DIV style=3D"FONT: 10pt Tahoma">
  <DIV><BR></DIV>
  <DIV style=3D"BACKGROUND: #f5f5f5">
  <DIV style=3D"font-color: black"><B>From:</B> <A=20
  title=3D"mailto:jrusgrove@comcast.net&#10;CTRL + Click to follow link" =

  href=3D"mailto:jrusgrove@comcast.net">jrusgrove@comcast.net</A> </DIV>
  <DIV><B>Sent:</B> Thursday, January 08, 2015 8:55 PM</DIV>
  <DIV><B>To:</B> <A=20
  title=3D"mailto:rsgb_lf_group@blacksheep.org&#10;CTRL + Click to =
follow link"=20
  =
href=3D"mailto:rsgb_lf_group@blacksheep.org">rsgb_lf_group@blacksheep.org=
</A>=20
  </DIV>
  <DIV><B>Subject:</B> Re: LF: New version OPERA &gt;&gt; ''Opera =
Dynamic''=20
  &lt;&lt; </DIV></DIV></DIV>
  <DIV><BR></DIV>
  <DIV><FONT face=3DArial size=3D2>Graham</FONT></DIV>
  <DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
  <DIV><FONT face=3DArial size=3D2>DF6NM's OPDS is much closer =
to&nbsp;perfection. I=20
  take it you've never used&nbsp;OPDS ... so&nbsp;you're not aware of =
the=20
  differences in performance.&nbsp;&nbsp;</FONT></DIV>
  <DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
  <DIV><FONT face=3DArial size=3D2>Those two spots&nbsp;look good at =
first glance=20
  but they didn't adhere to the 4 minute time differential from standard =
mode=20
  reception. What is one to use to judge the likelyhood of a real spot? =
Unlike=20
  DF6NMs OPDS there's no&nbsp;<FONT face=3D"Times New Roman" =
size=3D3>correlation %=20
  and dB 'certainty'&nbsp;indicator, an accurate time indicator&nbsp;or =
an=20
  accurate frequency readout that can be compared to other grabbers for=20
  corroboration</FONT>.&nbsp;</FONT></DIV>
  <DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
  <DIV><FONT face=3DArial size=3D2>With so many bogus spots in Jose's =
deep search=20
  it's hard to trust any of them.</FONT></DIV>
  <DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
  <DIV><FONT face=3DArial size=3D2>Jay W1VD&nbsp; WD2XNS&nbsp;=20
  WE2XGR/2&nbsp;&nbsp;</FONT></DIV>
  <BLOCKQUOTE dir=3Dltr=20
  style=3D"PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; =
BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
    <DIV style=3D"FONT: 10pt arial">----- Original Message ----- </DIV>
    <DIV=20
    style=3D"BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: =
black"><B>From:</B>=20
    <A title=3D"mailto:g8fzk@g8fzk.fsnet.co.uk&#10;CTRL + Click to =
follow link"=20
    href=3D"mailto:g8fzk@g8fzk.fsnet.co.uk">Graham</A> </DIV>
    <DIV style=3D"FONT: 10pt arial"><B>To:</B> <A=20
    title=3Drsgb_lf_group@blacksheep.org=20
    =
href=3D"mailto:rsgb_lf_group@blacksheep.org">rsgb_lf_group@blacksheep.org=
</A>=20
    </DIV>
    <DIV style=3D"FONT: 10pt arial"><B>Sent:</B> Thursday, January 08, =
2015 12:35=20
    PM</DIV>
    <DIV style=3D"FONT: 10pt arial"><B>Subject:</B> Re: LF: New version =
OPERA=20
    &gt;&gt; ''Opera Dynamic'' &lt;&lt; </DIV>
    <DIV><BR></DIV>
    <DIV>Jay, <BR><BR>Well&nbsp; nothing is&nbsp; perfect ,&nbsp; =
all&nbsp;=20
    the&nbsp; beacon systems produce&nbsp; strange&nbsp; spots &nbsp; =
<BR><BR>I=20
    don't even&nbsp;&nbsp; have&nbsp; a&nbsp; 136&nbsp; Tx&nbsp; =
and&nbsp;=20
    am&nbsp; regularly&nbsp; spotted on 136 <BR><BR>2015-01-01 19:01:38=20
    G0NBD&nbsp;&nbsp; 2056km 137513.376Hz&nbsp;&nbsp; 3mHz =
-36.6dBOp&nbsp; 95%=20
    15.4dB</DIV>
    <DIV><BR>This looks&nbsp; convincing to&nbsp; me, two&nbsp; at&nbsp; =

    the&nbsp; same time into&nbsp; UK/SV <BR><BR>00:34&nbsp;&nbsp;&nbsp; =
136=20
    WD2XNS de SV8CS Op32 Deep Search 4722 mi -42 dB in Zakynthos Island =
with 1w=20
    + <BR>00:34&nbsp;&nbsp;&nbsp; 136 WD2XNS de 2E0ILY Op32 Deep Search =
3245 mi=20
    -42 dB in Shropshire IO82qv with 1w + <BR><BR>As for&nbsp;&nbsp; =
the&nbsp;=20
    pdf ,&nbsp; I got&nbsp; the&nbsp; impression&nbsp; the&nbsp; 11 =
dB&nbsp;=20
    claim&nbsp; in the&nbsp; opds&nbsp; document&nbsp; was a&nbsp; =
little&nbsp;=20
    optimistic, I note&nbsp; Markus&nbsp; talked&nbsp; of&nbsp; 9 dB in =
a&nbsp;=20
    recent&nbsp; post, I assume that was perceived&nbsp; as a&nbsp; =
challenge ?,=20
    other than that content is&nbsp; solely&nbsp; under the&nbsp; =
control&nbsp;=20
    of the&nbsp; artistic&nbsp; director.&nbsp;<BR><BR>One&nbsp; =
thing&nbsp;=20
    this&nbsp; is&nbsp;100% certain&nbsp; technical&nbsp; issues =
still&nbsp;=20
    take&nbsp; on a&nbsp; east / west&nbsp; divide , </DIV>
    <DIV>&nbsp;</DIV>
    <DIV>73-Graham</DIV>
    <DIV>G0NBD</DIV>
    <DIV>&nbsp;</DIV>
    <DIV>24 Hour&nbsp; wspr&nbsp; on LF&nbsp; </DIV>
    <DIV>&nbsp;</DIV>
    <DIV><IMG=20
    style=3D"DISPLAY: inline-block; FLOAT: none; MARGIN: 10px 0px 0px; =
POSITION: static"=20
    height=3D246 src=3D"cid:001501d02b96$5fcccb10$6401a8c0@JAYDELL" =
width=3D454=20
    border=3D0></DIV>
    <DIV>&nbsp;</DIV>
    <DIV>&nbsp;</DIV>
    <DIV>24 Hours&nbsp; Opera&nbsp; LF </DIV>
    <DIV><IMG=20
    style=3D"DISPLAY: inline-block; FLOAT: none; MARGIN: 10px 0px 0px; =
POSITION: static"=20
    height=3D222 src=3D"cid:001601d02b96$5fcccb10$6401a8c0@JAYDELL" =
width=3D468=20
    border=3D0></DIV>
    =
<DIV><BR><BR>--------------------------------------------------<BR>From: =

    &lt;jrusgrove@comcast.net&gt;<BR>Sent: Thursday, January 08, 2015 =
3:10=20
    PM<BR>To: &lt;rsgb_lf_group@blacksheep.org&gt;<BR>Subject: Re: LF: =
New=20
    version&nbsp; OPERA&nbsp; &gt;&gt;&nbsp; ''Opera Dynamic'' =
&lt;&lt;&nbsp;=20
    <BR><BR>&gt; Graham<BR>&gt; <BR>&gt; I won't be quite a 'charatable' =
as Mike=20
    ...<BR>&gt; <BR>&gt; There were at least two false detections on my=20
    transmitted signal (WD2XNS) last night that I saw ... <BR>&gt; one =
into G=20
    and one into SV. About the only way to tell they were false =
detections was=20
    the time lag <BR>&gt; between actual and the 'Deep Search' output - =
it=20
    wasn't the expected 4 minutes. Had there been no <BR>&gt; 'real' =
receptions=20
    during that time period one might have actually believed what was =
reported=20
    ... as <BR>&gt; you did and reported on the Yahoo reflector.<BR>&gt; =

    <BR>&gt; On receive from here last night from there were false =
detections of=20
    VO1NA.<BR>&gt; <BR>&gt; I saw one detection of a G station in JA =
make the=20
    list! This was clearly a false detection. No doubt <BR>&gt; there =
were=20
    plenty of other false detections but after this couple hour 'outing' =
with=20
    1.5.5 I gave up <BR>&gt; on it. It's clearly not ready for prime =
time and=20
    should be pulled from circulation and return to the <BR>&gt; drawing =

    board!<BR>&gt; <BR>&gt; Perhaps the author, instead of taking the =
time to=20
    write a 'propaganda' .pdf page about DF6NM's OPDS <BR>&gt; and =
include it=20
    with the download, should spend more time actually making his =
software work=20
    as well <BR>&gt; as Markus's. In almost a year of using OPDS I have=20
    identified only one false detection. This is <BR>&gt; severly at =
odds with=20
    Jose's test of OPDS. Since Jose seems to now like the idea of Deep =
Search,=20
    <BR>&gt; maybe he should 'borrow' more ideas from Markus ... like =
the=20
    correlation % and dB 'certainty' <BR>&gt; indicator, an accurate =
time=20
    indicator and a highly accurate frequency readout. These indicators, =

    <BR>&gt; especially when correlated with other OPDS users grabbers, =
makes=20
    the very rare false detection with <BR>&gt; OPDS obvious.<BR>&gt; =
<BR>&gt;=20
    At this point Markus's OPDS runs circles around Jose's Deep Search =
...=20
    regardless of what his <BR>&gt; 'propaganda' page says.<BR>&gt; =
<BR>&gt; Jay=20
    W1VD&nbsp; WD2XNS&nbsp; WE2XGR/2<BR>&gt; <BR>&gt;=20
<BR>&gt;</DIV></BLOCKQUOTE></BLOCKQUOTE></BODY></HTML>

------=_NextPart_001_0018_01D02B6C.76F93410--

------=_NextPart_000_0017_01D02B6C.76F93410
Content-Type: image/jpeg;
	name="46A.jpg"
Content-Transfer-Encoding: base64
Content-ID: <001501d02b96$5fcccb10$6401a8c0@JAYDELL>

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP
ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e
Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCAD2AcYDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6B+Hv
/Ih6B/2Dbf8A9FrW7WF8Pf8AkQ9A/wCwbb/+i1rdqCgoqnqt/ZaZpt9f3xXZAIRGGmaMZdiCeCCc
AZx7Go9E1O01bSbDUbNQgn81ZFWcyDKMADyTjI5x71j9Yp+29jf3rX+W3oaexn7P2lvdvb5mhRRR
WxmFFFFABRRRQAUUUUAFFNlkjijaSV1jRRlmY4A/GubuvH/g6CdoF123u51O0xWKtdPn02xBjn1G
OK2o4atX/hQcvRN/kJyS3Omorlv+E/8ADv8Ac13/AMJ++/8AjNWtK8a+E9UuBbWXiHTnuD0gaYRy
n/gDYb9K2ll2LhFylSkl/hf+QueL6m/RRRXGUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVl634j0DRADq+s2FiTwqzzqrMfQKTkn2FZK/EHw
u+TBNqlzHnAlttGvJo2+jpEVP4GuqngcVVjzU6cmu6TZLlFbs6qiuV/4WF4RRgLrUp9Pz0bULGe0
U/QyooPv6d66HTdQsNTthc6dfW17A3SS3lWRT+KkiprYPEUVerTcV5pr8wUk9mWaKKK5ygooooAK
KKKAPnD/AIKA/wDJLND/AOw2n/oiaij/AIKA/wDJLND/AOw2n/oiaiqRLPcPh66DwHoALr/yDoO/
/TNa3fMj/vr+dcN4H/5EzRf+vCH/ANAFbFetHK1JJ834HC8a07WE8cWct7o8skJieO3uLZp1ZuqM
ZIyB7/OPwzTfA9nJZaVFLIYkhnnnMCqeQilE59/lNOaW4SC5t44LSeC6VBKk4f8AhJK4KkEcn9KR
Zbh4La2eC0ggtg/lJAH/AIiCSSzEnkV4n+rM/wC1vrfN7vLb597bbaHof2wvqXsOt7+R0fmR/wB9
fzo8yP8Avr+dcxfDdZygqzZXovU1NXuf2Ur/ABfgef8AXXa9jofMj/vr+dHmR/31/Oueoo/spfzf
gL68/wCU6HzI/wC+v50eZH/fX8656ob26t7KzmvLuZIbeFDJLI5wqqBkkn6U1lKbspfgH159jppJ
4Y0aSSWNEUEsxYAAeprjf+Eo1XxLI0Pgy3ijsgcPrV+hEDdP9RHkNN1+98qccMelYUNpeeMmS61e
3ls9AxugsHYq93no84HRMdIz/wAC9B1qgKoVVCqBgAdAK7llVHC/E+af4L/N/gut+kvGt9CrB4G0
SeRbnxFdXPiS6BDbtRm3wq3qsAxGv/fOfeuns4bKzgWC0it7eFAAscShVAHQADisKkJrGthKtfSp
VbXbovRbL5AsZbaJ0nmR/wB9fzqlq2maNq9u1vqtjY30TDBS4iVx+v1rH3UbvesYZY4NSjNpjeOv
9koyeDG0lfM8F6/caI6kstnM5ubFsjoYmbKDP9xl+h6VJo/jOSDUItF8YWKaLqUh2QTrJvsrxun7
qXsScfI+G54zVrdVbUrW01Gxmsb6CO4tplKSRuMhhXf9XVZcuKfN/et7y+f2vSV/Jrcn641sjrvM
j/56L+dHmR/31/OvLLa8uvCd3HY6pcy3WiTMEtb6Ztz2rHgRTN3U/wALn6N2J61WBrlrZF7Kz57p
7O2//B7or6+/5TpvMj/vr+dHmR/31/OucBpRXP8A2Sv5vwH9ef8AKdF5kf8AfX86PMj/AL6/nXPA
0Uf2Uv5vwD68/wCU6HzI/wC+v50eZH/fX8656kzR/ZS/m/APrz7HReZH/fX86PMj/vr+dc7mjNH9
lL+b8A+vP+U6LzE/vr+dHmR/31/OudzS5o/spfzfgH159jofMj/vr+dHmR/31/Oueoo/spfzfgH1
5/ynQ+ZH/fX86PMT++v51z1FH9lL+b8A+vPsdD5kf99fzo8yP++v51z1FH9lL+b8A+vP+U6HzE/v
r+dHmR/31/Oueoo/spfzfgH159jofMj/AL6/nR5kf99fzrmIRi6nO1hnbyeh47VNQsqX834DeNa6
HQ+Yn99fzo8yP++v51z1FH9lL+b8BfXn/KdD5kf99fzo8yP++v51z1c/4g1q7S/Gh6Dbx3OrPH5j
vIcQ2iE4Eknc85wg5bB6DJrWlkjqy5Yy/wCB6h9ef8p0vifxVp2hyQWnl3Goalc/8e1hZoHmkGcb
jyAiDu7EKPWspNG8ReIAJfE2tHTLVhxpekzlCAe0txw7H2TYP96oPDuhWujRyuJJbu+uCGu7ydt0
s7D19FGThRgDsK1q61g6WHXLh3r/ADNa/wDbq+z6/F5rYl4xt6os6H4Z8MaIxfS9JsLeU/emCBpX
6ctIcsx4HU1s+ZH/AH1/OuczSFq5KuXzrS5qlRt93r+o1jbbROjZoXUq7RspGCCQQa5rVfBHhS/u
/tyWSafqHUXunym1nB92jIz+OaXcPWjdVUcDVoO9Kq4vy0/UHjb7xMyS48ZeFG3yufF+jrwxjRY9
RhGc5IBCTAdPlCt0wDXUeH9e0jXtOTUNJv4rmBjgkHDI3dXU4KsM8qQCPSskuK53XtGn+3NrugSr
a6uFAkVjiG8UdElHrjgOOV9xxXXLL6OKVqjUZ/zJWT9UtF6q3mnupWNa6HpHmR/31/OjzI/76/nX
C+HNct9ZtHdEe3uYX8u6tZeJIJO6sP1BHBGCK1ga4amSunJxlKzXkX9efY6TzI/+ei/nR5kf99fz
rnKXNZ/2Uv5vwD68/wCU8T/b/ZW+Fmh7WB/4nadD/wBMJqKzP25/+SYaP/2Gk/8ARE1FefiKPsZu
F7nXSqe0jzHtHgf/AJEzRf8Arwh/9AFbFY/gf/kTNF/68If/AEAVsV9JT+BHjz+Jl7TI7L7Fqd5e
2k92tpEjrHCzBjndn7p9h9Bmk1BbJtO0u+srOe0F3GzvHMzkjG3H3j05PPeq1td6hZu7WF0IPNAE
gMYfdjOOv1NF3dahdyr9uuhOISyxgRqmAevT6CuT2dX6zzX93tc6OeHsbW1Kt9j7HLnd93+HrU1Q
3xxZyklh8vVetTV29TnewUUUUyQrkNo8Ya44f5/D2my7dv8ADfXKnnP96OMjp0Zv93m543vLlks9
A02Zob/VpDGJEHzQQKMzSj0wCFB/vOtbOmWVtpunwWFlEsNtbxiONB0Ciuym/q9P2n2pbeS2b9ei
+b3sBZNIaKaTXGAMahd6VyScKCSeABWvo2kQ3MAmeUOXBCjkBW/qR+VTVrQox5plQpyqO0TNgs72
4x5Nu7ZxjtnNR3EVzbMRPC8ZHByK7lpRFhYijlBjOQFB/wAiue12/ZlW2Ko5kOwYHygk15tLM6k6
iioaHXPCRjG/MYJl96mtra4uk3xAEZx1rTttDjEyAlmkjP71JB1HHYfWuh0LS5ooZIp12Rq/7vgZ
IHANa18zpqP7rVmdLByb985698P2VzZPYzwyTebHiVZNuwqeCCD14OMVwfhqafQ9Vl8IajK7mFTJ
pk8h5uLcH7ue7x9D6jafWvWdW067kuCyZcdfMc8AHtgdf0rhfHfh++1vTfJjmSPUrWQTadIicxzL
nDHvtPQjuCRV5XmDcnRxEvcl36Po/wDNdvRGmIoRUfcWpcRs1IKzdAuJr/QbXUZoRbyyM8Nxbk/P
BPGxWSNh6hgee45rQU13zi4ycXutPuOKzW4+jNMzRmpsA+kpM0UrALmjNIMkgAcmlYYzhgcHFABS
02kzRYB1LTM0oNOwDqWmg0opALRRRQAUUUUAQw4+1T/e/h69OnapqhhI+1TjLHG3g9Bx2qakipbh
RRSOyopdmCqoySegFMkx/FmsSaVZRxWUS3GqXj+RY25PDyEfeb0RRlmPoPUin+GdFi0WxZDK1zeT
t5t5dv8AfuJSOWPoOwHQDAFZXg5DrN/ceL7nLC4DQaYrDAitQ3DgHvIQHJ/u7B2rqq7K79jH2Ed/
tevb0X538gCmk0E0x2rkSAR2xTEEkrbYkZz3wOlTWFt9sukhaTywx4O0nOOoHvXV6bZQafE0qMg3
KoxnJZhx1rmxOMjh1bdm1GhKrr0OWk0/UI4zI9tIEzjI5qoZCpIbII6g12l9eSQoMbAFBAGcsT3r
moYE1OSS7lV44Uby8oOre5rnw+ZOV3UjZLqjSrhFGyg9SgjNJIsaY3McDJrV0/SWbfJeCQRqOPL5
zV7T9Eni8g26I8gfDPj+A85Oe/0ror2wf7K4id8sSzKuBuNZYrMm3y0djSjhLazPJPH2jT6NdQeL
tIglea3XZeW64Zrm06kcdXT7y/8AAl/irT029tr+zhvLSZJreZA8ciHIYHvXSX1lqFsoKmKMHghv
m2j3PA/SuC0fSbrQ/GJ0uJdukaxJJJYuw2pHdAM8kY7AOqs4Hqr+or1MDivrVBwqyXPBXT7xW6+W
68r9kY16NpXgjpVNOqJDT81VjnPA/wBub/kmGj/9hpP/AERNRTf25D/xbHSP+w0n/oiaivnsw/jv
5HrYX+Ej2nwR/wAibov/AF4w/wDoArYzWL4IP/FG6N/14w/+gCtjNe7T+BHlz+Jjgac5/eP/ALx/
nTAadJ/rH/3j/Ol9v5D+yQ3xxZyneVwv3h1FTVDenFnId+zC9cdKmq+ougUEgAkkADkk0Vz/AI/v
Jrfw7JaWZ/07UmFjae0kmRu+iruY+y1rRpOrUUF1JKvg7/icapqHiuQMYrg/ZtN3drVOrgf7b7mz
3UJXUZqDTrSKw062sYBiK2iSKMeiqAB+gqUmrxFVVaja22Xotv67gKTUbmnKruSEUnAycDOB61LI
BbyW7xHMmA5KuG/px9K53JJ26jSuri6IkUmq24lYFSxOAM9BnmtaW2vIbxvss6hG3MpZc4PU49M8
/rWVdvps8pntlaKXaHEbfd3A8g9sEVow3yajNl4JIo0VSNhxhsZHA7ccdq8/FqbftEtLap/1qdVD
lS5evSxr3E9vp9gzNIHmYEtLIQCc+36VgeG2TV9VumaNHmAyiEfIqZA4/Sn+MZrJ547dwSxZS0id
Qnf8eK6Hwnb6TDbH+zcOSBvcr8x64BrjVONLD+0knzS2fb/hzdyc6vKmrI2Y12oBjoPXNOoorhOo
D3rnL+BrCR2jGd3zGQj7gznr/ntXR1geOnddEZIxyzgMfbrV0qaqVIxfVkzlyxbPJri4l03x+X3M
dP192O0/8s7tEzn/AIGi8/7Se9dQK5vxjYXF74feSxXdf2TreWYzjMsZ3Bf+BDKn2Y1taPf2+qaT
aanaMWguoUmjJGDtYZGfQ819rXipUoTXT3X8tvw0+TPEu3qy5HHJKxWNC5AzgVq2GifaEKy3Kwzj
5tpGQFx1rOsJzbXayAA9Rg9OeK09WYyhYiEjnih3lwdpP+z+XNeRXqVFUUI6J9TopRg4uT18jJdQ
krpvDbSQGXoaFwCCRkelMWnV1mBaWaCOeN0QAJgfMm7d6kjPWm3FyjrsihWNcYJxy3JP4VUaTnao
3N+gpNrN95+PReK86WJjKXLRi5tdtk/NvT1tdrsJ1XsiTIprH3pvlxf3FP15pjpEP+WaflVqeN/k
j/4E/wD5Am8ux0a25uPDe2JEaRT5kkhYf56etYAao4ZmiJVJZI0bhgrEAj6d6n1Nz5qSxxOInX5C
6hWYevHB/SsIVsThpNV6fuvW8XzW9VZP7kzSdTmSdtvmANOBqCORW4B59KlBr0adWFaPPTd15Epp
6ofmjNNzRmrGOzS5ptKOtAEURzdTjcxxt4PQcVNUMRzdTjfnG3j04qakipbhXMeO55LtLTwxaO63
OqvtmKHBitVIMz57ZBCD3cV09cv4bJ1XxZrOvD/j3hxpdqf73lMxmYf9tGKf9s67MJ7rdZ/Z1+fT
/P0TJOjgiit4I4IUCRRqERR0UAYApxNBNNZq5d9WAMajb5jjcFz3NWYYAd5nG0BCwBbaT9MjmnW8
9r9he3vEbJBaFx/Cf58kVHtOyuPl7mlZWqy6JbtbyFJgxbJHfofqMZq7o0UrKrXs+YlUOsaJtGcY
5PqDWJaX8dglxDax+akqho3ONy8gYPtmtuB7WDTrmSQOB950kOTnnP1rxsVCom+qb001/wCAehRl
FpeS1Mrxbq8bSJaxlFjLAOYyCyL6V1Xh+0SC3DxxJHG6KV29xjuK47w7DodzfyzXgYN5hMcTDKle
31NeiqAAAAAMcCpxcIUVGlFNNb+f/DFUHKo3N28gooorhOkoazaC5iVyT+6y2PX2rzz4k21xqmhn
ToZvsd4ki3Fo4GPIlTlGx1wTwR3Ukd69RYgDJ6V5jrrSSa5dPIMZkO0eg7V6WUxtiVUT1jr8zlxk
3GnZdTJ8KaoNZ0G11ExGGSRSJYicmORSVdPwYEfhWqTXLeHP+JV4t1XRGBEF5nUrP0+YgTL+D4f/
ALaV1LV9JiqcYVXy/C9V6P8Ay29UeYjwT9uWKWP4X6OzxsqtrMeCRwf3E1FT/t0ztN8I9BQgARa0
i+5/cTUV8jjJSdaXMtT2MOkqaset+BmDeEtFTcBmzhGT0HyCuovLBIGRY72CV2bbt3AEfWuM8Hkr
4U0naCR9ihzx/wBMxXWLpV5LYwTxRIS/PD8sD046CvTo4l6Qqy5ZLp0aezXlp8ndeb8uLcpSjy3a
ISCkhRhhgcHmnyH96/8Avn+dU1YrNsbhg2CKklk/fyf77fzrv5Xz/Im/ui3pxaSncFwpOSMgVNmo
Q4YY654xUVtLgvAzZeM+mPlPT/D8DTtZhe6Lea5i+Y6p8QbG1QZg0a3a7nbt5soMca/UKJCfqtdC
ZK5jwTILi78QaqOVu9UdI29UhRIePbdG/wCZPeu3DR5YzqdlZer0/K5NzrCajdqjMgpjPk4zXKoi
ua2l3sSp9jbbDHKf30hPLD09qdqOnWlrDI/2pePniDcM6+mOvXvWrcWlpPbxWhSJpTFxJgZAGOc/
WsZ9EniMsl0/mhYmZcE5JA7/AJ/pXkU8RTlPm5nHy7/1t6HdKlNRta/6EaCz8qJ7MI0zbw6THPGP
84NXrWxvVytnPbwWsoDEsent6mqlna2IsrW6bZL87eYFJycKTjHtUlhp9veQLOqyIk0xChWxtUA/
4UYipFXu3bbVX6vzW1tPIKcX0Wvk7dvIztdlmm1BxcGJpIwELRjAbHer1r4nvrS0jgSNGKdXPVhU
WsaaLeMSxROgB2tubO7/AGhWURxXo0o0MRSjpdI5ZyqUpvo2epaLfpqWnRXaDbu4Zc52kdRVyuN+
HV0EW5tXIAZgy/XBz/Kuyr57F0lSrSgtj1aE3OmpMK5jxrtjgCrM4lkJbg8DHAz6da6S4bbA7Zxg
GuB8RTyksJPnLNt3fr2/rRhYOdaKXcK8lGm2zKhHFYPgH/Q4tU0BuG0y/kWIf9MZT50ePYB9n/AD
6V0EIrAciz+JiE4VdT0kr/vPbyZ/PbOfwHtX2VH34VKfldeq/wCBc8dHSEUrs0jbnJJwBk+3FeHa
/wDH6bSdRu7d/At88EFxLClyboqkojk8ssD5eMZx3OCQKwpvjv4pXzLtvCN9HFGu9lP+qVckZJMe
cZBGcjkGt3kmZOEakKEpKW1rfq0dNGgqralNRt3vr9yZ9GjimZMnQ7U9e5rxLwz8eW1zxFpejS+D
7m1W+mij843WVVXYKHxsGVyR35r2YzNL8sR2p3fH8v8AGvJzDK8ZTr+xxUHCNr26y+7aPTu35fFh
GjKo30iuv9f8OyYske1MgEnCjuTV4zWlkQBazXNwBn96PLjB+h+Y/iBTNFhEInv1BLQJkM3JLVny
Ss7liSWY8+9RCEW/ZwVox000+XyR0c1GjFOMbvz2+5f5iNJcEk/ul9uTRBHe3MwhhjSVz2BIxV28
0q6imjiQb2dVPHYnPB/I1u6DpttAqXAEguAu2RWboe4xUV8bTpU+eOr6F01Kc+WUFYxodJERU6mL
iBc8sqh0x9QSR9SBXRtBp99ChAiuEjGFKsD26ZFXSAwwRkVmXukRy4+yMLPjDmMY3j0IBHH614U8
ZLESTnKzXbb/ADPSjRoJWUbfiv8AP8/Q5XUBCl/NHA2UVsKQelNjl52t19fWtaXRYjJ9nmcwXTN+
7kyWjk9h6H2/nUOu6XFYWkboZTJlVY/wknPT8q75Sp8ynh3+8fTpL18+0t11utDx8RgqtJuVvPyY
7TrSO6geWS8ig2tjDnHbNQSRMieYGR49xUMrf0qHRreW8u/KEathSSGYqMUXlpdWQBnTCliobPBI
rsw+IhWleM9+jtdd16prUzT5qakojw1OBqqsvvUiyV2OJCYsR/0qYbgeFOMcgc/4VNmqdxJ5RW4z
hAdsnHUf/WJz9M1OXqEuhT7lTxHqkWi6FeapMjSLbRFwi/edv4VHuTgD61X8G6bNo/hew0+5ZWuk
i3XLL0aZiWkI9i7NWJ8R7+1SLRrG4nRFudUgdwx/giPnH8P3YHvnHetey8SaVdziCK6CyH7okUpu
+metdFWrTo0YUpSSlN3tfVpaK3z5jWnhq1SDqQg3FbtJ2XqzZY0kEyQzrJJF5oU52k4BqAygjIOR
Wz4VWJjdSzbCipghsHjucVyYiapUnJq5nSjzzSRMYYNWiF5JcKbhSDIvRQgPQntxVBIdMTUTbzTi
SLqJFOF5HQ/41c1DRpLrE9iUijkUEx5wPaqkWn2yarbW0xAV4gx3kjeST0/z2rhpVafK7Tez0W6/
4bodM4SurxXr3FtbZ7lF8pbcTIgaF89QCR83vVjVTqVtpsjXNxbS+fhHQclfT8arrbWjz2tgseJW
di0q91BPQ/hVr+xoGi3+VM25mGA/3OeD+FZyq041U5vTdXX632dhqEnBqP5/8DzMfSNQl0y5M0Sh
wRgqeh9K6nwz4mlvtS+x3caL5mTGwPT2rj54mhlaJx8ynHFNtXaG9gmQDckisM+xr06+FpV4uVtW
tzlp1p0ml0PXKKjt5UnhWRDkMKkr5U9oiu1VoD5jlUXkkHHSvNNSYyXzPvdlJyNx5Heu08SyyrhE
b5TgMvrmuFdzLcO5XbzjGelerlUG6kpdEjixsvdSOf8AGP8AoV/oevDhbS8FvcN/0xnHlnPsH8s/
hXUGsjxdYHVPCeq6egy89pIif7207f1xVjw5qCar4e07U0ORdWsc3/fSgkfrX0dT38PGX8ra+W6/
HmPPPD/24+PhjpH/AGGk/wDRE1FH7cZz8MdI/wCw0n/omaivk8w/jv5HrYT+Ej6I+G01u3gTQ3g2
Bhp9usuByWEYHP5VvQsbS4MBwLeTLxH+6epX+o/H0rjvAkItvCmh3/mFoTp1t5qZOceWoz+H8q67
UIWuYdglOSN0LDkDA459K8HG0pte2p6tbfrH59POz6G1WDS9pD+u6/ryYy5fTpUkuDaq7EYLmPnn
OD+YrK/sJpd80V2rlizBNu05yeM1HFFcSbGBJGcLk+mc/wAjXT2qYUNyCeSN2RXdg8xqxip05aO3
3HPGEa6u0YkugyQIJ7W5IlUZCsO/1rnL8ywTmWberocSAjqD3P065+vrXdaleRWluzSZZsEqAM/5
FcvruoWWoacypBJ9vkXy8r/yzHPz59K9vA4utU1mrra/b/gGVejTi7Rdn2HwwW9lod5rmo4a3trd
5wobqFUk5/Km+BPDtnbeANCgvUCXS6fE1wyHGZWQM5x/vE1g+PJ7X/hB7nSrS5n8zVmh054z0Xz5
EiY5x2DH8q7BpFlTyg8keR/AM1OYYutQp6Nrmk/LSKVvv5n62Cl7PlSauVL/AEIJGWtJ2Zh/BJgZ
5qGXSI4Yz5lzukxxtXjOOKv2U4acwShozydzg8+9SXiGW0MkDeYq/MdvTFeX/a+McbJ/5g6FOV5J
FWHSJ7OeK8hvFliwQT8oYD23ZFasOqWctuERpLrKZcbfm29/TP4VhWLXT3JjWclDykeeMgc11Nu4
eNJHhaNx8uGXB/8A1VdXFqs17X3mlutPk9DSgv5NEctoqpHqcl1bRsYllESxEEnDcZzjtj+dXtLj
vdO1M2I8vyJN0iEqTgCuhwp7Dg1naldkSvBaz26TpGWZnx8o44Pp/wDWrqeLliJOPLo1bXXbZ/L9
RqgqSTvsVdJ1YX80sV1EoXO1WUHbn/I71h63bC2u2VYyqY4PY/SpNESM3oN3dKhE3MRJG5h0Pp1r
V8STPFbCN0WWNlwCcZV++fwrtSWGxaVJaPp/kc7brUbzexjeHiV1WLZG7yb1K7TjGDyT7Yr1CvMv
DUyQavGXGQ+U6469K9D1O7WxsJLlhu2LwOmTWOaJuuklujTBNKm2M1a8tLaArdTCNXGM5rgNXuIZ
7gpbPI0Od2W7nGPT0qPVtQuNUnWSfgL91QelTaPaW9zIUml8ojkc9RXRQwscLH21Tcyq13WfJDY4
P4z6nrmjfDnUdS8O3q2WoQBZEmaNXwinc4wysCSoYDI6+nWvlXU/ir8SNW8k3+utMbZjJHmytlKE
gqekXoSMHivef2kviL4RttI1nwfpet3o1qHAzFZM6rIuD5bM21SGHGRkAE9elfNdl4v1COXWs6JD
KNYlZ52feGjBLMAhDcYZs87vur75++4fWGWHlLF4dyUtvcvo7d09LX/pipRnCScXZp7lm38ReNLW
WWeGaZHmxDMxtIj5vzpIqvmP5sMiFQc7cDbir3hrUPGGsanLbJbXWqTy3L3qxM0cam54QyMSo3AB
ypUEDpngYqvc/EDxC9ha2bWETx26SgloxvkLx+XuLDDAgYPykZIyeea5G7v9QubmVjDcIksjSYMr
HbuIJ5JJPQDJ54Ga9ytmEfY8mDpuM1teE3FW2VoxT1VuyS3NowXPerqvJq/43PddAtfFdx4m0CO/
8NW2m6RYXloSwuonaNYXPOQxeRQrMNoz6jnOfbZviV4Gt55befxRpsEsLFHSWTYVI6jBxXw9F9pk
OB9oJ3YA8w5z9PxrTn8I6/Cd8+gakhMnlHfbSDLnB28r97kcdeR615VTJcxzDEKeKnBK1koxmur1
969+twxCw0oWpqSd+rTX4JH17L8Z/BtnNILTXLWaMrsdhIvzA9QFPX8cVJpvxe8BG/t3k1u2gAdS
d8yFePUg8fy96+PtP0u3tNUs31l1tovNmWWFgwfMaA7GAXcm4ttzg45OOK67U/8AhB2upI7C4sfI
aBleWWG4RvPMOFeMDOIw5BIbJ4PBGKmhwWq05fvp6Np2gmtEtL6d/Up1cMoW9lrbfmf39v0PtGy+
Knw5v9ehtLXxbo9zNcrGkKLcoSX3HAxnryK6u913QbC2mvLnVbGKNRl2Myn2HAOSegxX57toHhnU
LiF9P1e2wYHS58yYQpFKIsREeZhmVpQSSBwGwQuKuy+FvBjebJaeIIJLVnVo7h7hUaOMNErlomUO
zYM7AAZxGuAdwzwVfDqlUtyYhx3WtNvZ2195W2vbqtVcUMXyv3o3+Z9y6R8QfC2pXn2SPU4o5WJ2
eadgf6E/y61uWmr6bdTCGC9t3kP3VWVSW+gBr4Bl8PeCLZbOT7a97FcXhVpI72JAkB+7uDDerDPO
Uxwea1/gBZaVB8WvCM9ndLNdtqNysmxvlEf2YlMAqG4LMCTwSMAcZPnY3w8eEwdXFfWb8kXK3s7X
sm7fG7bdjepjYSmlThZebv8Aoj7l1DMoaKRQ0TH/ADz2NVorgxoLbUAJYi37mV/UcgN7+h70oHOe
uevvUV9Ct1YvblipJBB565r8yo12pWk9Py80a06u8Z7M5T40/Eez+G+j2Gq3mm3N88t2YUEBUbfl
JOSexxj64rynxB+1DBd2SQ2Hg3UI9+4u9wFcYXrtHTjuT09K6f8AaM0vxBqnhvR7TRNBm1+e2vm+
22qAkSwmNtrHHON20+zLXhstp4/0W1hu9a8Da88zYV7maXYHZZEkA2qmMZTBzkkMQGAxX6Hw1kWQ
1ME6+OqKNRy1vVjDTo7O339dLeWT9tSr2hG7dtLXT7etztU/aJgZkh1LwnfJJwI2gjVGfPQFc4PT
givWfgv4htPiRo9/qMFlfaYLK5+zMlxt3F9iseB0GGFfOvhS1+IFwLe8tPh3qepwwTWhmm3OZC9s
sWwKxBVeUJIKt/rGHvX0V+zPY+IbHw5rU3iPQrrRZ59QQxw3CKGeNLeJN/yqq8lT0UV38Q0MrwGX
p5fVUpXW1WM3rvotfmzKVGVSu3VhyvqrNfh0Op1ayurOMRO5mtgTgjoM+oqhpEMt5cCzV8unBZ+M
j19//rGukvtZshcvbTxt9mdMOx4x7+46Vg2rWD6tPcyG5s4DjyMZBGP4sckZ618zh69WVP3o62um
lv8ALuc1SnTUtHofPv7TvhXw7dfFO1FzqPlXMltFCYDIikpuUb9zDA/1j8d9vGNpz4xB4b0yXQ5Y
2jdNdiieXy/tcRiZRNGgG3bkHDSHG4n5M9DX1nf+BvCHxD8UeItZ8S6a968MqafaS+fJG0axxKSc
KwGd8jdR2rkvAPwc8FXMuozav4eNxHazG1CfaJwu9T8zZD/QD6mvrMu48wmT4engsRTlKcbNtKNv
5ratPrZ36rc7IYH29GpXjJJQtprd3000PTPhfo8knw88NySzqkX9kWbDAySDCtdHb6Kty7xwXmwh
cYI+9/nir2kWun2Gl2Wn2AWG2ggSK3hBJKRoAqjJ5OAAKo6ktzBMyI5ik6q/Svzv+1sVOqnzKK9N
Pnuc86EIrmtc0tNuF0xEt7+5KsinCrtKMAe2BnP1qn4oltroW5EMiTsQEkwcbCevGQf51o6K8oAM
iPKsvSQDPPQ59K1k2bQqgBV4HH8qVLGwVT23Lr5Oy/I3VJ1KfLfQ5u4tblrGB4FUS2DsgcjAdQM5
/SprvWbq3s7OV44ma4GWUKQR0rbupYba3eSVkSMdc8A1ymvPcTTWvm3EKwkArtH+qz64/wA8V24V
rFSSqRVlf/hvv1M6ydGLcXqaetww3dgLmGJmdQQVxhge+R/SuUkHrXYaOFTTS1rcpLJ8xLseGkJ7
55z0rmdTlE90zCPy8cEe/euzLZuEpUlsn93yMMXFNKfVnc+CmJ0pvkdI9+U3HORj+VbjEKpY8AVi
+DJ0m0hNowUARuc8iszxbr00Ny9jbKBhcM+e59q8t0J1q8oRWt2dqqRp0lJh4l1LTpAWiuHecYwq
EYyD9K5dMlix5JOTUcKDcC3PPNbVxY2ENj5y3RaRvuKO9exCFPB2hq3LyPPlKde8uxQHArl/AeLW
DWdJHC6dq08aDsqSBbhQPYCYD8K6YnArltHP2bx14jsxwLiO1vgPVmRoSfygWvWw65qVSL7J/NNL
8mzBnlH7bx3fDLSf+w1H/wCiZqKu/t0QR23wh0FCR9ok1pHcdwPImxRXx2MrQq1pSg9NvuPYw0eW
mkz3jwAceBNCJGf+JdBwe/7sVfsNSisTJY3joq43RZGcKf4TjsD+mKzfArynwBoYtwplGnQBd3TO
wVnX9rcQv5k/zPnOc5z0z/OoyrCQxEpRnKy7dfUn2zg+RbS+6/T+uxs3OoxxSMtjJ5glII4+5n7w
weev86vz6pHatJFdK0rsQdiHCoOwz696yNACLdGTarfu2Kk9uOtLqcv2i8klK4C/LwPSu7D5ZQo1
Hh0rxV397ul6L5afjxxqThTbvrfYTVtYvLpvLR9gfIjjzgEf7WKpRQCMEjl2+83qaktELr57EkuM
gEfcHp/jVjbXsUowpq0FZHPOUpPVmZrtzaSXfhTSXKqZNZErseAVjhlk6/VRXUXlzBps3lOd7BN3
yjlie3tXC6jiX4jaLDsV/stjdXWD0DExxqfyZv1roZvMlP7xi3U8+9Z4vLKc5UpPazbXm5P9EjaO
IcYWS1NGzudLuXQSGWKXkkHGCfr3NXI7eaASCFsKxIxj174/wrmnixyOCK2dO1OSVDFO6mTklj1Y
HPH1rxsyyyFGHtaOy3LoV03aW5akt8q5RRHLt+V1HQ/Snre3VviJpBIwwxZx7f1pIpdsPI359+ho
kspiu4FW9s8188ptKxvrvAqeL/G2heEvDC6tr2owaeszmGFmUkNKVZgMKD2Un8K8evPjL4GhYTRa
/HdTM2f9W/5klf8AGj9rh7G38D6Naausgsp9XVXeNCzRZgnw6+4IGR3GR3r56fV/B872UotrO3t/
If7Rbi1ZnBP8IPkg59D5h6HDR5zX6rwhkFHHZc685uMm2tEtktN++vkZTmpTi5q6XT/hj6d8J/Gb
4W3NvNDrOsW9pMDlHMcjKRjHBC9fqO9dF4f8R6T4vtr288O6smq2dg4jkmVWXGeR94Anivki41P4
d/29dT3Cl7aS8jeDybNvLihjcMQcRx/fUlMbG6DJ7175+yRc6Tf6J4nubFja20s0CGJQobd5Q35C
qqZzkZVQCMHrmts7ySjk+DeLhUlN3jfmSsr9rdd0OpyVpWjFRXk3+p6Smcgg4Ird1LW5dQ0xbaZM
SAjLDvWTPAILho1cOueG9RT0FeDJUsQo1Fr1TOOMpQvFDFTFPC0/FBrS5Nj5N+J+reGLP4m66mpW
aSTpdEYa3Rx5pBIlYkEsm0ouzOMqTtOawLzw54f8QalJrGm406wuLd545JrYJAvlIVaMEZ+fMZcg
ZO0k445+0YIfPnWINtz1J7CvAfG/wn0e+8fanqV1HdJYvJvdo5ggOIcgLkHA+TFfQQ4tw+G9jh8T
B8sUo3Vpa2svdlZLq730ta2p6mBwrxMZuMknFX16pb2t12suvfQ8oTwHbyafezGG9ieJJGg3Wg23
JWRUG0g9CzBfckAZwawvEPg25099PNjGswu4oQ6lAskVw65MLLnIIIYDPXHY5ALiGzSO3S48JaxG
0pTZvuivmbs7cZi5zjjHXBq3Cuq6ZF5ml+FtQhXeju9yJJAkwz5TrhFwQJDgNuB3Dg8V9dhKs3XT
+rSinbVxppdesajl22T100RVejBRuqsZeS5r/jFL8SkfD/ie3spbOOSL7Nvjklgivo2Ql1DI5VZM
Y2gHdjAAznArX0CLxakVv4ZtNH+2S3E0lwqmbAmSfbbtzu2kHGA2f4sjIxWCus68Gj22qMoiDFQj
YmijhMJ3YHKiNXBPbL8jJr2XwH4B+LfihNM1f+0bXStNnSLyczuZFgWUSrKkf97gAFyGIxk96fEu
ZYLJsHKtWlCE7Nxvzq87NJJK7lq9upyQjOfwq/3f0i58PPhFrF3420vUfGthBAk083l6aAjQwpHH
GCfkYryF24IznmvS/AngLw3beKdaF9o+mGGwfyoBLaxsMN82SCOSFK/nXWeFPhxBoyyXeo+Itf1m
/dCpe5v5Ai5xnaqkAdO+a6bRdC03TI5/stuWklk8x3nleVicAcFyTjAAwK/nXEZt/a2IeKrVVOfX
l0S8km7peTVz2XjsRSw0sNSgoqUbau+vNdvZdNNN12ON8R/Dv4Ya1Ikl54U0x540ESSxZhygZiAV
jIBOWPOM4x6ViX/wh+FMVrPJJ4YhihjiZnlE8vyADJP3uw56VlfGb4o+IfC3jh9A0zwLBqcAiylz
lxvZUV5B8ox8odCfQMPWvLdR+MHjbVYnmTwmsVi2NsEbvsPzAdCPmO7HHTJUY5Gfs8DkHEOJwsK2
F5/ZtaWqRX4OatrfoeHSVd1eWrKCXf3vyUZXO38EfCzwEuo6mdd0a2lis3MAVppQrHcAXBDc9V/7
6r0jRfhv4A8N63batpXhSGzv7YloplmkYoSCpxliOhI/GvBNC+KviCK1+zN8N7C/uLmXy/NlkcM7
MAAu3p2X/gQHQ19BfCLxTf8AizwvpniC/tEt7q6lnSS3jkLrH5c0kROf+AZ/GuHNcpz/AC2ivrk5
KMtNailfd6pSelk99D08di6eKrupBKN7aJWWyWmi9Tt4y7orldobkDPOKfWD498a6J4J0Z9W1+aW
3tBIsWYoS53NwOFrz1f2k/hdvKHUNSGPTTpT/IV87Qy7FYiPPRpSkr2uotq/bTqY3S0ueqajK9s0
d3GADDksT/Epxlf896zfGsuma74bvLVZkMzwExfK33wMjt+VeH67+0boF9eMttbzJZRt+7WSGUPI
PU4UgZ9OcVNZfHn4ebFWa61CF252NZSHHqM4xXu4fhypjMM6NeE03p8Ela+1rrV31VupvXlWoQjJ
NXWqtJN/g7qz1Xz7Hrvw9+16f4Xggk/c28UStKQOdxO5gPck49q27vX8q/2KFo3Y8u5zx9KpaXr1
jq/grTrzTPmtb+3SaEspUlCM5IPIJqhIpaVYFLLn5mbHUZ6Z9/5V0YbCUZRvKFraJbbaXOHE4qrO
o5OV3LV+r1GMZL+Tzp382PjYWyS2O/09Pz9Ku6dJHb3iTTDcq9sZoVAAABgCq2qTLZ6dc3j42wQv
K2fRQT/SvS9mqkfZ99Diu07i/Dw20/ha71dZEYT6lfXJXuQ1xJsH/fIFXILjSreWRBDL5crtLI6j
q7dTj8OvWsDwBFLZ+BdDtf8AVstjE0mOrOyAsx98k1ptF7VzV8qoPE1ZT1Tk7elzolipWtH5+ZvR
wWk8EcllKzYOSzdvrjoalljlkJE6q4AAGRz+dYOn3c1lL8pzEW3Mh6HAI/rW2lx50iOJAQRxjge2
a+bzPBfVZe78L2NqVaM49mA8+1kaWKZkhUAiIDv/AFq3Y6g8t0kcojCElgcYK+gqEq1znYAm3ggn
rUEttNAWkIzsBIK8578V5yqSukWpSi7rYo+NLmZ72OHLC3CBk9GPc1m6WfMvraF1V0MgG0+hIrZL
RXK4uIxMnbd1GfQ9qzZbG0i1OCMTzJbuSS7L8y47cV9Tl+ZUJUfYy92ST/XU46sZSqc/dm7remm2
h83TEdS3yPEgyGB74rnrq3ltrloJxhx15zmuwd7bUY3EM8iFAMsMjb71i69bwyETRXJkdAFIboR7
f571z5fmlpqnU2fX8joxVCLXNEj8PatNpbuFXfHJjcvofWqt4/2m8lnwfnYkfSooxxUyjivc9nGN
R1EtWcfPJxUXsMVKdjFPxTGqiRjBiDgE4GTjsKwRJHZ/ErRrsgZubC7tj7suyRD+G2T/AL6Ndhpk
aoAjqJPtaMmAOU/2ua4PxZDjxPoBjng823vpI3UyAfI8MgyPxC/nXNLH0KdKu6krJQn1/utf+lae
tjaNOatKKueW/txzy3Xw6024dy6/21GoY9yIJqKX9t+JofhXosQCmNdZT5wT8x8mbJ5or5DBqmqK
9nJSXdbN9X83qepRacFy/wBefzPc/APmDwjoMm//AJcoABz8oEY5/rVieUTFiAvMjMMZ6YA/pWF4
OeV/CWkJzj7DCAP+ACugbekSwEpjG44UZB9Ca+hy/A/Vmpy1k9vJHl1anM2lsQWQKSPEDjaePof8
mrUg/fSf75/nUcVvPJco9vbTzY+WTyomfaD0JwOORVm4imimPnQTQ7mYr5kbJu57ZHPUV6TnH2m+
tjSuuaKn3/PZ/e9fmUpk8gNPCApzukGOH/wPvVnFQ3wY2c21dx2EgevHSp8VS3Od7HM2QE3xL1R+
v2fSraMe2+SZj/6CPyrpCtc54aHm+MvFVx2Wa2twf92BW/nIa6U12YzSaX92P/pKYiCReKrMWikE
i9RV1hVaZa50lJOMtmSzStoHe0+0GQgcEc8nv/hRruvX2nfZmtNCutSEiMZDAT+7YFdoICngr5hz
2KqMfNkaHh8QvbBWAYsvGfToRWXrvhW+1C/ubmHX7y1WVlKJGuFiVUeMgEN3WVv+BYbsAPgZRSqy
jJWs2exQp+6pHkX7UPiK1fwfYxeKPDNwNO/tVBHKshXzJEyfl3KCA0ZY84J5XPUr88Qaj4GSK5a7
Ec809mywmC3wIZxbBNzKdo5kBYYyBkEgHgfaqeCMCAy63cboJS4YRDkMX3ZyTyQyjPbb09Ob+Ivg
vdaadcWs6M6Sx2hjjttqYkbG/kk53EZ5r7bIeN/7CwMsPCk53bfxuO9tLcr7fPqdFDBU8XiYwqT5
E9L2v+qPlW413wW9lJZ2OnQ+fPvCO0CfK+7g5ILAMdxUKw2ZRWMgUs32qLd4GYWkUUOeWVFVc471
ZW30zStPjgtoIj5KLFGCg6Dp29Kz8vI7OxPzHJ5rfMs1lxFUp4h0+SMLrV83Ne3dK1vx+88is4w9
1O/4EuVdQSWMncnvUiimItSgVEIKCsjnFArM1fWrDTpBBLI8t0wyltAhklf6KOg9zge9VLjVLvVJ
ns9A2iNGKT6g65jjI6rGP42/8dHfPSrul6XaaXC6wBnlkO6aeQ7pJW9Wbv8AyHasPayqu1Lbv0+X
f8vU9JYWlhlzYq9+kVo/WT15fS135KzMtx4i1AZeSHRoG/hjxNcEe5PyKfoG+tT23hLw7Np17c3t
u2o3aQvg3p84k7SARuyB+AArZtdjXsQk27N3O7pVrxG1tY6c0cMSRzSkAheDjqeM/wCc152ZqnFe
ykm21e76Jb+S07JHVgsXXqVFGk1Tj2jpp5v4n/282fJbfDz4uzWjTW3gYIs1tteWTUbVmMh483Pm
D5trOoJy2HOWPGI/EcHxMW4/sqbwp9huo3ZgI7iEyrJIyOCjBvVcADqGIOTzX1JZ3Fwqxhw0oYCI
xvwpXjAz2rh/iPFqyeKdJufD8AmviWiSSYApb7eVkfsQhYkepAFfW/61Z5KnStTpOWm8ZWV7J/a6
efTYjArBVMRONZyUbStZq90m10e9rHhMvhv4l2nim+0YeB7IajeadNE1rHcwsYbZo9gyVlwgAwRn
G4g9e32j4XhW38N2EaRmMrbRqwOM5Cgdq5vwl4M0XT7OS4S7u7m5ucSXV1PJumuJCOXdj/LoOgrp
9GtJNOVozcSyxEjarDG0H0FfOcU5zTzj2bqtc9O60i1va+7e1l1/yWNFSjLRe6yezuYbySZLZjJ5
PDkA4z6A9DVlo5FxuUjPSsTw+0lp4gvLFGIt+ZQCvfjp+f6V0bFyud+5u3v+lfIZnl1BVEl2TTvZ
6rurNeh04ebnC787nz38a/BHxQ17xXqR8MWmmvpF7BhnnnCSEtCInAyeOgIx3A6jivJta8I/FLwv
NNFqWmaYXvjHMsjXHmBTG0bYX5sA7o4yeOcDtxX2v5csjKGdVdyeCMAYrE8beFF1c6Puwy2t/HK+
MY8vneD7HivewXHGdZRh4YSChKCsk3DXe/vd/VW811OnB4XC1a6eIvy63s/LofMFp8K/jPLGl1/w
j+g/aHeObzZZ1EoAmE+w/NwDJliPUnsBj3j4FeEdU8JfCvR/D+txJDqFq9w04icMCHnkdRuHX5WW
vSZgISGJJU9wc1FO4dAyOCG75p5xxXj84oqhiOXlTvora2t+pzfVqcHdHjP7W1pHd/CUxvDcyINR
t932aLzJFGTyBxnHHGR9RXynqd34QuvF13qNx5un280exrA2YV4G2BCRg7cg7XHTPzZwQob7+1C6
ks1LeW0hUgbVPJz+FYeqTLdx/aRFEwc4+6CVx6+9evwpxBiMrp+zhS5k5PXmtuldbPtvv2OLESh8
z4wt9e8CxtdXcdlEFcPJHbtbIW8zytqr86uFTeC3DcFlBDDO3A1XxHoU+q6dNa6PGsVvbSJcOlvH
iWR4ApwoRRhZNxB5PORjCgfVXijQY7jxvpf7hPJv8+d8gwfK5b81wK8M+JeqeELXxn4nhv7GKa7k
uWhKJAFaMiaQs6twASjrj3QZ4r9EyPiOWb4uph6tHl5La87lezj3Uej1bbN8Vh6VGjSqQnzOau1a
1tWrbu+qfY7v4efGvwnovgfQ9Ju5yJrOyjhlDRzbgyrg4xGR+tdn/wALu+FdxAnneIXUnDbW0+53
IfqI+o9jXzzq/ibwEXd7TRYJlW582GP7OkX7oqqNG5HJJzJIDk7TsHbAj1DxB4GmS4TT9Phs7kCC
K0uJLNJI1REIZ3Q53M2cHg5JVjyuTceE8JKTnOpN82uvJZa+Sv18/K5y1pwmkowUWuq5tfW7a+6x
9i+GdXs9d0qLU9OuRdWc6h4JhGyb1PTKsAQfqBVD4lsU+H+vBSQ0ljLCpHYupQf+hVkfAk5+GWhl
R+7ayRlbGMjc/GO3T9a1fiUN3hcW463OoWMGPUPdRA/oTXxuFgo4yEFspJfic01ZnQQRLFBHGoAV
FCgDsAKVlFSYpDXHe7JKkyVLpnmzSC3U4I+7RKOKfpAUXuD6Zx645xXJmUVPCTur21HT+NGtbP8A
Y2nU5mUAt8vOSPSsWPxTrj25x4QvFlHlq0RZs7iSrkHYAVVwRnIyGVsAZrote0w6ppLW1pePZNKV
/fRKCcDkDqOMgZ9sjvXMt4KvDcyTT+IruQOr+WjoT5ZYyNuA3dQ0zEewUfwivjKfLa8j2o0+RWZJ
LqmqkJ5vhmULMykvEzfuwTECX3AHA8xug/gPQZxLDci4KoI134ztJyRSQeFmtlkjXW7hkYOqF4iX
hVhg7CGABwTzgjpgDFacFrDZ2dvDJcNKYoEieRlAaQgfePfk81tz0eRprXujnrU03dMrS/aY4TtD
RK/B59KplplYC5YlCMgKRz+VP1W7+0S+VGT5aHrk81AiknJ5NfQZdlrp0+arbXy1XzOCpNOVkSIB
njOKkApqiqmr6pbaXEhmDyTSnbBBEu6SVvRR/M9B3r1pzUI3k9Ao0Z1pqFNXbLVzNDbwPPPKkUSD
c7uwCqPUk9KwX1u61FimgWX2iPveXJaKAf7vG5/wGP8Aap8Gl3Wpzpe+INhCHdBYIcxRHsXP8b/o
Ow71rynArGPtKv8AdX4/8D8/Q7ZfVsLo17Sfr7q+7WXrdR/xLUwo9Fku51Ou6vd3Kk4McGYYVH+6
pyR/vMat654M8M3LWui2fh/SnCAzSO8IUluQp3AZ6n36102kwWstiJJYonKk7mIHHPGeawp7t59X
neFnWJjsBTJ+TOP6A14ONprEVlTo3i07Xu799H8V+VStrppY78Njq6o1J1Je7b4VorvT4VZfgfPH
7YvhddA+HGnzJL5azaxEotI7qWWOLEExyAxwpIxwFFFan7bkjTfCzR5JI8OutIhkz97EE3BHrRUV
qU6U3CpJya6ttv722zmw7Tppo9X0bU59N+H2lPaRrJdz2cEFuGAOZGQBeT0A6n2Fa2haWmiaTbWN
rueKFMMCeWbqzfUkk49657wOn9pJpW85t9K0632r2M8kYJJ/3UIx/vmu3r3sIk26i22+7f8AHT5H
JmdFKhDD3tL4210bXu/+Su//AG80whu7qGKUWktr5dwFDrPCJFbaSRwfrUkl1c3OyOaS2MUJcRJB
CI1GTzwPpWt4QhkA1N7S0trm4CwlI7iQonJfPzBWI49jnA+tP8VJMsenNc2dra3DCXelvIXTquPm
KqTx7Vi6tP63y8uvf5EUo1fqqdR6+W2/9PyOev1BsbgbC+YmG0dTx0qeob8ZsbgEM2Ym4XqeO1TV
39TDoc14E/ev4gvP+e+tXAH0jCxfzjNdLXNfDn5tEvJh92bVr+RfobmTFdLXXjv94kuzt92hI01D
ItTU1hXMmA/SL57K5VGIMLN8wI6e4Paumt5o5weW+YZKMfun0rkJEzU1neSQ3KM5+XgE4z06GvIz
TLViE6tNe9+Z1YfEun7stjf1CaO2tneR1XHAyeprLn1C1uZVhYq6ZUghc5Ixg/XPNSeIf9OtY3tg
0oVssVU9Mcdv85rFNu0OwyAgk8r0IrhwGWYavRUqknzO+g8RWnGdo7FjUJZpLlopflWNioUdBimx
rTmAlkDJIWd2xh+D+fSjlWKngjg19FSjGnBU4q1jkldu7G3e4WcxWcQEIT5pGdg7t9QM4965KS9v
PEcrRrqy2ejmUxyTLlTcncfkjIXhR0LZycdccnQu5G8RXr6fAzDSoHK3koOPtDD/AJYr/sj+I/8A
AfXG/Fb2qRiNLW3VFAUKIlwABgDGPQ1yTjLES0fur8f+B+fpv60Gsvim1+9eq/urv/ifT+Va/F8N
LR9qwxQW93A9vCm3y4Y9qqOdgA2gdOwx0Gc1clNPVI0B8uONM4ztUDOOnSoZjXZRhyqx5VSbm+Zk
ukWLajqCw4byxkuR2Fbeqafbf2gsSQRowSJDsHUu+D/46h/Otvw7bRW+kQCLkOgctjkk81nx/v8A
UYbg8+deyMv+7GjIP1yfxr5DO8bOvCok7R+H/wACdvyufRZVh40f3j3tf9fyuXtX0i31Ky+zMxiA
YOGQDrXOQeDZ2eZZrpVUf6plGc/Udqt3XjvQoJZURri4EMjxStEq7Y2VlTksw6s4AP1PTmnxeOdD
bT5L/NwlpHhXleMAK5IGzGc55B6Y96eGx2Jw8OSm7I56uGpVZXkjJl8K3VvIHmu4BCGGWyRnnpiu
sKgrtI49DVjUrdbuylt2AIkUrz29/wAKzdDu5Lq2e0uCpu7R/Kl4wTjgN+NRi69bG0/aTd3Hy6Pr
/XkFGlChLlitx1nNA7TKmC0TFWyMEGppIgRvBOB1xUd/pWmy3H2ydmRymJHWQqMAYyfcVx8ur6hH
dN5N5JJCjnZvUfMueM1WHyz6226Ett7/AOa3/AmriVRVqi+46qa2xhwCS3Uk/kRUpmCIAQeB3qnp
+orfw+YFYMvDAjgHH8qj1fUYbO3/AHnzs/AQdSK5PqtWVX2LT5uxTrxUeZPQsfaUkYqJQ3sDxToi
2wOy4IbIGe1Zmm3CXCRTW+NycFHxwc9PenXWoNBteVfmlXAUEALjrnPen9WqKp7NR97sYqvFx5mJ
qcDSJKskmC4J6msCAuI/LJ+TOce9Wbm+kvWClDjpjPJrJ8Q3cunaLPcW6qbkgRwK3QyuQqA/8CIr
6bL8NPCYeft/W3b/AIJxKDxVeNOnvJ2XzKsKnXfE0mpSgLBpge0tCg2/vSf3rADjAwF/Bvat2Fzu
8uQYfHHo3uKg0XT4tM02GyiZnEY+Z2+9IxOWY+5JJP1q28ayLg8dwR1Br0MPD2cLS3er9WYZo3Vr
+0w70iuVJ/aiu/ZvV36NvocX4h0Jbnx9pshjzb3IMk4xwTGM8/X5RXcAcVBHtaYCZVM0YO1sdQe4
qxUUsLCjOcor4nf8P6fzOqvm88xo0U3pTjy27Wb/AB2XyIUGL6U7SMxIN3Y8vx/n1rA8c/vLrw3Z
9ftGtRcf9c45Zv8A2lW+g/0+U4b/AFSc9jy/+fyrA8WfP4o8HxD7y6lNMf8AdFncKf1kWvQwP8W/
ZSf3Js5ZHS0hpaQ1zCI3GRUDbo3DoSrKcg1aIqJ1zVLzEze0vU1ubZEl+SQZyyjAyO2Pcf1q/NtO
HXGG7+tccrPFu2HhhyP5H61uaNqEb2/lTP8APn7oU818rmuWexftafwv8D0sPiuf3JbjLvVLeGSZ
RKjEYGBz9aq3F45tDPbsSWbYzH+HjPFZ0ljOLhxJGyDJJZlIFOt9nlGJpHQFs9MrXpUcqwkWpRfM
1ZvqjjlWm3Z6DY15yeSasIOKZsZU38FMlQQe9UtY1SPTbZW8tp7iVxHbwIfmlc9APQdST2AJr1p1
IqLk3oiaNGdWapwV2/6/plLxJq8+nXMdtbTia7udot7RB8xGGBJODgZOSR02jqcA1tGtja3D397r
1vd6nISs0uwkKo4KRrt+VQSOB1xk1o6HpQt1ku9REV1qVyMzyldwAzkRpnoi9vXqeTWo0NuWLG3g
LEEEmNc4JyR09zXDGhOpL2k/ku3/AAfy2Xn6NbE06EHQoO/80v5vJf3fz3fRIXesSiVt0mPmPHJ/
AD+VV5m7VYlJ5NaPhC3iuNXLycmJN6rjjPTP4ZrsqVVQpOo9bHmxg6k1FdSex0qO20Ce7uYFkkeE
vhxnaedoFafhuxhhS5CqpCSiNCR/cVVP/j26rmsASNaWnaaYFv8AdX5j/ID8ayhrmm6JpFrNqM/l
C7mlKYGSSS7k/Ttn1IHevhcdWqYitT53e7lL7rRX5s+oo0o0cK0utv6+9M+dP+CgekRWHw50m7il
ZvtGuqSpH3T5Mxoqr+3r4nsNa+G2i2dtDcxTQ6xHI6zKowDbyEdGPOGH6+horuVSdRXm9TiUYx0i
epfDayhsfBemrFktNAs7sepZgD+gwB7AV0eawPBTz/8ACIaTstnfbZQgYYc/IPetdpZ1JBtX4AI+
Ycn06/5xX1FGVOMVCL6bHkV5TqVJTm7tk7pubcss0ZxgmOQpn64NQlGgkMrSzzIevmSs5T3GT0oE
03/Ps/3c/eXr6dacJZSMG2bBXJ+Zfy61quVO9jkr0ZVI2jKzWz8/Puu6/XUW+I+w3GS2PKb7vXoe
lTsQqlj0AyazbmWWCzkR4pFVo2CEMMpweOv5Ua1dTQ6LeTNbsoS2kYksvy4U1UY3mo9x0KvtYaqz
Ts12en/Dp9UZ3wvU/wDCv9Fkb789sLh/96Qlz+rGukrA8DedD4N0KH7MwC2MCn5hx+7XnrWwJpyF
zauMnB+ZeB69a2xk1LEVH3b/ADNVFk5ptRedNj/j1frj7y9PXrQ0swDEWrnBwBvXkevWue4+Vj2W
o2ShpZhuxbMcHA+ZeffrSNJN82LZjjp8y8/rTUrC5WLFJNCcxSun0NWmuY7qLyZYIlm/gkHGT6Gv
I/iT8Z9H8IeIJdAl0+9e9hVHkkEatGAyhgB84JPPtVHwX8cdD8R67a6H/Z9+t3dvshcRKqE4J5+c
kdPetZZViKsfa+wny2vzqMrW781rfodCoTVL2nMrdrq/3HsENrLJIysQgX7x61keIYr+a+j0HTpQ
s0sXnXMyHmCDOMj0djwv0Y9qv6lqR0TSoCtm1xeXnEEW8fO5ztQc9MAknsKXQLO5sYHkuo2uL66J
mu59y/PJjAUc8KAAAOw/Gvk8dnFZVpUqbXKvL+nr+R34TDww9L6zUWv2V3fd+UfxdlqrkVhDDY20
dnbxCGKFdqoOwq4j1PMkkg+eyKlh13LlfTvVEQ36Y3WUhUnBZSCB+Vexgcxo4iPL8LXT/I8upGo5
OUndvqWs5FQyjNRxzSnbm3YZOD8w496cZJiP+PZuuPvDp69a9FOxnytm/b6sg04sGZfJTlAemBUF
nOIZrJd5zFbMW/3iV/8Ar1gXDzBCFhdSzbPvDkGo5ZrpppSBKcYXAcDI5P8AWvl8wyfnnCEJWU5r
vpZOX6M9ihiZwoOT3s/0j/7cztLZbaJGMUFsqSbS2IlG4rjbnjtgY9MCkFlYhtw0+yU7SvFug4Oc
jp0OT+Zrm9KvL7Mg2PJsA2jcvStBr69+b9y/HI+ZRn2rzMXQnhqrpSd7GcMRzRudC91O+QWIyewx
VNreRLlr+zRftZ+R/MJ2uvHX3GKrWt5cEqJbSRt4+Uqw646Hnj60mq60bTKfY2aR1yq7xj8eaWGh
WdRRpq7fTuvPyNXODjzSZl6496bhYbq6WUhc7I+FXPaqSx00z3E0plkgdmfLE7h19OtSI8x2/wCj
MMjn5hx+tfc0Y+xpxh27KyPIqe/Jy/Ut6XO1s0ibtqSLg1Tu0d52aQkknjJzx2pweU7c2zjPX5hx
+tJvmbbutnGTg5ZeB69azhSjGu6y3asDTceXsFiZY51EZPJPyjucVbuLuGeyZHVt5+6vHyn1qnFL
KrAtasMtg/MuV9+tTXwmNz5hszGkhyNrLg8ckc+tc9enRniIzmrNap97dPP8xxUlF2IrYtHIrr1H
Ssu9jN/4uitGBNtpiCeQHo0zghB+C7m/4EprWv5vstlLI1uwjhDSM25fuKCS3X2rE8JC6XS2vJ7W
QXN9KbmQFhkb/ur142qFH4VKxMcVKNlZbv0T0/H8md+Eg8PRqV3v8K9Zb/dG/o2jogaUGq7PcqGP
2SQgdPmHP60nny5P+jMcAEfMvJ9Ov+cV2xnGfwu553KyeWPzFGDtZTlW9DSJMNjmQbWjGWH9aYJZ
s/8AHs33c/eHX061BfGdoHdLdlcRtyWGDwflPNXdbHHWpSpS9tTV/wCZd1/mvxWna3nf/C+Phis0
sy67cuDEu0DT5/mILHAynXkdfaudn+OHgq68Uabqs95IkFnHMgjW2mZiZNg3fcA4Cnj3/PxOy17R
pLbZc6XbRHy7Jd8WkQmQGNEEuMjby3mk8ZbK5OAAKtlrekXOpWlxf6bZ2zNevLdeRYIyeSDvSNU+
7yzMpOOFVOuCD+gU+EsG4qaryjp0cNbrVaxfmtNT1qU4wUk6alfvfT7mvxufV3h74w/D7X9atdH0
vWZZr26fZDGbKdAzYJxlkAHTua76vjz4T6hZ3PxR8PGHToxfSakRNPFarDGYgHKlEUAITuwQMcRr
6tn68E0xAzauMnB+ZeB69a+Xz7L6OXYlUqMm04p62et2unp6nNykxppFR+bMR/x6vnOPvL09etI0
swBxaucHA+deR69a8W4uVjmTNR7SrZUkEdxTmkmG7FsxwcD5l59+tNd5huxbMcdPmHP60+YOVlmC
+mjwsoWePptk5/KorxFdvOtkCxMeFyMg+mKryPL83+jtwMj5hz7U/T0ee7JeB9kaeYwDLk47fnWE
4UqN6y0t9xSUpe6x17ALPT5724uI444EMkpbooA9aw9Isbxrj+3NVhZLmdMW8Tf8u0R5C+zHgt+X
apzcz+JdTB+zn+x7KQnaCMXNwp+vKIfwLfSug3TSLtNkxGMsSy8egPP0/Ovmqed1p1FKok4rp+vy
6f8ADHr1qMcHSdKOlSXxeS/l9XvL5R/mRSST3qVWzUdxb3LyK0Fo2T95Qw6/nUIa5jKiW0kjyedx
AxX02HxVLEwUoP5dUeM4SjuWn5FT6LdrZ3TFsrvGAw7VRWWVgubZhk4PzDgevWms0pHNsw5x94dP
XrV1qca1N05bMceaElJG/c3qtftI0jEQW7MD7sf8Fp1mLeext7eeOKYxwquJIww7E9fcD8hXKSzX
PlTYD4ZvL+8OnT/P1p32q9ikZ0Euc4yXHI9ea+XeSVKmKaU17kVbfq3f/wBJPYr4pwpRXn+SX6yZ
5R/wUBKP8MNEk8uLzP7bXLqoBP7iXqfwH5UVQ/brmnf4X6OkkbKi60m0kjn9xL6UVhQvyajhLmVz
1zwVBdf8IVpNyqMIlsovmzj+AVuNcl4EZosIxI3ZzyPT86XwLfaOfBGg2U17aiY2FrE0TOAd7RKQ
uPU5H5j1rQuE0ltIb7PqFmtsDvE3nKVHylzzn+6CfoM16EcypVXFV4ap6PXRd/U4qmDkruLMtXye
tSCq+1o5DG/Uenep0+71r6TSya2OD1FljWWMow4P6Vh+M52t/BOu+afni0y4cN03ARtzW8DVHU7S
C/P2W5hEsMsEiOrDKMDtBVh3yCRj0zV0aihUjKWyaOatSkpe1pfEt13Xb17Pv5Nj9Di8nRrGHGPL
t41x9FAq7UNu4I2FQjrwV/w9qzbp447t1W/uIW8xi5Cgg5GQMA5AAY9eTjjoKyrTak2+pvQqQrx5
4PT+vx8jZwcZwcUlYltPbS3yPDe3JlwgkVoiMqzfKDlsjqPrkda26iEuY1lGwYpCKWirJPl74+/2
xbfEu/nj0LVJrdpbRob2CyLhE8tfNVH2ldxKIOc4CsOjNnH8A6jqjeM9HuW0PVtM0aPUVuLkNby/
ZbYJBsREJHABL9SWOUyWIyfqPxZZLf8Ahy+tyBu8ouhPZl5X9QK5jwVp76hpmm3E0Pl6far5sKMO
biY9ZSP7oyQvr19K9WXFOKp0Vl8aMXFwaT1vro3a9tN/XzZ7eEweGqYN4irNpxlZrTa11bzbVvLd
6JnTeGLe71Sc69qUbi62CK2tyvNtAemf9tsZY9uB2yZ/Et2kKwWyapHYXInik+Yv91pBEMhR8wLu
PlJAyMk7VIKGSWCTzIXZGHpXRXulaVfeVc3unWs9xNAFkZ4QdykDIz6cDivgMywCwk1UTupfffqc
/wBZeKm5yVraJdEuiX9Xb1erODh1m2mtSreJilvOAkcivOTG7I23DFQxX94jliR0AxgZrrfD99Fb
6lsn1iSdL13WyjlhdcBGkdtrFRuARkG45+51q6dE0UJ5P9nWpRwQ6eXkAcdug5VenoKiurHSLQG5
FrapcoWeJti7vmHUdxnPbiuGC9s+SCu2W5qCuZHjDWLKwtNQ1gxMbaytpJ5REAWcIpZsDIBOB6iv
nP4h/tESXNvZr4Ggv7KVXY3RvrWEhlwNu3Dt3z6V7x4pEo8JawYLaS5l+wT7IY1LNI3lthVA6kng
CvmnVdX8TwaVMU+HOu6YfM8xX/suRYzIzFstlMcSMWA56KOOo/WeG8DgndYnaHLa84xXW9+ZO/Tb
Y86KdWV7avyOf1P41fEHUVRbm+jKLyEW2jCk+pHetfwv8RvifNpj3Wl6jZlHmaPyJIU3DYqF3GRg
KBImeffGATWM9x4s/s67i0zwtr9tpcdzbukK2kzQxIiyAo4K4JcyAnPU/hXX+Afhx408X6PealBq
LeG7T+0G+y213p5WUxiOIAq5AYx4RFx0Jj5ya+oxOG4dozjXtTbvvdSdrPpBX307b6nXOpiYUXRn
dQ7Wsr79evU9U/Z98TeJPEkV7N4guLe7eK5jW3kt4wqSRMucjAGe/UAjHNe3NCsjlmGTxyTXk3wT
8Iah4Ea7/tfVLfUWurhXBgg8pIlCbcBRwAOuAAK9lkjwx449a/HuL5UpY7moL3He2/fz1/4cjCwU
kyDyxH+9j3MWwCvbr1H+e1c/4ijxqYfOQ6A/TtXRTMUidwMlVJA9a57TpJL/AFVJLgK+ATtPQDtX
Bk/NCU8R0itf6+RWJSaVPuV41K4yCKmHSluW33Uhxj5sY9KFr6aE3OClJWbOC1nYUUhFZ9xc3YYr
HPZJ+8cZkO0hAeG5wD3BIz0qSznunuGSeSywHICxyBnIC9evXOO3Q1Cqpuxbgy0wpC52hWG5R0BJ
4p5qKStXFS3IMLxfItyLTSIgU/tCcLIA3SBRuk/AgBf+B1rxJJM6xwoWY9AKztAsU1PV7rXby8gt
bRXaws2lcDfsBeUrnrko34RE12/2/QLIG1OoWSNEQCvmqWUlgv1ySQPqR614tXNadFylTXNJ6eiW
3rrd+jPZxGDmoU6D05Vd/wCKWr+5csX5pmDC1xb3P2aSMmQ9F3dKYZg5zgKT1AFbYm0O5uY7iK+s
3myQhEy5bG0dM8/fT/vpfUVlarFCt5K9vcQzEfNIiOCY8sygkDsWRx9VI7UYLGUK9e7jyya37vt/
kefWw06cb7oYhzUgqCI5xzUw69a9pnKiGRTDKZ0BKt/rFH8xXJaJo8EXxF1CZVUxRQLcQgdFMuRn
/wAdk/Ou0zWdp9vDaBLoQ7DNDGsjkfOAoJAY+gLN9CT61hWw1OvKDmtYu6/r+tgw2Oq5Uqvs3anU
XLL+7dp39Hs+177XNMUoBPQZqnqXlfZ0eZ3WNZASEIG7gjGT0HOc+3HNZb3MAt2ju9TupMZZz5JB
xuIK/e45OPXgjpiqlU5XY0jG6ub544NFVdLINrxM8wDYDMu3jAxxk8Yx6fSrVXF3VyWrMMU006kN
MRFIOKwdQvprvUW0GwuGhWVQNQuE6wRH+EHs7dvQZPpm5r2oy27xWFhGs2pXIPko33Y1HWR/RRx9
SQB1pul6bHpmnpaoxkfJaWVh80rnlnPuTXPVisTeh06/5ev5L1R6OHSwcFiZr3n8C/8Abn5J7Lq/
JNPcWG20nTwpjW1s7WPoF+VEUdsewrlH1PbqEsC+JE81pnMMSvOWGVTKn5cEHz4cHGE7Bm3Edd4e
xexXVleqlxbbAdki7hwRjr24/SrFpoehxTJcRabaQtGMJKse1gB05HNfJV8P9UqulJ3KpPnXO+vc
5fTrpdTZjp/iWf7VM3zCKKZ1XKsOFK4VQWB3ADG0cjmuputX06+0NLi2kjuUnz5TAHjBwTzyMEEU
DRdGCKx061TaoVv3YUbRwPwGay79bSOVbexSJLePJURKAoLHJxjjqc/jXVl1D6xXi7Oy1uTXq8kH
bqNjqQ4AJPQUyMUl5/x6uo6uNg+p4r617nDRhzzjHuyrtJggBHMkm4/q1OmSp5gPtMCjsGP6Y/rT
ZhxXHhHfEVpeaXyUU/zbN8XLnUX3u/vb/wAjwj9trd/wp7RNykY11QD6jyJqKm/bglST4N6EgGHi
11Vb8YJiDRXh4lNV53VtWd2Ht7KNj23wRYeH9V8G6GLqPzLhLGB8h2RkYRRDKkHg4jUZHv6mt2Tw
roa2Rs1tZDavP55h899ofbtyOc8rxjOMVxfgxCPCWkMpIP2KHkf7grr4dXuXtRCsTNIq8uDnj1qs
VlNSEVOjK6e97aGMMbvGaKeqJDDcpBASUijVBk5OAMDk9ajj6UxiXkaRurHJp619Bh6XsaMYPojz
pS5pORJULY+3xfez5T/Tqn+fzqyVUQKxOHz09qrMf9PiGW/1b8duq/5/OmpqauhpWZJLHvwyna68
qf8APanQzMxKNlJF6jP6inCmyxiTByVYdGHUVpo9GcVSlOE/a0d3uu/+T8+uz6NSbm9T+dcv8TPG
Vn4F8Nf25fWdzdxeesPlwbd2WBOeSBjiuhWUoQk/B7P2b/CuH+O9rqF34HEWnaLday5uQslrbkh2
jaORGIIBxjd6VvhacJYinGp8Lkk9UtLq+r0WnV7G2Hrwr7brdPdeq/q/Q4K+/aQ06SEJp3hjVhKx
+9KEIAHXADcmtn4VfGiLxd4pXQJ9NuIGkiZ0mkVVwQVG0gE9dwrzfUNS+INnpt5IvgDWLIyK4WeR
N6w7zjODHz1/iJ5PGBxWv8CrHXNa+Ilje6joN1ptppenGNpShCSuBCF3cDMhZGYsckqAvRBX0Gb5
ZlVKhOpQqL2itaPtoSvqr+6t9L7Hs4dfuXzw9zW8uV6O2mvTW2h9IsoIKkAg9QajZVVAqgAAYAA4
FSmo5K+XW55d9CpMuSB6mux24Ay2AMIoxwMCuWtQhvYt+NobJyfTmunvbmO2gWaY9twHcnHSvBz5
yqTp0oq71/r8DswaSjKTIr5o4YXmk6KuPrXLEtNM0rklmOeTmrOo3ZvbkuqskfHyZ7+tMjXFd+WY
H6pByl8T/DyMK9VVJabDo1xUOsWSahpN1ZPjE0TICexxwfwODVpRTq7ppTTi9mRTnKnJTi7NanJ+
FtHLfD37FIgWW9gd3z/ecHGfoMflXQaZaiy0u1swBiCFI+PYAVcxgYFIRWFHDQo8vL0VvkdmMx9X
FznKW0pOVvNlWVc11WnXf2zTlkYhZF+Vx64rnGXNM2kDGTj0zUY/BLGU1FuzXU5qFZ0W2upoa/dB
l+yxnJzliD0HpWZCChBUkH1FOCe1SKuK1wuHhhqSpR+fmRUm6kuZgop4oApa3uSQGytGVlaAENkE
bjyCQcdemQMDt2pYLO1gZmgt0jZm3kjPXBHr6E1OOlFRyrsPmY01j+Kb2Sy0pzbYN3ORBbL6yNwP
wHU+wNbBrnrJf7X8R3GosN1rp5a2tfRpf+Wrj6cIPo/rWdaTtyR3lp/m/l+djtwNOLm61RXjDV+b
6R+b38rvodHoGg6RP4Zs9NvIXljsVaJGErKfmxubgjk88+59atLZaBYXpmaU+cWUtmV3yRIJATz1
3DP5+prNO8IUDsFJyQDwagaKvP8A7FpyqOTk1HokKeY1Jay1k92zas/CnhtRHLZ2zwmMRmNo53G3
aVKkDOOqgnjkjmm3OkaZpyXl5bwtFPc/6wmRjvOc9Ccdc9PU+tUtKvZbCUkAujDBXdipNTu57oqJ
Iyin5lB9K4llNaniYxvePf8A4BU8Yp0ttSpFU61EgxU9uoaVQ33c8n0FfSVJKKcmefFX0EqHT8fY
LcfNjyl+916d6mOAxA6VFp5zY25yxHlLy3U8d6m97MroxVLW3/XHPUfwf/WqwGYj7xx9aaOlQ7Hg
5iy0fdPT6f4VWkvU89KWE+FN0+3WPp3j5brpdbWCSepzSU2ORJBlDnHUdxTqVrHbCpGpFSg7phQa
KKCiMom/zNq78Y3Y5x6VDNU7VBNVQ3E9TS8LodtyQcF2VM+3JNbO3ch5z1Bqj4Z2rZkL1yXbnvnA
/QVBq2pxCJ7WAFmP8YP3Tn+dfJYqhUxuPnGC629LaHpU5RpUYtlTX5gZhaxs2FwX54J7VSiTFJGp
J3Nkk8knvVhFxX1GGoRw1JUo9PzPOnLnk5MVRUc/zTwIP7xc/QD/ABIqYUoHetLl058kr+v5ETIx
uvMP3QmB9Sf/AKwpJBUxpjCsqNKNK9uruKc3O1+isfPn7bmV+GOlL2OtRn/yBNRUn7cS4+GWkf8A
YaT/ANEzUV4eY/7w/l+R6eE/hI9m8FKD4O0b/rxh/wDQBWwoK5KkjIxxWV4I/wCRN0X/AK8Yf/QB
Wxivdpv3F6HmS+JkYWpYCiSBpELqO2aTFGKqSUk0yU7MJGaRy5xk1BFukn8351RQUUHo3T5v0wPx
ovlzZyjbuypGM4zU6gKAAMAdKSSS5VsiulxRS0gpaokRgGBDAEHqDUXlOn+pfA/utyP/AK1TUU02
jCthqdVpy3XVaP71+WxTvljurKa0u4iiTRlG7rgjHWsv4fae2neGII5QBPKzSSn1JOB+gFdBRWMq
MJVVVtqk199v8jpw9fE0qEsNKd4Np7Wd1fe2nXsughqOSpDTGGa2RIWNs1zdrGqs3c4HQVo+K2O6
CEMu0DJXvnpk1RspjbXKydujfSn6piW7MwkV94B4OccdK8+dCUsdGo9ktPU3jNKjKK3bKca1MoxS
dWztA9hTxXotnPYBTqQUtSMKSlooAbRgU6igBuKKdxRxQAgpa8W8efF7xV4f8XX2jWHgkX9tBJsh
uPOceaNoJOAp75H1GOtcbffGf4iSE3p8LTW8JIKBGYIoJ4HK8/j+lerHIsyq0o1aNHmUtrSgt/WS
/wAzooUY1JWnNR9b/omfTdFfN0H7Qni5bBppfA0Uohj3yyiZ1GAWUtjbxyrf98n0r6Dm1O2ttGGp
3jiGIRCRu/UdB6nJwB3rnx+W4nLrfWo8t79U9t9m+5nGnKc1CGrbsrdfQreJ72e3torOxcLf3sgh
g4zsz96THoq5P5etXNLsYNO0+CxtgRFCm0Fjkn1JPck5JPqaoaBZzy3Emt6nHsvbgbYoic/ZoeoT
6nqx9eOgFbPFeVSTnJ1ZddvT/g/5djsxco0oLCwd7O8n3l+qjsvNtrRjSKQqKfRXRc88i2ClYE4y
ScDAz2FPoxTuAwCpmkXyFjRNp/jPXNMxRiolCM7X6DTaIZnZQFRSWY4GB09zUkCeXCke5m2qBlup
x3NRRKPtkzFecKN2eo54/U1Yp7g9NBRRQKKYiOSFXbcCVf8AvKeabunj+8olX1Xg/lU1FPm7nLPC
RcnOm3GT6rr6rZ+tr+ZHHNHIdqt8390jB/KpKKKTN6Smo/vGm/JW/VjWqvIKsNUTCqiUzc0SBrXT
JZ2/ds67gXHHTg1zuCzlm5JOSa1luPP0trZ5VQqB1OM46Cs9BhSNoOe9edgKMqU6sp7t/gdFeSlG
MY7JCxrTxSKKeK9BmACloopABptOooA+fv25v+SY6R/2Gk/9ETUUv7c//JMNH/7DSf8Aoiaivnsf
/HfyPWwv8JHsvghgPB2jD/pxh/8AQBWxurC8ExXLeDNJkSCQxrYREttOMbQOtaay19BSjeCseVN+
8y3kUVAslSK2apom4y+GbOUbS2V6DqanxVe+5s5RtZvlPC9asVPUvoLRRRTJCijNGaACikzRmgAN
NNOppoAQikxQTUtrF5xcsxVEXczYzihuyuwSu7EYpwolaIv+6UhR/ePJoWjdAOFFJSUAOopuaTdQ
A/NJmmFqQvTsA+jIqIvTGk96aiK54l8QfDPxQvPGl/daHpGnXGmM2ITLfOvmISHIZPNC/fz/AAjI
GDkEg+f+JNC+JEMMOi33h3Sop4oWSGaKbMhEqsjtnzCHZwzAlgTnpg19YRR3MsTSxQSvGn3nVCQP
qa5XxfbySapo9/b2Ml5LBMw8tOAflypZjwoDAcn9TxXpy4jx+Dw0Y4ZRvGy1jfTZ9d7P57Hp5XGj
WxChiE+Vp7O2qV1q9LXVvxPn3VPh/wDFC1sri61TSdGZTGUSS5ukcxM0axsyAvy7BR1DfNyACa+i
9Bs7zUhY6jq0PkQ20Y+yWbDlWxjzZM/xY6D+HJ6npLZadczXsWo61cx3FxFkwQRLiGAnqRnlmxxu
P4AVrNLXNmGY4rN5QliUko7JK3bf7tF83rsTr08JFwovmm95dEnuo38t5fJaauzuFG8VWiLzSrFE
pd2OFUdTT547qB1Sa3miZvuh0IJ+ma5uVXseZfqTbxRvFQTLPDN5EsMiS8DYykHn2psZkkYKkbsx
6BRk0cqtcLlrcKMiq8wlgcJMjRtgHDDBwRkULL70uW+qC5ZoqJXzUgNKwyKEf6VOdpGdvPY8VOBU
EI/0qc7WGdvJ6HjtU4qUVLcWiiimSFFGaM0AFFJmjNACGmkU400nimgExRSE1Zljjt0CybmmZQdv
QL9fek5W0GlchFOpgp9DELRSUmaAHUUzNG6iwHgX7c5/4tho/wD2Gk/9ETUU39uQ5+GOkf8AYaT/
ANEzUV8/mH8d/I9bC/wkfVPwvVV+G/hsKoAOl25wB3Mak1q6jpNjfROksKBnH+sUAN+dZfwx/wCS
ceGv+wVbf+ilroq5YzlF3i9TVxTVmcTfeELqGLfaXCzkZJVhtOPaufDMjlHUqw4II6V6txWTrkVg
bVo7iJCdpJcjlQB1z+FepQzOd+WornHUwcd4ux5/dsDZy53fd/h61aFULph9klPzAbT06irwNeu1
qcP2UOzRmkzTWYUhDs0ZqFpKarF2CoCzHoBVcork+6kLVXMnrTTL70+Ri5iyXFNL1bXSruS0EsNt
PIxOAU2sh/I5qvd6XqdtAJprOVUOc/LnH19KiM4N2uW4ySvYiDBnVdwXJxk9q3J9Ku10SVneMCCU
kBMfOPXj9M+tY1lFcwzAvZtKrIrbCD8ykjBwOvbiu5g86fTrppIDbLKw2JIOcbQDkdulcmNrOnyt
bG+Hpqd7nCIc1KtQJwxHocVMOldrOZDiaazU1mwKhdiWCqCzE4AHU0JXBse0mKjMtdN4c8OSuZJN
UtwqFRsBb5gevSt9dD0tbtLkWoDoSy/MSMk5zj61x1cwo05OO/odEMLOavsedky7Q3lvgnAO04NN
kMiEB43UnplSK9YwvGQODkUEKeoz9a5lm/8Ac/H/AIBt9R/vHmunaPqd8Rst5I0IOHdcAnHFa3h7
ws0u6bVFkj2vgQ9M47k+ldp+dFYVc0qzTUVY0hg4Rd3qQW1nbW1sLaGJViH8PXNZtx4a0Z9zG1Kc
fwORitmkbp0NcMa1SLvGTR0unGSs0eZ2GmTapqckVgjfZVlK+a3RVz/PFd1p2g6ZZKNlusjj+OQb
j/8AWq7aWltaiT7PEIxK5kcDux6mpq6sVj51naOi/rcwo4aNPV6sasaLjaijHTApWVWxuUHByMjO
DS/nRXDc6SKa3t5yPOgjkxnG5QcZpRBCGRhFGDGCEIUfKD6VLRT5nsFkRzQxTJsmiSRT2ZQRXP6p
4Utrq5863mNtn7yBcj8PSuj4orSlXqUneDsROnGatJHmmq6Xe6VIq3KqVb7rocg1XjfNenzLEV3S
gFQOcjIrg/FC2iX0ZtY1iLrl1HGPTivawmOdd8ko69zz6+GVNcyehlwH/Sp/vfw9enSrIqpbH/SZ
+W/h4PTp2q0DXac8txc0maQmmM4FFhEmaTdUDSChmYKGKnB6HHWq5RXJ91JvqqZRVnTYHvZvLjRn
OQNqMA3PcZ60SXKrsFq7IQuKYz1cbRdUeZlispwnODIuOlUHtb0PIjW0qtGu5wVIIGcZpQlCWzQ5
Rkt0amhWk9xPHNA0TYlCMrYyB1zz9DUOsW0llqUsEj+Yc53eua1/DT3JUQrpzeY0kRM2DtwuMktn
HToBUXjhMX8UmQdwK+/GP8a441n9Z5HszodNex5jGQ0/NRR08nFdjOYUmo2fFNkfFS6fp19qTkWs
JZQcM5OFH40O0VeTsgV27IgaWkRnkO2NGcnsozXoEPh/TEhCPbBiQM/MeDt2n+tXtPsbWwtlt7WL
Yg59ST6k15881ppe7FtnXHBSb1Z8bftulj8MtJypA/tpOo/6YzUV2H/BRwAfCfw+AMD+3V/9ETUV
5GJre3qOdrHfRp+zhy3Pf/hj/wAk48N/9gq2/wDRS10VFFYosCcKT6Vxvj+FRbRXId9xlKle3T/6
1FFdeAf+0Q9TDE/wpHIzOfsknJX5eo6irytxRRX0sl7x5CfugXNRPIaKKIoGzZ8PaC+phbiWdUt8
8qMljg9Pb61vf8Ijpnm7xJcqOSAHHH04oorw8biq0KzjGVkelhqMJU02i22gac8apKssoXON8h4y
cn86rXvhTTLg5UPE+/LFT1BOSMfpRRXFHFVou6kzodGm90amk2f2CwjtBIXWPIViOcZ4zVo+9FFZ
Sk5NtlxSSshAAMYAGOB7VjeK742diXXcW+6o7ZORk/SiitcNFSrRT2uRVbVNtHBx1LniiivqHueM
iGVyK6jwFp0MiPqUyh3D7Ys/w+p+tFFcuYSccO7G2FSdVXOvooor5o9cKKKKACiiigAooooAKKKK
ACiiigBcUhoooAKKKKAK98izR+SxIB5yOteVzDyryaMMzBJGXLdTg0UV7WT7zXocGP2iOtnP2ibk
n7vHpxVnfRRXqHC2MZzRaQy3l0tvEVVm6FjxRRVbRbEtWddaeELP7IFuppHmJyXjOAOOnOau2Xhy
xtceXLdZ/wCunfGM8D0NFFfM1MXWk2nI9iNCmkmkObw3pLLs+zkDOfvE9iOp+ufrUWl+G7fTtQW7
t5nyCwKNyNpHA+ue9FFSsVWs05OzH7GndOxu03aM5wM4xmiiuc1EkbZGe3HGK878Q3hutRZOdsOV
GepOeTRRXp5VFOq2+iOPGtqCRTQ8UjtgUUV7i3PO6BYQm91GC13bfMcKT7d69Os7aG0t0t7eMJGg
wAKKK8jNpPmjHod2BSs2S9qKKK8c7z5e/wCCjv8AySfw/wD9h1f/AERLRRRSGj//2Q==

------=_NextPart_000_0017_01D02B6C.76F93410
Content-Type: image/jpeg;
	name="46B.jpg"
Content-Transfer-Encoding: base64
Content-ID: <001601d02b96$5fcccb10$6401a8c0@JAYDELL>

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP
ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e
Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCADeAdQDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmbhkk
ZvLXy1PQA9K7T4eeB7TxRoV9q+oeJINEgtJ0gPmW/mb2YZ671/LnvXFXNvLbPiQcHo3Y12fwt8a6
x4fnn0OwtdLnttRfzZPtcTuQyKSMbXX0H5V7tbm9nemzghbmtIzfH/hZ/C/id9Ehv01NfJjmW4SL
YGVxkcbm4981mLpp8ohnG8ngjtXQ+IvEF54q1uXX9RFqLmaNIytspVAFGBgEk/rWeXHJ6AdRiuaW
Imkl1NVTjuZsOi3s6ytF5JEY3fPKqk8Z4BPJqgySpnfG6465HSuhMi+p/Co5n+Uhtu0jp61SxbXx
IToroYG+lGWyQCQOvtWi1rAZUkwAOMgdDUjlIywjQY64xxVSxtNK6Rn7N9TNt7mWzmLJ1HBB6Va0
m+kN7IZXkJk5IRc5NT2hheX94qht2QT64xUslpAlwtxExt5AfvL0P4ULE05rVWGoS3TNSGdZQf3b
pj++MZqHU7X7TYPDDsDE7h6Zzk1Qj1ZkDI0Us7KT8ypgEetKl1diIXCRCZG52Lxj6etLklF3Kumj
KjlurQvaktHuI3r3rR8R2qRQwzRIF2/Kfcdqi0zEl5I9xauQ6kZc4HXoM/gK07HT7q7051e2ds58
rfycdq6KklGSZnFXVhLW7gubdGadDIMEcbSPapmnUryV6gZ+vSq+n+HruPWpFjgZoo0+bcM9R0qr
qulXUV9IkVsyLx8p6Z9RWXsYTnyxfS5ftHGN2Xr2zjuI97LuYfKGz0rn7iB7dwr4IPcdK6W3tdRh
Y288Lo4HrnIrO16zu8rIISUHXAORRSm4y5JMJxTV0ZBORU9i8658pgoU55OMn61WBqW1MzO0MThB
ICGJ6YrokvdZlHc7e1k822jkIxuUE1LVbTFCWEKhg2F61YrlNxaoaocFCELENnjPpVyWQRoWbGB7
4rFutft1X90C7e3Smot7CbSMnUA/lAXEbJOGPUYyKqL0xS3E8lxKZJTkk9OwpBXRGPKrGTd2OooH
NFAgoJoprGmAjNiprS0nuJCoUqF+8SOlW9GitVkW4uMyshyIwuVY46Z9aluLyf7dskZN0i7xHnBH
JOce/Nc1bE8j5Yo1hSurspy2TRxPJ5igp95SecVUD81ce42usjSx7ArFum09zn25qa9tYmMRWJoS
0Yy27IZu59vpWdPGraYpQ7FANTWNEkckThJBgnofWpfKaK4aAxiZyuBg9D6123W6M7MnhvUNo1vc
E4xhSBVKQFQGIO1uh9auppM7qDvRTgscnjjsPU1dtNOe3VmYF4iADuXjdz/gfyrH21OF3FmnJOW6
KWgqkly7HlkXKknir0wV77YQSJISCR25/wDr1GbUW1ys9uwVWOHQ9Me1LdbhfwbJApkVl5GfesZT
U53i+holyxsy00YaExvtcH1HX60lvkQID/dGaIGdky+MglSR061LHMIGDlEbngMM8/5Nc0m9jVJb
iHOKQAnpSLu5LDHNDZRDkEjHFJqwXH/SkY4yarxzNkbsc+napXYbPmwM+tSpJoExPNXOBzTt67ee
QeKquNp4II9aI/8AWD61mptPUm4T2Ub3ouDjZtwy46nGKEs7UYAi5HvzUtxJtTGQWPTnFFux5yOc
cit3XndK4uWN9iVtrDDAHPY1Dd2y3MeDwwHyn0pzOrFcYwDyfSonuDu2oF6dc1CqOMk0VKzWpANL
ATBmy3+7xWbJlHZCckHFbDTyqFb5DuHSkRIWZi8CZ/iyMmuunjLX59TGVNP4TIVmPCgnPoKN/rW1
9mTfG8LbAhJ2joaleNJEKyorcc8Vq8XHohexfcx5ZoWjVY4ipHVi3WoFba5XsfmGT+f+ferd9YtH
mWAEx9SO4rPlbCb+Pl5/xreDjKN4mbTTszsPCPOmyf8AXY/+grRTPB5zpknP/LY/+grRUS3EUgbe
+gCqwPIZlzkik8NpCvjG0S3cFSsu4E/d+RqwoZZIZB5LEP3x0x71s+DkUeIrVg5ZyJN2Rz/q2qPZ
cidnoac97XWpDbWs9s/yyqUP3gf6VNIwJ2VUt47yXy5WmOzOcHviprjd5h3d/SuHEt81m7vyLi7L
Qrg3d0rPDOkMaOVUFN24qcHPPTIpLafzIvMcEMCyMOoBBIOPxFZGsxyW94IhJMsl6u2wEchAjm5L
Ejp0+bnPCt+OvJFFHFsgLlVHPHU9zXgYGONWJre3leF9NPnp8t/M+kzeWWPAYb6rC1S3va38ndd7
6ryL4jYrkKSMDpTZUfyjhTnHWoLe5mSEAHIHHNWrOZJ2KH5D2969hRiz51WZnSMUUkEZAzk0W09y
64kJ4z3/AKVYvICkx2AsDyDWr4Z0C61G6jVoW8puDgc1fOoRcWte5nZpjbHfc7EjQsx4wBnFdPoX
g+8ucAoyqSSAB0zXeeGvA2n6fDDcS3AjMhwgxvLfgK9BsNOt7XMkSL0wNncZ4/GsXXairHRFX0Z5
9o/w8G1WkjH/AAIV09j4LsbeNV2qABwAK6SGUyRhmUxkOVwRnODjt64qK/vI9Os2lmlLtzs3dWPY
cClepOXKty7xSu9jn7jSNNt2WSG18xypMg24YAcD9TXM3ul2l9dGVocM2Aqjt6CunsNbkN1NcXEe
6V0CIqcKMdvzqteuRqCypF5NwpBfZhl3ewFe9hKLoTalHW29/wCvS55lep7SN09OxS0fwfb3Elxd
XSyxzKpWMyLgZI68+lN1rwtb20UUMqRsZ8qzqMKG+hrVs9aukuSmoZkgc7XDLjb/AJ9K1tYubWaw
YPhoWH7uRfmGfT2NcmJhV9uvaRun2/T87G9KUPZvleq7nh3inwJEl0/2SFlC8E+9cgmg3dlqChtw
RsrnHNe8oARzg1S1DTLW4IZo1DA5BAr1Pq65OS5yKu+bmPLrWNooFRsg+mKWeaOCJpZW2ooyTXq9
94Ghu9IS6sxvBBOe4rx34iWVxpv+hSxtycg4rzKTUnyndLRXMTVtYFzAYIQfm4Zj6VjquKVFqTFd
qtHRGDbe5JBbGZMo435+77etTyabKkLPvViOcD9aqR3F3bs32cw4ZQP3ik7Tu5PHtSS3uryw+S09
uEBxkIdxHrn1rmnOrzaLQ1jGFtQFOpBSn0zXQZCE8VXmniSRY3lRHb7qswBNP+ae6FrHKsbFC5Yj
Jx04FMS8ttOidZv9LhaP7Q9zGFYeWT95hnOPoDwPavms34lpZfU9jTjz1Fa62sn59/I+uyLhKtml
P6xVn7Ok72e92vK608zfYrb26QIB8gxkDqxHJqjcpbHZJdeUCflBYc8ZPb6mqlvpe61DSXt4pYO5
TecRrk4BGOy4qzp9nDIBcF53hiyqedJuJbOfTpzXXTl7Ve0ndLr316ep85WioTcYyvbT1Irmwscl
FtgAWHUknGMDmnXd1Iki+YS64+Uf3fart9FJ5ZmwMg7ic81SugCsYCsZGbEYHc9fywKzhWp0/fq/
CtyYUateap003JuyXcGd7tEIIRY87SepNWFO2R5FADPyaiid1ZbaSBYmOWTBBB6Z59elP/iwOTRD
GwxNNSoyvDpYvFYOvg6rpV4uMlumaOlXrW9xCfLMpV1O3Gc4PQVbnZGmkEJbyt/ygjGffFYyHy2B
DFXByCO1Mk1ExvhVmlZOWKRltv1x/LrzUSrQpe9UlZeehWHp1a8vZ0ouT7JXf4GtcErFhFw/OGz9
OKp24CXJnuXBk24X0A+nrT471ZI0kYZUqDkdCc1djtFaQXBQ7QoyApYcjjOPWuj2tk+VkPVjNRkt
optltKXjf5lcoQfy/wA9KqJdZZRj5e5NWtTSBXmi+YsGXY4zgrg5AyOAT/KsplIIANZRm7ClJpmu
MEYodkHBPtzVCO+hkt1dJFYHPKMCOOvNJNI0qlVcHB5A9fetXOyKbJXxvIA4zTMc45KjpmkjG1Rn
qetKDk7R1rG5AKAFwOlEZxJ8314paQgE5xzQmBHfqfMRt5KsOParFopyCcj8aYNwHX8+alt5G8w7
iCDVppu40tbikMC4wxBOcg8is+5V0f1XscYrSMTiQtlvUEfyqCcpJ/D1ORwT9c1UloKSuUoyyOG6
4NaaxiTEiyexqtDCpbO0YHGferWYoyCCFycfU0oxCCtuPUhMjrk9aRFG4sRyetNBBfy+rH24ptzl
V/1ioCcEsen0rRblti/aIPtBhZlVhjGT1zWZq9vbwWjYbbNg4/2qpTgxTuWfJVvvdc805i05D3Dn
KjCjrXoRo8jTTMHUvujqvB8ZGlsSyndKTwenAopvg4n+zJOf+Wx/9BWirle5kcvGgUepzyTWx4PX
/ipLb0xJz/wBqyq7n4WeLbjQ5pdKi020uUu5DKZZGZXQqjcAr2NFVtQdkVFJy1OXsZ4yBCWBfGMA
EdO9SzR7mR2ZVI4PoaPGOv3HifXm1V7KCzkaNY/Kt87QFGM885NUVna3i8tnLyH73faP8a46mFu0
1u+hrGorWZNNLZFRcSRxSyQuTblgSVYAjcMeoJH40W1/asCZi0RP3lAyprNcKXJUEDtmkK8V1Rw1
NLUzdSVzVcWrRkwkFFPbk/54qOJJd6lF3HIwV/lVG3eSN9qMQHODivTPhx4X+3ul1dDZk56cf/rx
XDiqPslzLYuMlL1IvBHg+81G5WaePMfXHpXrml6Ra2No0UECiYL94joauWogtIlhhjCKMAEDGe1X
lyd3HH6V4dWtJyuNq+hl21ounwK4fdtOS7Ef5xVie/uCWkhYLG4Cso7YHWlvGU5QgcEYx6VXIzkd
AemKU6sqsuebvJmF+T3Y7G7o8rSWpd1YuT8xIxmua8U3LT6w0RyEhUKB7kZJrRsrqSCAq4JZu4OB
mmapFFqhjKlLeVersPvDFenlmLp0cReptrqXWftKSinqYsY4qaykdL2AKWIMysQvcg//AFzUd3b3
FjJ5dxGR6MOQfoahS5eCZJojh0OVNfWO1WDcdbo89XhLXSx3t7aw3ds8Ey/Kw6jqD6iuIe3ePUZN
Phdm/eFQCcZ9K7UTM9ks6g7tgcqvfjpWNDcKt8rS2Y+0HCBzxwT3z7V8thcweEcovW/5nqYmnGo4
sxEyrFGGGBwQacwyKm1vYuoM8fKng8dx1qGNsivpaNVVqaqLqeZKPLJxNDRdXn0xHiVQ8bnoe30r
A8eaXaeI7gzKgU7OBjv3rQkZI03OwUe9RqZ5fuJ5SdmcfMfcDt+P5VjKnSjV50veN4upKFr6HhPi
fw1caVOzBDsz0rAx6kV9F6lolpfW7JKu+Q/8tH5P/wBb6CvHPGnhifSrl5EjPlk9qznTm9djaFSm
tLXf4f18zlsL70cf3R+NLikPSs/Zp7t/f/kae1a2S+5frcjupHS2keJRvVSVx61T1W+0izhJiJMy
jKyrzuPue+e/XFWrh3SImNC7dlHU1XttLkvtHgWOYWkewYjEYJYjuzdeSOxFfF8WVPq06FWM2km+
rt0/E/QOCaf1yniaLhGTaW6V7arTbQzfFkkn2e2uLGYpLtcJsQsZBgEgMOnAI9yQKTT9Hka0Wb+0
owJEVJbdwQZEGCIzk/KM7uMcbyOmMWNNlgi8pYr62tpQjCO3cmTYSeTnOR0OM9AavrcrbATTwy37
XKb/AN3CDIuMDaR0x154HB9a+fznNliK6qUI2dle+t3v1VtLb3PpchyH6th5U8VO6u7WbSSel9Gn
d31VjSsYZ7/TYyozLLEG+Xp0B4o0OW2QGCZmDM4wFQscHg4x3qnp91FJYRW4drQGcKytjdFGXwDx
xgL79q6T4j6TpXh/ULV9MUW22CMhg5YykuQc56kjvX0tbiDD4VUaFWLfttVa1la279X0PzfD8P18
TXrU4NJ07731t29VtcoxxvfPNDCzW+xGdGnYLkgE457nH51i38qi6ghnciSNMgqzKMtnOSOQBt/M
itOKeOZvNDo4YAhh0P8A9es+S/axuLmL7FNcuAZ5GjKjEfQdSMngjA9Ky4grzjgpKnHR2Xp8+z2+
Z3cHYenUzWDqytyptXV7tdLeW/yJYI5YLmA3Nws8TbhCVB4JGeSScjAOD/8AWq07gk7VAIPX1rK8
JB9VnuL2GRns3lItVY4Csc7sZ6cbRjsdwrorWBwCUQnA/u5FPJKM6OEjGpvq+2/fzMuK8VSxeZzn
Rd1ot76pW08ipHG8sg4wzHoay5r+bTpLyBLeORbZWuZGaTaWRmY4HuMEc8dPWuiijK4kljAGfukk
cetZGr6MNUubSfz0j+zThpEwcyx4J29MffCHn0rbM8BHHUfZS6NP+vlc5shzeeUYl14K900/zW6f
VL5FvSwq2yRzMBHIxlZccjJLbQfbOK2U1m3hjaK1ttod9yhudqdNoPpyevtWf5CBUGCxweTxiq81
sy/NGS3T5T3ruhTjCCjHZaHlVatSpOVSW7d38yS+ninuJJQjou7hS2do7D/69U94JyDzUkqssa4R
g+TuPYim+U20MoweDjPNWtEYO7Kz2FmEH+jKBjAAJHXr3qW0jit2cxwbWkI3kE846daupFKVx5Ry
uN3HTPSopkeFgrAPzjI9aOZvQp3EacY27SGp3mqp2od/pio45UD7jErtjADcjPrU8ECoVfPOO/am
k2JXYZbPIpwqRgjLuLZOeaYvAJBHpQ1YsCxKgZ4HSopX2FcEjkVJ8p5C1DdypBHufrn5V9acIuUr
RE9EWYrpkULI4GR60ySSJsoZEGcYANYjFpHLuck0oBHQkV6iwenvSMvalrULiRG8mPKY5Yg9antn
cRxXFwxSNBhV6ljjrUGn2oncs/KLjI9as6yRsi2sRjjaD2qmoJqkgV7OQ5tUi+YKjHjj3NZ80skz
F5XJ747CmqtAAdv9lT+ZrWNONP4US5SluJGu4hz0/hFSMOKWg96tEs6fwgB/ZknI/wBcf5Cijwhx
psn/AF2P/oK0VnLcDmK9K+Dfgyz163u9bvNZ/s8WUwhUGLcGLoe+a81P411ngX4geIPBtrdW2jiz
aO5cSP58RfkDHHIpVlNwahuXBpPUh+JHhyPwl4mfRra9N3EIY5RNs2lg4zXMYrY8X+I9S8Va5JrG
q+T9pdFQiJNqgKMDjNZFVT5lFc24pWvoIBS0Ctnwpo02sanHEikxg/NVpXJehreAfC8mp3K3EyYj
U5GRXsWlxQ6eI4o8iPaUI7AnjP60aPpsOm2KW8SgYHJA61JOnFbyoRqwcJdTllN3ujXimUkYAwOD
kc0sdwRI0OcoOcgVkfaW2fIG3nCnHJ61PKZWjz5c23OGIPXH/wBfNfE18POhNxmjqjO+qN1beOW3
ByVYkYOOlYi+G9TjjcJ4huAoiCxgx7yrfNltzEsSd3c8YGOlbVlO0tqo8qQsnB6f41YWZgeYZMH2
H+NYxk0dkYrlucnDa6jpl95t5qU95BPldrxqoRyRhuOnC4wOOTWijbz0Ix0zWncxJMrlopl4YHGO
/wDkVy/inXLbw3oM2oyxO0oOyOAkAuzNhRnnA5yT2H0xV1qkORS2stf8zJUKlWqoQV22kl5nQLdy
CHypFSaPrtkXcKx4JIbfXi88EciNkqgGAp6jjp2rhfBnxCvb/XotO1i3t0S7YpDJAGGxsEhWBJyD
gjPHOOOePQpDBJIrMPmAODiqyzNIOnOVJ3i012szbNMsxeXV1RxUeWSs+j0+Rtx60pCB7dkDHG7q
Pep7j7IQBLPHvBJDEdDzWCwQbDvJAPAz0qvd3kpYiHDYPzFzxV0lKrOyt8zm+syS97U1Ly5hu4Eg
YYTHzHHf1rmdS1Gz0wj7TdQQ7mCoZZAg56ZJqw2oXE7i3tlG9uCwH3P/AK9ed/HvwxNdadpWq2s8
Zls7pYCk2CGM7LEJDn+6xXP+yW9BXo06mJy+Mr6tp2jfd6fcXhqVPE14RrSsm97XsvRHpMEQLCWR
hI+OD2H09KndlRSzsFUdzwK5bSpb+y0ax0fQ7WS8FrbpB9suv3aHaoGfU9O1S/8ACO6nfOJNW1yY
n/nnbDYo+h6/yr05Y6Xw4em5PvtH73v8rmscuj8WLrKC7by/8BW3/b1jTvdasbXhpQW9M4/n/TNY
Gu6naaratD5EkufumOPIH4sR/KtS38I6JEcm3klOc5klJq+uiaQME6fbMR0LoGP61hKnmlXdxivJ
t/jY6Y1cmofCpzfdpJfdc8D1nTza3T4QohPAOCR+XFZ5QDq3/jor3jxX4ZsdR011htoo5VXgogFe
Garaz6feSW0uQVPGfSuWeXY5O7qp/Jf5M7aea5c1aNFr0b/LmQ20soLmbdMpfYDjgDr1rl/EMRsr
25tbOS5Wa6Mj6UROypEVy7r6DAycHORx2rfMrgEZ4PWn2N7GLq3lECGSB2MM8iFlRmG04J4HHH41
5OYZfUcV9YkrNrsv8m79VbY9TL8ygpSlhIvmSf8AM9O73StunfR2MiwvLfU7C3tLC0SNZbcFZNuR
FJgHrjBxkfU9e9WbC3u9F/0O3hS6M7F0ZpSioABleckewHHJ6d6Ws6P4usdXElg0UtkIPtEskUSx
5lOVZETnHGDj1waht9H1jxH4UM8d1JNOX221ysm0oDgSkAfeBUsoz3z0r5F5JWlV9nFrld+/47eR
9tHirCwoe2mn7SNlpyr1tq13+6xf8JGTxFqVxqdrp7y2oJXZIducbAeQcdSfyNXLO9ul1ZdG1QS+
dY2ywWrzMGLx7ncYPfAIXP8AsVr+B7ZNKs7e2Fg8BS0jjnl3AiXZ7YwrEs3OT35qt8QJ5Lt7JrQm
2R7gKjSgOqPnKsTwexUAYzuwa+gzDLaU8AqD0VNNp9u/39T4rKs6rxzlYu15TlZrunp+HQrQXdu0
90ls8chd1jVA38YDbm9hx+O01W1eyuru+05WEWGnCTNH8vmQ4LPGRzkHaD+B9ec3SLe+i0eSKwt4
5poJHWKUEAllQjeCeu5skg9NxGcVP4Ol1u6Q3bA36xsqJ5jBQsrbg/bJCjA+pPTkCKeHxMJ0KVOS
dLlV7rf8NOljqrYrA1aeLxFaLjiOZ2adrdEtHr1vudXFYQWSlLaIQo8jysFYnLOxYn8yasxIrylW
cIhIG7k0xjK0jLKMFTt656VHOHkm8ot8iAAjrnr39K+hS7HxTLEwJUsV3YUjOPbiq0cjoqwxgfvB
hyQPlA5z/L86csRB2xFkDcEJwGqK6lgtb9ra5lKTRkAq3YkkAfmD+VUo6i8x7Q73UtIWAPTtQBMi
mNdhUnOSOR/nNVxqdgZPLFwN2A3APA/yRTl1SxdgiXC+YDjGMcYH/wAUKpxfYCdd2CjY3rweOvvU
N7MpV/MGdzZUKNoVh1wPTk1MUDMGJYEehxVU7klDbfNxkhu4+vFTy3E9dAlYtDHJGzCTvTIePmIL
g9VY8574q2sDyDcko9cADFRi2C7g3IIHGPQ0corFW+gSJRLG29ZOYwOp9c1LbLMLYBxl+Sf5082z
KC0YBkAO07eaLdJwQzA7z1JPAp30sJRs7leW4EYY7SQB+dNa6cYyoAPcHOPrVqSCOZiH2Dk5IPJx
7VVMDSpIQMqBgHpxSaE7k0bllznPaoLq0Esocu3oe9JJOCVCgpgcj1qRHTYzZI/iyD92qpzlCV4s
HZ6MpyQeSineDliMY9KaRntT2Km2XLktuJAxximjpXtQcnH3tzBlrTWCpICcAcn6VBdTNPLuPQcL
x2pOQCBnnrSAVMaaU3PuU5O1hshwvHHqfT3p6ABQB0xRTcFOVyR1I/wqxDyKSl3ZAI6GkoEdT4Sw
NNfGf9cf5Cik8Jf8g2Tr/rj/ACFFQ9wOYxRgUtV4Z5WVfMt3RiwUgA8cDn9T+Rqmx2J8CjAqFppQ
ARbt90NjvyGJH14H51P3oTuFh8ETzzJFGMs5wBXuXw98Px6TpaSOo85xknFcP8KPD/229/tC4TMU
f3c969iAAAA4AFdFOPVmFWXQQ1FKOKm7VHIOK2W5gQ6eCLw4OPlNdDIr/YkgjUsqrlzt69+KwbFW
N2FU4LDA/OussD5lqBuOVJBHoa+Tz1v618kd+BhzJoyIPMt4xIytiRsDDegrTcsU5UgKwXOM1W1+
7i062+1XKNLCDt2gZOef58Ae5ArHufGWnq4SWC9jiI+VjAQD8pbnn0H4ZFeVySeqOyNPkurnQsrM
rDdnI9K5zx54cTxB4futN3IJHQtbvn7sq8ofzFOl8W6ZbkC4trtFaGKTcEBA8xQyg4Oc84/A1b0b
xJp+syC2hiuYpWQsVlTaVwEJ/EbxQ6Ta1WhUW4SU4uzWqZ80/D+W103xJNc6zdXbNphaJ4XUO63i
nDAAf3QTntyuK9itPGWktoq6vcSEQB/KKjIYyY5XB5zjnHpXG/HTwxb+H9Xj13Q4oz/bN0UulkkO
1Z9rPvzz95QRj1Fcdqmn3um/Di38eTruhmmeE2qudq/NsDg45yUbnHIKV4yxNbCc+FoUk4pXT63f
Xt5bbI+5q4LAZxTo4/GV2pzlytfZSV9Fu77PfeR7z4e1K28QWs13ptzG0cZ2lB95Dj+IkZH/AHz+
NQ3EcdvdNZxXc1xKyAuUfAQ85PHTPb6V5v8ABG7uprO71lD9mS4CwCJW3ZK4bdkdR84A75J6V6TZ
WIEe0oUiznZnlj3LHv8ASvo8nwFXGUVUrLlb8/6/rY+Tzelhsvxc6dCXNFPTS3392np+dis1nDOS
ttaxKpP3j8+PUknqfYZ+tWrDRbG2mE/kJJMOjso4+npWiiBQABgDoBUgWvqqeAoxs5Lma7niVMxr
yTjGTSfnv6sRRTqjmmigVWlcIGYICfUnApEurVhkXEQ4U4LgEBsbcg9M5GPrXW2jhsyaioYru1ll
EUc8buV3BQ3UZK5HrypqbFNO4Aa84+K3hsXFudRtk+deWAFej1XvYY7i3eGQZV1wRScebQcZcruf
Mbo75jQMWIPQcis6310/a10P7AQyRpCzM2PmOFB24+7kjvnHOK9I1XQZNK1/UGIdbb7Ozbl7EkY/
WuPj8OX8niGPVDqULL5XlGExcl9oAc9s4LDPXH1r5LP8vp4+UKdT7L7vrv8AkfXcPZ3Wyr2kqT+N
W2W6236a6m3pljqfnRx3MomiCgqVTllAIzyOuR/MfSXQdJ0CKxtNOvNRaJ4kZvs6LgIATnJPU4Oc
9qxNWvGdI7ZAym3bDSGQ7nYcbsdh1qoqqsCXRZHl80ja3JxgZJ5zg11zyyVSHNzWl0PLpYz2b5Wr
x6mjeajHYwu9pE6SLKkUau4YKXbau7AGRyOR6GqetfbJraVb29Nyl2Rbyb0AKmQ7Q6kdwzA/hUni
T+ztT0S7vIIp7O6Rd8ghQyBSPulB1PQYHXOK5y01PUdRmgT51/s5k+2MId484k7Ay544XOexYV4G
YYfHvFUVSfKr2kv63TX3M+nyqrlUMDiXXjzTteD6rpbyaevmvmjq74RaXaQQ2xjYRII0wOOBgH34
rPspobSzSG3l8gvK8kmEzhncsx/Nia1pLSHUbJbmZ5lkCFl2YIbrkY7fXNZ91FpkcZwt1xgMyru2
HBOD/wB8kflX09H2MIqM1qtz5CXPJtrY3IWhlhjW3mEihABgY4//AF1n6zcvaeWqx4kbkOewqHTr
SNYGmikdxnH7yPGCPTmn6gBc20huLpx5JO0OCSOnQk5OaypxhGsluhybcezNO1SRbJPOcyynBBxj
rjimvbxyOTeQRHB+UsAw/Udap+HhNNaH/SVKoQAvUjnIrTEbIcpls/ezyT71VVck2upUPeSZAtrZ
YzDbwLjg7UFMNpbI6lIYUxwSIwDj0HFWrpGtnWaQfu3wCAMFuM8fhVMIGiiz50kjg796YA9hWCb3
RTQtyHC7YwSzcAt0FWbWGIJkSAvj5st2H1pLayYt5khOfTcTz3z61aa0iDAqCMepzRZvYFoUlHlu
xQblY8bSDVSXSRcXTXSX11EX5xHJgDIA/wDZRWuyL6ggdajWOEtt3cnooJoTaHoZR0h2ZhJqV28e
RtXd0xjrnrzViKM20SweZLO4BO9yCx57/nV3ySSSWYADOPahrdUj8wuBuXPPtRKXcTRRaHfzIfm6
/L2qxbpFHbspTKIMnnBAqS9t2sbFL+eSPyZR8gJwx9sevQ/iKz9Ru45VS2tU2Mq7pizZPOOPwqEp
TjzRWhN1Hcq+YI1wqgscntx+NZt5dGIC2hhmuZmG51jAJx6nJwPzp0r5lyhYEcE561k6nq8miXoM
do1w92iqrZwoKk8Z+jE/gTnrU49V8HhHiKSTkrWT9d36Hdk2Hw2MxsKGJk4wd7tb7aLru9DUtZvt
MIQIyNFkOjja6E881KBWFousrquuXsnlvEwVbfA+aNihYsQ3fkn8BW8K9DLMRVxGFhVrJKT3SOfN
cNRw2MqUqEnKCdk2FFKDxjt1pcCu488QCl4pMUtADI8fN0+8adgU2Lo3+8ajklkWbaIGZMZ3AZ6A
nH8v1pXsPdnXeEwP7Ok/67H+QopvhBt2luxVlJmbgj2FFQwOWnV2TbGwU5GT7VGPtBZtrKU+UK3B
J9T+eKmkQSRshyAykHFRm3Uqw3v8ykHGO+ckenX+VU0CF2zby24Y6AdvvE/ywKuaPZz3t1Baj5pH
ODjtVD7NHnO6TG0LjPGAQf6fqa9O+DehCSZtTmQlIxtjz3qoRuxTlZXPR/DOmR6TpENqi4IUFvrW
lRxRXZsce4GmPT+1IRQBWbdHIsiHDKcg10emXEdyS8Uu0kfOnoawXXPaoYT5FyknOAfmx6VxZhgY
4unp8S2/yNaFZ0pX6HYuwjYlmYbgeQOhqMxvES8UpEZGSOpzVG0meQTRvOU/jTbgh4z0IznB9atI
HESyrumRlwUwuRz1GMV8bVpSpS5ZHsKansOUsvDOT6VAJN8rLvPtuHWpopUYMW+TYcNuPT/IrHfU
LQ3cp+0YbOFYJkVdHD1a1+SLduxz1aiha7M34i6AviXwVqehb0jlu4SsMhXPlyDlGHPYgHiodZ8M
2l/4MudInCCJ7Q28WVwkXy4XaO2DjGOmKvRainmAyRsyg8c9aTVRM00Zk4RkVkHbFd1HKKsq0YVV
ypmH1uUYe6zmPA3h8aD4fsbCVklnggVJJFHDOB8zD3JJJPck106LgVHEoFTCvrIU4UoKEFojkq1Z
1puc3dsUClxRxRVEGfd3FtNLNZzW7yiPYvK/Kxc7CAe+A4z9fWmR3NgLvasDeayLIoAyMBlRfYE5
Q4+npVy9+1FVFs208knjg9s57dzjngU3df8AnJiK3CGYhieoiB4xzySPyPaspXuWtiCK5skUTLAy
hVABPUApv/8AZgOfWr6HeisOjKD1B6/Tiqlq+puIzcwW0akt5ig5OMHGOfp69auGqhcUhDUch4p7
HFQTOAK0irkM5X4gaXJf6XJJbJuuFUgDbkkV5ldyass6rGILVk2gsFO5W7n86+ifDVm7+Zcyw5R8
Rx7lyWz1wPp36V5R8UtEj0DW2muN0NrO2ULnlm5Pb2HT2rxcbiYSxPs4pNrr/XY9DDUpezu9jiLP
Q9PKFZvtEjk8ybsY/D/9dV9R060t7a5dImUrgJkliDxWwmoWKnAu7ZsEEjzB/jU0ypJKsiBTFKNx
wcqw7Y9uayVWopXbZt7ONtDjbm9lnhjicIAmc7VwWPv61DZstqLgW6rEblt0zAcudu3n8ABXVatp
ttfuH3JDNggbAFDfUU4aVBFpqxTRQuUXkjqTj25rr9vT5VoZ+zlfc5+31a4t4BAMSIgITdnjn+Va
ujX8l/diJ1BiSLe5XOV5Ax6UaXpvhiTVo4b+/uIoBIY5QrBSCOCQSOn86nsDp0EeoW+jlrmGZ8CV
/vqByB27NyawrzoyT5Y6lU4TTV3oXoo7a5uEgZmETMRJsAyMn6cnqaY9kJSba6UPGh2ZPBYDvj15
/SqVzpsTyRzxyzpIuD8jlejbv5itW2l0+20p5b2O5d/M2u+0ZG4Eh/cDBHHrXC001ym9k9yhHpln
YtJFamSRSeWY4zjvjt196r6hqNvYSCM7y5j3MvBAXO3P+fSpb21vJpTLHqmEdy2VjHC9gP8APelv
nWGEyyoXRUYsAM8Yz0/D9au7k7yd2KyS0MyPWLGUgNJIXYE52kcA9fpzUa3sKAOGmWJidgC5BPP4
/wAJ6+oqY6pY7zAI5oSkeSghOQOOP1HH19K3tG1TR7qX7ARI8r/KR5ZwnO3qPU/zoqScFdIcYpvU
rW10SNvHTNPeRmHp9KTW7KTSL51xvjdtoJ4IHUfpVUXCuCAQCOo70lNTV1sD0LBn8tSGyR6Yqlfp
FdR7dzoMg5UjPBz3FNnnCruyCScAZqLzlYHa4JA5x2pNsi9x0FrFGqql7eKBtDBpRggHOOnTgflW
7BsMxWR4h/FhXyMDnAPP+RWbbw2xtEkMh87axfd3OeAPwpsIzkEttU84HOKyk3IrYn1PEmmbkiSV
lkDkP1wOoHoDx+Vc1oct0niKxuZRarAkymaPyiQ6ggkY+nb1rq9Eura11CNbuCOeDPz7xyVx0Az1
rndUMMGu3D2SGOFZi0annaM9PeuvBLnUqbuYzlazJddtDM8J02W2O8MZpCh2qx3bVHToMfXmsrWf
DNhfaZuvb+2XUwsi208G8m33fdbHQkEetWWmcxtGDhC+7HpUWK6vqrlHklJ8olWalzRWpR0fSrTS
7dYrZFyERHcDG8qMbseprQApMUtdUYqKsjJtvVijrS0UUxBRRRQAyLo3+8etRKLhQoEiM5cM4/ur
3qWL+Lp940xrdWZm3sC3pjjp/wDEipaKOr8Hb/7LfzPveac47cLRTfCMarp8xBJ3Tk8np8qj+lFS
xHOUGig1oIlsLZ7y8itowS0jACvofw1p0elaNBaIuCqgt9a8v+D2jfbNWbUJVzHB93Pc17Gu0A5B
6cexremrK5hVd3YSgUtFamQUUUUAIRULrkVMetIRxTTsIRZ3eERvLiSLBhY8YHdSfQ1DbeKbi21U
2ceg6lcRFhmWIAou7Zg5OOMs+e42f7Qp0iZpbK5eylaSMZJx16V5uPy+Fem3Fe8tv1/z9fU6KNdw
mmwvtbe+gcjR9TtPMCqTJDtABBPzemOn1z+NGJRiuiN5/aELRM6hSpBUDGc1ny6cLWPz5LiJ4wwA
A6tkjj261y5Vi6WFpThV913vYvFRdWSlHYqKoq7KZ2tokkiIWPo2OTVaaVXYbE2ADpxUltNJE4ZH
K4r1lKVanGql56/12OVWi2mC8U4GneZFJIzyfJnsg4phK5O1j+NWptuzTQ7D6UUwNTgaoQtHFFFA
BQaKDQBHIeDVnw/YC/1DMq5t4vmkz39BVSWtfwXJB5t1HceXtIUrvx15rnx1SVPDTlDf/PQ1w8VK
qkzoYbVJ40kLugBJjCqFwOQO2ehrjvihoSa54WWW+toppIQJI5NuQvHf0Pv0+ld75kMYC71UDgDN
cpq/i200yf8Asy50rULiHHlmaCLepGG/X5QMe9fHU9JJxPclZqx84ppGnRB0FnHzkNkZJ5zjmpji
3WLYMRxjasYHbjGBWv4stWs9TEqQvbw3RLpFKOU5OR+lcmmuwRSzCe0uw6uUB2A7uCePbjt/jXrR
bnqcz0LF/YWl5P5klxOGD+YAOFU4A9O+PWrVpaR2dnNHHLLIHJcmRs87QP6U+CRbkJKqyIGQ/K4w
evGR+dLJHsXCNtyQCvbk4/Crba0ENezsZJlnaGMuDuBzjnIOfzArM19o9Okj1LT4AsceEkgjBwRx
n9f6Van1fTrcSrM5QxNtK7eWPtSi6sNRtbhLaZXG0qxCEYJyPTmqi2ncGroamuxoY3TTrudGfJVo
yFZQeD64Iz6VNdarbW6Tj+zLu6A3xmExHa/HykHrtJ/lVbw1fmRZdL1CQiW3T9wx54HVf6itESjc
FRSxP1AFTKHJOw1Lmjcy9IU3Es8SzXtnAiYt42HOTnAyR0xzkVXv9QvLSQ2t5bpuIBJVuGFaVxew
wM0txIgMbcIvJJxxXN3txJeXLTyEnJ4HoPSumjD2jvNaGM5cq0NbTtZjlmaOaHazjauD1z6k/hW/
YLNbxJOVCPnAK4zkY/xrgyuCCCQR0NdFoF213FPFcTOZV+ZCfu9KzxmHUY80NiqVRt2Zam8RWUjK
Z7jzQ3by+QDk+nt2zS3FtBfxtLbxqGIyoz144wMUsqmBI5UEQbBJwqkgHisDU9SkmBgib5Qf9YOC
fb6VyUaDqu0NDSdRR3JpEjhYRwhHkZflcA8ce/p7UluEhnfemTjI9/X+dZ9hIyXK7iWDHHWpPsl2
xaNb9sIoJDJuZuADhuvX+daVqHspWbMoS5tTYN3CJ1W2dXDLyeD1FWrC1ury5a2tkLybC2NwHQZP
WueRL63xHcXSsjHLAQqOM5AB6j0p093nCxFz8vJZj8pPXH8uaVLCuqvdZUqlmaQ8p51gM4FxMwVC
D8qZOMk9selZEm0TOIi2zJAz1IqONSzADqTgVIyGNyhIyK9KlSjR91M5276h1OcfhRQOlKK1EJSg
UtFABRRRQAUUUUDGR/xf7xp9Mi6N1+8afSBnT+E/+QdJ/wBdj/IUUeE/+QdJ/wBdj/6CtFS9xHMU
qIXcIoyzHApK6b4b6SdV8SQhlzFCd71old2Buyues+AtJXSfDsERH7x13P8AjW/QoVVAHAHApcV1
JWRxt3dxKBS4o4pgFFFFAAaTFLRQA0imMgNS0lFxFcoQcgkfSiGSSGQMuGwc4YZGanwKYyiicY1I
8s1dDV07oljkjmtjG4KlWLHanLZ9SPeqWcCpSCvIqtNqVvDD5TTwwqWMZLDG4g7ce+D+ufSuSnRj
hJSlHZ9L9i23U9SdYpmRHCHa5wp9TRLFPDIVeM8HGQMim6he6dfLDaWmvpZSo2EeJweinr2+8Qee
pGO5qOGC9aJWtvFU8tuYw4kREKkbgcgjHZSO45NeY87mpX5Vb5nR9Vjy3bsTbmQ4cFT7ipEcHvVO
SyvJ71LiXXZ5YxKzsFgXy8ED5OOnTIPJ5/OURSoqsdpDKWHPYev5134bNKFZe+1FmFSk4PTUtg/S
lqtHJUysPWvQasZXJOM0HpSA+9FIZHKOKfp1zJCTDGIiGOSGXl/bNIwqvKnessRQjiKTpS6lQm6c
uZG1A8EIzNEuwuR5rOGAz0HPPt+VTJMrgeVJsgDEKI+Cx6np0FYSyhh87MoXb8i8AgHPHvVn7XAt
1G4fGwE7gO/p9OTXx1TAYiEnFwd/LU71iovU4/4u20dxpkd4rKzROVE8jfMeCdvzckgV5WLllI/e
RZB/+tXtWt2Oma1BcWep2xmhkk3xksRsbPDV4R4i8PWmmazc2YiBOSfMJJO3JwBj0/pXdToVaEUq
kWio1Y1HoySSS6n8xEuzGckh1yCQRwfwpsMl6t4r3V+sqjOFEYXHAxn8j+dQ24jhXy0cRxoiqB7A
YH6cfhTmkhCbdzcnPQk59ap1GXoaUlzERuYxc9yBzVWSfzThMp3PQcDH/wBaoopEGS6qrdNxXGar
Xmn295dCWRyQQFO09MHP9DSTuOxcliCSJfRhmljbHA5YYpr3ur3IK29u0SHjJHOPxqGDS4jMHN/c
jAPyiXPpg/59atXEn9n6eI1mdmC7I95yT75rqpTvZWu/MUo2V72MRgzSMZHLPnknmnAU1BUlemzl
GkcVJp0rW94jKSATgj1pvamkVMkpRcX1DZ3NnxF5RtFKs+93Hf2Oaw0WrT3BlDef852gL7VCBWWH
g6UOVjk7u4wqAM55q3o9zDaTPLcQmZCpXbnpnv8AhVYip7ZCS0DgbZAcEeo5H+feqrKMoWkEdyZd
13gqxJ544GOc/lxVO4Ci5k2nI3daWYPCzRF+np3qIcnA61FCgqd5J6MJSvoSwsUkWRcEqc9KfONz
GTaFDEsAOnWo2AWMYkBz1HvUkcsYhZCmWxhTV3UvejqHkyMUopKXIrQQ7iim0dKQDqKTNGaAFooo
oAZF0b/eNPpkX8XT7xqa3ieadIUGWdgBSQ2dP4UicaYzEYDSEj6YA/pRXXXOlppdrY2gGCLZWb6k
milJWZKdzyTMuPuL0/vf/Wr2X4R6VcWOiNetbx+bcEEZkI4/KvKvDdlJqur29mq/MzgOPT1r6MsL
dLW0it4wAsaBRitqUb6kVZW0F3XG7/Ux43Yz5h6evT9KQPc4GYIuhz+9PXt/DU9Fb2MLrsQbrrB/
cRdOP3p6/wDfNLvuMnEMfUY/eHp37VLS0WC/kQh7nj9zH1Of3p6du1G+5wD5EWcf89T1/wC+aloo
sF12IS9yM4hizgY/enr3/hpd1xn/AFMeN2M+Yenr0/SpqSiwXXYhD3OBmGIdc/vT+Hajdc4/1EWc
f89T19Pu1NRRYLrsQl7nnEER6f8ALU/j2oLXGf8AUx43dfMPT16VLQelFgv5FV2udozDEOuf3p49
O1N03S7a4N1dT6Zp8rRqXxIoIdz1z8v45qxKMiptLW2ljkgkMiyE7iBjDgcgfga5Mx5lhpOO/wDV
zWhL94jNW2sWx5ui6YgDZjJVdpBznHyevbv1qWyt5khT7NFbRIC6BUPyBN2RgAYq/IxaRIgSoYEk
j+X606CNIolijGFUYAr4tyZu5t7lfbeCFIhEPl5z5xPIyB/Dzx/OmrazBA3kq4UYAM5x2yMY4HFS
6jqFvptlJeXLuIkxu2KSeSAOPqartrukqHZb1W2IGO1GPBxg9O+4fnQlJrQFd7IS6tLsXDPAkToS
CBvIPv2qsstyp2vCinnILn/CumSKJ0BY42jBwO9XLPkMswRgxPBA6ele1h88qU4qNRXt8mKOFU3p
pc5JJrgj/Ux9P+eh6/lUvmXODiGM9MfvT+P8NX9as4LVkeFShcncucgfSqkfSvoKFeGIpqpDZnPU
i6cnFobuuN2PJjxuxnzD09enX2ph+0kDMEXQ5/en8P4as0YrXXuRddiky3BH+pizj/nqevp92kKT
/wDPGPqMfvD+ParuKMe1Vd9w07Ge6T/88Y8Z/wCeh6flXlvxX0aWO5XVkjRAwxIQ/wD9avX3HFc/
4v09dQ0eeErk7SQPX2rOvTlWpOCY4SUZJ2Pnq6mEEXmzAMpyEIbPYZ7VI+oxIFMhCBgGG5ucH2xn
tWo0Mtsxjf5ipwcjke9NRGZ+cjvzXzTVtGejp2M+3v4ppxCsi7jwVBOcYz6VZju9TaRpLe3hWNsK
vmsR0zk/njH1NS3cXlfvIlG9jluM54wCfUA4pUuNSeMg2UTgYXIf744ycdhjP6VcbJXKXkRSX+oW
8mZraAbk4KsevH6dfyFU5ZbieXfLhj0+90H5VFcy3jXSia2UHIDfvfuD/wCtzUygV6eHhGMbrcyq
SbdmIvmcZRf++v8A61LmT+4vT+9/9an0o61sQMJl/uL/AN9f/WpMydNi9f73/wBape1JigCPMn9x
f++v/rUZk/uL0/vf/WqTH1oxigLkTGTP3F6/3u35VLZTzRyr8oGG3AhyMEdCOOtIRTSKmcFONmF7
EuptcyTCZ4UDFcsQ3U5+lNijl2bo0HQHO7np9KngmSdFt7qUxouSrhN2DjpjI/OoZNJSSN5Y9VIw
SwQTbSec8Aj3rlqRl7NQbs/wLVm7jZlcskSqpPP8Rzj8qiPmDjy1B7/P0/SmNZv5xZri+JYYIMnX
9KljjdRtzLIwySX5brnmtaMZRSi9hSt0AeaxO1EHoN//ANam/v8AnEYOP9r/AOtTix9elPDO6yRC
Xy9ykB+6nHBq588VeOpKsyEPJnGxev8Ae/8ArU4NLj7i+/z/AP1qqXZmguRG98yIU3Lug3ccLjOe
T7+p96gMzs0MQ1CeOTcAx+z4D5LY4PTqPyrOOJUlsaezNMmX+4vT+9/9ajMmfuL1/vf/AFqS3SRE
Ilm85txO7btwPSpK3WpAwNJ/cX/vr/61OzLj7i9P73/1qWlzTFcijM2G/dr97j5j/hXY/C3SZtS8
RJM0KtDbncxLf/WrkFJVyuPvHI9z6V7n8K9I/s3w8s0iYluPmP0qqcbsmpKyGeMTIdTi8xFRvIHC
tkfeb2FFP8bf8hWL/rgP/QmoqZ/EyY7HL/BvRmM0ustGTs+VB0zXqyMroHQgqwyCO4rM8K6amlaJ
b2irghQW+tX7E5s4TkH92vIGO1dMVbQxm+bUmoOKKWrIEo4oo7UAFHFFFABRRS0AJRxRRQAYFFFB
oAY44qldxSM8TRXM1sY5BJuixlsA/Lz2yQT9KvkVFIvFDipJxlswTad0P0vSNSAjlutW/tCF4Qfn
hVWD8c5X/gXGO9Sw2TO7wtKd8b4jLdOMHHH5VShu7izkDxNkA5KHkGrTeGIby9vNSfUL+J7lo5JI
opFWPiPjggkfe9a+TzDL5YWV29Hsd9KUa+26JvJ+0Si2nt1ZZOMOoZGxz396k/s6EzBzZW4fpnyl
zjgensPyqnb6NHZyfaI7/VJzBE4KPKrL83PIwCSABj8PXnekWVzGJNoZlG4L0PrivLemzL9nZbkc
TYjCt3OBz70RziEMQA2Mn3qR48NHkdOnHP41U1T9zE7bgSAecd6KcHOaiuoSbir9jGuLlrq5aQ52
Z+UHsKmjqvAmKsr0r9AUI04qEFZI8y7k7scKOKBRQMKDRRQA1ulU7kHa2EDtg4XONx9M9s9KuN0q
jqFxcWointrKS8YSjciMAQuCc89eQPzocuSLYJXaR478RtL13RdWhFxpcWbiPLGOT5Aw6/Qdxz39
jXOwfapEPnxeTIpwNjAhl45/PNexfEptV1vw19tj8PampjKuryKudp+9wFzxzXkMDXVxIxa3aAxt
tIkXrxn19fSvlqcpTV5b9T12ktiRfNRwzbSmME9MUyMuLp9h2Kw4yp61PCA/M3zYx8vQfUf41Vvb
hYEDgEtkhPTj1/WrjByfKtyW0lcqasgS5U5JLLyTUUMbOGIBwB1xVeS7SW4/fXEZk7qWAx04/UVq
3l3ZixVYZ4QH5GHA9P8AEfnXpSqOlCMFqzHl5m2UlpwqFJIjj99Fz0/eDn9amxhiDXRdPYmzFooo
oEFFMkkCMF2k5HGPqB/Wo0uUZwoU4IBz6Zx/Q/pSuh2JTRUUVzHKEKq2HJAJHTGf8DU2KadwsNIo
wKWmscU0IN205FJGHlYJGpYnsBTo7W5m/wBVCxB79B+ddDp2nNaQq7R4cjliOM1jXrxpLuy4U3Ix
bOxaZWMu5ADjpzVe+hW2m8sOWOM9OldRKELZX7v8qrXdpDcqBKoJJ4I7Vy08ZLnvLY0lRstDDeJ1
s4p1LENndjtzTBIxHLE1tvbKLP7Og4AwM1hyxPBKY5Bz6jvXTQrKq2nuZSjyjxRTQaeBmtyRKKKV
cBgSMjuKQGr4T0ptY1y3swDtLZYjsK+g7JVihW2ACmIBdvt2P44rz/4NaN5VtLqsqYaT5UyO1ehJ
/wAfkgyP9Wnb3bvW9NWVzCo7u3Y5Xxt/yFYv+uA/9Caijxt/yFYuf+WA/wDQmorCp8TNIfCjr6js
v+PSHJJPlr169KkzUVlxZw8Efu16nPauvqc/Qmo4oo9aYg7VBezSQpG0UfmFnCsACTjnnj8P88VP
VO4S5W4eZLlFymyGJmIUtg9R06kduwqZOyHHcUXreZtNrPgz+UDg+oGenvn0460ttcXEkyrJalI2
iD7ueGycg59tv5mnWyagFTz5YSwEe7ZkAkFS/b2YenI96bBFfosCvcJIAF81mYknqWI49SB24A6V
nd3Lsi1xRxRRWxmHFFFFABRRRQAUxxxTzTH6UIDO1C4ggA86QpuBIwjNwMZPyg4GWA59RXQRX+k6
pdPaWd3DJJFEEdEk528Df6Y5wD71kwokt/bq6I370Y3KDjn3roNLtbbyXuY7aKJ3X+BApxnIGR9a
+ez6bUoRfnY78ElyysIIBaRu8e3y9uWRvYcnP0qAOiXxg8w4ZfMC5+4eOPpWjHlo2Zgu0AjAOciq
Nr5UG+S4jWKVxu344YdcD0x6V4CTenU6Groj1PUjbrjYJDMARyQFx1/Wslp7i4ULNIWAOcYoupTc
z7udg+6P509ExX2eAwMMPSi5R9/qzy6lVzb10FRcCpBjvQBilFdrIIrvzhbObcEy8bcY9Rnrx0z/
APXqAzX6K/8AoW8qqbfnUFiQu7vju35d803UIW82aZ71oo5LdoUVQRtJ53DBzng9OwpJY5POJTUV
jjAkBAPO5yxXv2BGPpWUm7lpaEoOoG4H7uLytxDDI6fJg5z1++fyGKtdqpCNlf5dQ+faIsM2fmAc
dM9cuh9TtGatwqUiVSxYgYJJyf1pwbFIU1XnWrB6VFNgKWYgADJJOAK1TsQX7e0l1jwjc6VHdPbO
X2iVeqjIb9eR+Jr598Y+HdS0XxBc2/8Aacxy5AxGMcZ55+or3fSppLW+jy8kccjBTg4BPQex+lZX
xi0OC70lb22YNcQ5LAkbj3Ofz/lXzWOToYtvpLU9TDy56SXVHhD6RfrYG+m1XgttACruXGM8f571
S1KeORUhQcqQSe3StO6nMDb5W/dgYCd2PpWGxaSRpGwCxzx0rpwdNuXPLoKrLSyIlt7Zplklt4nI
IJygyamvrfT5XQxWsYC/7OATx279BSgUY5rtlTi5c1jJSklYiS2t1ZGEEQKHcp2Dg+tTjrSClFUk
lsF2xaKKKBEcol3p5Zwufm6eo/pnpTQbjKHy06Hfzz04A5/WpqKVh3IoTcYXzFjUY+YD1yff0x+Z
qWiihKwXGtRBtN1GGGVLDIoNRtkHI6jmqtfQR0wAUDHAq6s7CMhMOh+8Mng84IrOhkLwxueMqG/M
VJFN5TiVZAhB+8enT3rwZRd7HepaaFOW+uMybdNuCBJtVhyGGR83HTr3qJNQvAm46VcZC7iBznqM
D8h+dWBd228p9oQnPTtVlZAWHUnGOvFaqNt0Re4oYtCGKlSwBIPUViX7S3gYW8MZ8tiu9mwSQcED
jpnj8K2pThBzXI65cXWn3c8cF00IZPNtIvLDefIzHchJ56lemMbs5448jNq+LoUlPCfFddL6P/g2
Pf4ew2X4jFOGPvy8ra1tqtdXddLk1u4dN2CDkgg9QQcEfnUwqC2TYuM5JJYn1JOSfzJqcV9bDn5F
z7219ep8xV5PaS9n8N3a/boKTk5NW9GspNQ1KC0jUkuwBx6VSYhVLE4AGSa6X4b6taaVrEd7qdow
t3wFlDZMYPRmXHTuec47dqwxGOw2FcVXmo8zsr9TpwuXYvGxm8PTcuVXduiPcNGso9P0yCzjAAjU
A49anX/j7k648tPp1apAQQCDxUaf8fkhwf8AVp392r1Dx11OV8bf8hWL/rgP/Qmoo8bf8hWL/rgP
/QmorkqfEzohsjrlqOx4s4cAY8teh46VItMsiDZwkEH92vQY7eldb3OdbEtFLSUxBUU8CTSxOxYe
Wc4HQ/MrfzUVNSUmk9wTsU/7Oh3QNvk3QhwpBxksANxx1bjqc0tpp1vbGJkLlo02qWbPGWP/ALOf
yFW6WlyIfMxKO1LSVQgoo70UAFFFLQAh6VFIeDUpqGU8GmtxDtLRWvhNJkRwAyOR7V01pFJHY7Cv
7wpnHueorlrORVSeMsQZdsYHrlgD+laniDR7id7i9t9Zv7SVoAoWFvkGwNjgEHq7HqM8egr5XOpO
piuR9ErHp4KyptmsIFa3MeCMrg49xXOaneTzu9rIIyEc/Mo64rGnsp2kVBr2uybHZ973JU5OeMDg
Yycf/WFW7C2eBXD3Vzcb33AzvuKjaBtB9OM/Umu7LculRnz1Y37eTMK9aMo8sGTRJgVMBQopa9xu
5xi0UtIcUhkdxBFcIEkBIByMMQeQQensSKjeytXI3xbgJRKFJJAbnkDp3P51ZozScUx3aKkOn2cR
YpDyZDISWJO4lDnr/sL+VWqWihJLYV7idqhu4I7m3kgk+5IMHGP61PTTQ1dWYJ21MSTw9prXMc8i
zymNw6q8m5dwOc4/H8frzTtQ0axvZZpbiKV5JU2MzSsf4NmR6cAdPQHrWwRRtFZfVqD1cUae2qdz
5z8W6E+ia5cRfPscjbk8AD0H41lgV7d8T/D41PSjdRL++iGc14m6sjlGBDA4IqJQUNFsbRlzK7Ep
cc0AUtQUJgUtFJkUALRSZoyPegBaKQEUtABRRRQA001hmnnrSUwJRezJCIkAXAxkCq80ks2PMctj
pTsClwKmMIxd0httkBSrlnevE6LLlkUbQP6/yqHA7U1lpyipq0hJuOx0G/K5HIxk4HasLXoobyWz
kdTvtZjJGQe5Qrz+DH9KSJpdwVJWX8aSRGWQhjlu9cdPCqNRXe2ppKo2hEHFSAU0VS1GRXWS3eO7
AA4e3Uk/d/8Ar++a65z5VciMbmvpmnvql4liqkiX5Wx6d6dpOk69c/Ew+ELtNtsshSQiP5vIAJ8z
PQAjbz6tjFdf8JtONgk+sXNrrl06jYiNFuUtwQQfx649favVV0OxtPE9zr/J1CSzSyBAGBGrs+fr
lv0FeTmGX0Mx9nzxvKLvby0v+h6uXZzisq9oqMrKat8+j+V2XUAVQq8ADApEA+2SdP8AVp9erU5a
ahH2yTkcRpxjnq3evo2fPLZnK+Nv+QrF/wBcB/6E1FHjb/kKxf8AXAf+hNRXHU+JnRD4UdXI+xRt
G524Vc4zT4lKRKhYsVAG4nk+9RwoSfOkGHYcAjlBxxU1de5zvTQKKO9FMQUUUUAFFFFABRRRQAcU
UUUAFFFFAAagm6VOagmHFOO4mR21vLLJG0X/AD1QEnoPmB/Pg10viS6e2stkcTEygqXHRao6Elrs
gZlbzfM/u5APOPzz19qd4ovmL/YYjx1l4+hAr5qUJYjM7NXSf4I9GFqWFbvqzFgQYHFWVHtUUIqc
dK+mk9TzkHtS0lFSMWjikooAWigUUAFFFLQAlH5UUUAHFGKKKAGyRrJG0bgFWGCK8T+JXh59L1Jr
mFD5MhzxXt1ZfibSYdW017eRAWx8pqZx5kVCXKz50orQ17TJtLv3t5VIAPyms+uVnUFNp1NoAKKc
m3eN+dvfHWkOMnAOO1ACU6kHWloAKKKKAExRilooGJRilooAQikxTqbQIBwQR2oOWJLHJPeiloAS
tzwdosusarHGFJjVgWNZVjay3lykESksx/Kvc/Anh+PR9MUlB5rjJ9a0hG7InLlR0uk2tppumIkZ
Uuq4Vcc5phLO5duWJyaXbTgKqlQVOUpXu3/VvQwlLmSQ3hVLEgAckntSQbndpSGUHAVSewzz+Of5
U1h50hjI/dr970c+lTitdxbHHeNv+QrFx/ywH/oTUUvjb/kKxf8AXAf+hNRXJU+JnRD4UdgKKq6p
dixs2uDHvwwXGcckgf1qcQ35Gdlrz/tt/hWtXEU6TtJmUKM5q8UPopnk6h/dtf8Avtv8KPJ1D+5a
/wDfbf4Vn9eod/zL+rVew8UUzydQ/u2v/fbf4UeRqH921/77b/Cj69Q7/mH1Wr2H0UzydQ/u2v8A
323+FHk6h/ctf++2/wAKPr1D+b8GH1Wr2H0UzydQ/u2v/fbf4UeTqH921/77b/Cj69Q7/gw+rVew
+jvTPJ1D+7a/99t/hUdz9ugt5J3jtisaliA7Z4/Cj69Q7/mH1ar2J+KPwqKynF1Zw3KqVEqBgD2z
UveutO+pgBqJxkVLTWFCES6S8SNJFKcb8GMngBh6/nTdSt3+0NIzguMBlLZI4HPuKhKg0Yz1Occc
1zyw37/20HZ9fNGqqe5yND7eSSIkxsVJGCRSimLT8cV0NK9zMKKKKAFIxg5BzSUdqMUALRQMUUAF
FLikGKACiijFABRRRjigAooI4oxQByHxB8Mx6rZtcRJ+9UZOB+teK3ttLaXDQzKVZT3HWvpkgHII
615z8S/DtoyG5jwjHngVlUhfU1pz6M8mpp60912sV9DSYFYG42il4zRigBB1p1JxilxQAUUUlAC0
UUUAFFFA9aBhRRRQAU6KN5XEcalmY8AU2vQvhr4etrmdbichm64xTirsmTsrmx8NvCi26LfXaZY8
jIr0TGBxSRRpFGsaKAqjAFOrqiklY5ZSu7iYoxS0UxEVsP8AWcf8tDUtRWw4kOBy7fzqWkthvc47
xt/yFYv+uA/9Caijxt/yFYv+uA/9CaiuSp8TOiHwo//Z

------=_NextPart_000_0017_01D02B6C.76F93410--