Return-Path: X-Spam-DCC: paranoid 1170; Body=2 Fuz1=2 Fuz2=2 X-Spam-Checker-Version: SpamAssassin 3.1.3 (2006-06-01) on lipkowski.org X-Spam-Level: **** X-Spam-Status: No, score=4.3 required=5.0 tests=BAYES_00,DNS_FROM_AHBL_RHSBL, EXTRA_MPART_TYPE,HTML_40_50,HTML_MESSAGE,NO_REAL_NAME,PART_CID_STOCK, PART_CID_STOCK_LESS,TVD_FW_GRAPHIC_ID1 autolearn=no version=3.1.3 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by paranoid.lipkowski.org (8.13.7/8.13.7) with ESMTP id t08N3fLC019890 for ; Fri, 9 Jan 2015 00:03:41 +0100 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1Y9M0a-0000FO-Ff for rs_out_1@blacksheep.org; Thu, 08 Jan 2015 22:56:52 +0000 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1Y9M0Z-0000FE-RV for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:56:51 +0000 Received: from resqmta-po-08v.sys.comcast.net ([96.114.154.167]) by relay1.thorcom.net with esmtps (TLSv1.2:DHE-RSA-AES256-SHA:256) (Exim 4.84) (envelope-from ) id 1Y9M0W-00019O-NA for rsgb_lf_group@blacksheep.org; Thu, 08 Jan 2015 22:56:50 +0000 Received: from resomta-po-11v.sys.comcast.net ([96.114.154.235]) by resqmta-po-08v.sys.comcast.net with comcast id davw1p00154zqzk01awlJH; Thu, 08 Jan 2015 22:56:45 +0000 Received: from JAYDELL ([71.234.119.9]) by resomta-po-11v.sys.comcast.net with comcast id dawk1p00C0CFS1j01awkF2; Thu, 08 Jan 2015 22:56:45 +0000 X-DKIM-Result: Domain=comcast.net Result=Signature OK Message-ID: <001c01d02b96$6048b1d0$6401a8c0@JAYDELL> From: To: References: <46D2E1AF22D14849AD1095081F7613AB@AGB>, , <54AD702F.1009.1A52347@mike.dennison.ntlworld.com> <54AE61EB.7134.397DF4@mike.dennison.ntlworld.com> <000c01d02b55$440817e0$6401a8c0@JAYDELL> <8592571821BB4496B94ADC934CBC0555@AGB> <002801d02b85$7089ace0$6d01a8c0@DELL4> Date: Thu, 8 Jan 2015 17:56:44 -0500 MIME-Version: 1.0 X-Priority: 3 X-MSMail-Priority: Normal X-Mailer: Microsoft Outlook Express 6.00.2900.2180 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=comcast.net; s=q20140121; t=1420757805; bh=W81iRApkQWVYCDQVpYKOkAtr39dXfqV6doU3Xuz8lzY=; h=Received:Received:Message-ID:From:To:Subject:Date:MIME-Version: Content-Type; b=F6QFjnnzL/zd/Llxr9qqsRMEVsPZdJFhcGqNjfZsoyv+Pq7zJ5ezo8mQJFzxd5Qdq zPkzUtruhNIlr5L1lmWlbh7ujZ0guDLCNMTIGUmHbHN5JtdC8/mZ391nhiDAQJ7r5d SvTRG0OrdpA9WvN7p4gzEZb102+PgfAmKfOXCmNosx9yk1+R51luCGCm/tXoYsGcHT Wk5ARiCG0uvE9MDSsrLSCpBPcCFHNHCFBi7n+MCvzUONPxVM3vtNaS/WYGi7OrpOLG sFoPufkxKbZPSwqCzNneRSGVbsTd8HM7mdDFdQeC479veUmF5YgYpOwAYJl9HwH1F0 bRzSI1gDaX7Vw== X-Scan-Signature: 08c9414f19655553e357235c441385aa Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << Content-Type: multipart/related; type="multipart/alternative"; boundary="----=_NextPart_000_0017_01D02B6C.76F93410" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.56 on 10.1.3.10 Status: O X-Status: X-Keywords: X-UID: 1891 This is a multi-part message in MIME format. ------=_NextPart_000_0017_01D02B6C.76F93410 Content-Type: multipart/alternative; boundary="----=_NextPart_001_0018_01D02B6C.76F93410" ------=_NextPart_001_0018_01D02B6C.76F93410 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: 7bit Graham The shift last night on my transmission was 2 minutes - significantly under the 4 or 5 minutes that has been stated as 'processing time'. With no OPDS reception at DK7FC, DF6NM or anywhere else in EU, and with all of the false detections appearing on the screen I would not put any trust in those detections. From here, SV is an incredibly difficult shot. IIRC my signal has never been received there and I have received SV8CS only one time ... ever! You can try and belittle DF6NM OPDS setup procedure but it's becoming clear from the posts here, and in private e mails I've received from users of both 'systems', that there's a serious problem with false decodes in Jose's system. I agree with LA4ANA's comments about how important it is to keep false detections to an absolute minimum. The responsible thing to do would be to pull OP 1.5.5 from circulation and encourage stations not to use it until a better functioning version is available. At this point I have little interest in transmitting OP so as not to contribute to this problem. Jay W1VD WD2XNS WE2XGR/2 ----- Original Message ----- From: Graham To: rsgb_lf_group@blacksheep.org Sent: Thursday, January 08, 2015 5:11 PM Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << There 1000 miles apart and exactly the same time , the 4 min shift is not a timed function , this shows 5 tonight 19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 dB in Zakynthos(Zante) isl. GREECE 19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in Welshpool IO82ho yes I have the opds system , even edited the file paths in the config.sys or what ever , bit like old bike , needs a few adjustments to get it going , all the decision making logic is contained with in the package . So far tonight , everything looks ok 73-G, From: jrusgrove@comcast.net Sent: Thursday, January 08, 2015 8:55 PM To: rsgb_lf_group@blacksheep.org Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << Graham DF6NM's OPDS is much closer to perfection. I take it you've never used OPDS ... so you're not aware of the differences in performance. Those two spots look good at first glance but they didn't adhere to the 4 minute time differential from standard mode reception. What is one to use to judge the likelyhood of a real spot? Unlike DF6NMs OPDS there's no correlation % and dB 'certainty' indicator, an accurate time indicator or an accurate frequency readout that can be compared to other grabbers for corroboration. With so many bogus spots in Jose's deep search it's hard to trust any of them. Jay W1VD WD2XNS WE2XGR/2 ----- Original Message ----- From: Graham To: rsgb_lf_group@blacksheep.org Sent: Thursday, January 08, 2015 12:35 PM Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << Jay, Well nothing is perfect , all the beacon systems produce strange spots I don't even have a 136 Tx and am regularly spotted on 136 2015-01-01 19:01:38 G0NBD 2056km 137513.376Hz 3mHz -36.6dBOp 95% 15.4dB This looks convincing to me, two at the same time into UK/SV 00:34 136 WD2XNS de SV8CS Op32 Deep Search 4722 mi -42 dB in Zakynthos Island with 1w + 00:34 136 WD2XNS de 2E0ILY Op32 Deep Search 3245 mi -42 dB in Shropshire IO82qv with 1w + As for the pdf , I got the impression the 11 dB claim in the opds document was a little optimistic, I note Markus talked of 9 dB in a recent post, I assume that was perceived as a challenge ?, other than that content is solely under the control of the artistic director. One thing this is 100% certain technical issues still take on a east / west divide , 73-Graham G0NBD 24 Hour wspr on LF 24 Hours Opera LF -------------------------------------------------- From: Sent: Thursday, January 08, 2015 3:10 PM To: Subject: Re: LF: New version OPERA >> ''Opera Dynamic'' << > Graham > > I won't be quite a 'charatable' as Mike ... > > There were at least two false detections on my transmitted signal (WD2XNS) last night that I saw ... > one into G and one into SV. About the only way to tell they were false detections was the time lag > between actual and the 'Deep Search' output - it wasn't the expected 4 minutes. Had there been no > 'real' receptions during that time period one might have actually believed what was reported ... as > you did and reported on the Yahoo reflector. > > On receive from here last night from there were false detections of VO1NA. > > I saw one detection of a G station in JA make the list! This was clearly a false detection. No doubt > there were plenty of other false detections but after this couple hour 'outing' with 1.5.5 I gave up > on it. It's clearly not ready for prime time and should be pulled from circulation and return to the > drawing board! > > Perhaps the author, instead of taking the time to write a 'propaganda' .pdf page about DF6NM's OPDS > and include it with the download, should spend more time actually making his software work as well > as Markus's. In almost a year of using OPDS I have identified only one false detection. This is > severly at odds with Jose's test of OPDS. Since Jose seems to now like the idea of Deep Search, > maybe he should 'borrow' more ideas from Markus ... like the correlation % and dB 'certainty' > indicator, an accurate time indicator and a highly accurate frequency readout. These indicators, > especially when correlated with other OPDS users grabbers, makes the very rare false detection with > OPDS obvious. > > At this point Markus's OPDS runs circles around Jose's Deep Search ... regardless of what his > 'propaganda' page says. > > Jay W1VD WD2XNS WE2XGR/2 > > > ------=_NextPart_001_0018_01D02B6C.76F93410 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Graham
 
The shift last night on my transmission = was 2=20 minutes - significantly under the 4 or 5 minutes that has been stated as = 'processing time'. With no OPDS reception at DK7FC, DF6NM or = anywhere else=20 in EU, and with all of the false detections appearing on the screen I = would not=20 put any trust in those detections. From here, SV is an incredibly = difficult=20 shot. IIRC my signal has never been received there and I have received = SV8CS=20 only one time ... ever! 
 
You can try and belittle DF6NM OPDS = setup procedure=20 but it's becoming clear from the posts here, and in private e mails = I've=20 received from users of both 'systems', that there's a serious = problem=20 with false decodes in Jose's system. I agree with LA4ANA's comments = about=20 how important it is to keep false detections to an absolute = minimum. The=20 responsible thing to do would be to pull OP 1.5.5 from circulation = and=20 encourage stations not to use it until a better functioning version is=20 available. 
 
At this point I have little interest in = transmitting OP so as not to contribute to this problem.
 
Jay W1VD  WD2XNS =20 WE2XGR/2    
----- Original Message -----
From:=20 Graham
Sent: Thursday, January 08, = 2015 5:11=20 PM
Subject: Re: LF: New version = OPERA=20 >> ''Opera Dynamic'' <<

There  1000  miles  apart and  exactly =20 the  same time , the 4  min  shift  is not =20 a   timed  function  , this  shows 5 tonight =
 
19:10 136 G8HUH de SV8RV-14 Op32 Deep Search 1487 mi -42 = dB in=20 Zakynthos(Zante) isl. GREECE

19:05 136 G8HUH de GW0EZY Op32 94 mi -8 dB F:21% in = Welshpool=20 IO82ho

yes  I have  the  opds  system ,  = even =20 edited the  file  paths  in the  config.sys  = or what=20 ever ,  bit  like old   bike , needs a  = few =20 adjustments to get it  going ,  all  the =20 decision  making  logic  is  contained  with = in=20 the  package .
 
So far tonight ,  everything  looks ok 
 
73-G,
 
 
 
 

From: jrusgrove@comcast.net
Sent: Thursday, January 08, 2015 8:55 PM
To: rsgb_lf_group@blacksheep.org= =20
Subject: Re: LF: New version OPERA >> ''Opera = Dynamic''=20 <<

Graham
 
DF6NM's OPDS is much closer = to perfection. I=20 take it you've never used OPDS ... so you're not aware of = the=20 differences in performance.  
 
Those two spots look good at = first glance=20 but they didn't adhere to the 4 minute time differential from standard = mode=20 reception. What is one to use to judge the likelyhood of a real spot? = Unlike=20 DF6NMs OPDS there's no correlation %=20 and dB 'certainty' indicator, an accurate time indicator or = an=20 accurate frequency readout that can be compared to other grabbers for=20 corroboration
 
With so many bogus spots in Jose's = deep search=20 it's hard to trust any of them.
 
Jay W1VD  WD2XNS =20 WE2XGR/2  
----- Original Message -----
From:=20 Graham
To: rsgb_lf_group@blacksheep.org= =20
Sent: Thursday, January 08, = 2015 12:35=20 PM
Subject: Re: LF: New version = OPERA=20 >> ''Opera Dynamic'' <<

Jay,

Well  nothing is  perfect ,  = all =20 the  beacon systems produce  strange  spots   =

I=20 don't even   have  a  136  Tx  = and =20 am  regularly  spotted on 136

2015-01-01 19:01:38=20 G0NBD   2056km 137513.376Hz   3mHz = -36.6dBOp  95%=20 15.4dB

This looks  convincing to  me, two  at  = the  same time into  UK/SV

00:34    = 136=20 WD2XNS de SV8CS Op32 Deep Search 4722 mi -42 dB in Zakynthos Island = with 1w=20 +
00:34    136 WD2XNS de 2E0ILY Op32 Deep Search = 3245 mi=20 -42 dB in Shropshire IO82qv with 1w +

As for   = the =20 pdf ,  I got  the  impression  the  11 = dB =20 claim  in the  opds  document  was a  = little =20 optimistic, I note  Markus  talked  of  9 dB in = a =20 recent  post, I assume that was perceived  as a  = challenge ?,=20 other than that content is  solely  under the  = control =20 of the  artistic  director. 

One  = thing =20 this  is 100% certain  technical  issues = still =20 take  on a  east / west  divide ,
 
73-Graham
G0NBD
 
24 Hour  wspr  on LF 
 
 
 
24 Hours  Opera  LF
=


--------------------------------------------------
From: = <jrusgrove@comcast.net>
Sent: Thursday, January 08, 2015 = 3:10=20 PM
To: <rsgb_lf_group@blacksheep.org>
Subject: Re: LF: = New=20 version  OPERA  >>  ''Opera Dynamic'' = << =20

> Graham
>
> I won't be quite a 'charatable' = as Mike=20 ...
>
> There were at least two false detections on my=20 transmitted signal (WD2XNS) last night that I saw ...
> one = into G=20 and one into SV. About the only way to tell they were false = detections was=20 the time lag
> between actual and the 'Deep Search' output - = it=20 wasn't the expected 4 minutes. Had there been no
> 'real' = receptions=20 during that time period one might have actually believed what was = reported=20 ... as
> you did and reported on the Yahoo reflector.
> =
> On receive from here last night from there were false = detections of=20 VO1NA.
>
> I saw one detection of a G station in JA = make the=20 list! This was clearly a false detection. No doubt
> there = were=20 plenty of other false detections but after this couple hour 'outing' = with=20 1.5.5 I gave up
> on it. It's clearly not ready for prime = time and=20 should be pulled from circulation and return to the
> drawing = board!
>
> Perhaps the author, instead of taking the = time to=20 write a 'propaganda' .pdf page about DF6NM's OPDS
> and = include it=20 with the download, should spend more time actually making his = software work=20 as well
> as Markus's. In almost a year of using OPDS I have=20 identified only one false detection. This is
> severly at = odds with=20 Jose's test of OPDS. Since Jose seems to now like the idea of Deep = Search,=20
> maybe he should 'borrow' more ideas from Markus ... like = the=20 correlation % and dB 'certainty'
> indicator, an accurate = time=20 indicator and a highly accurate frequency readout. These indicators, =
> especially when correlated with other OPDS users grabbers, = makes=20 the very rare false detection with
> OPDS obvious.
> =
>=20 At this point Markus's OPDS runs circles around Jose's Deep Search = ...=20 regardless of what his
> 'propaganda' page says.
> =
> Jay=20 W1VD  WD2XNS  WE2XGR/2
>
>=20
>
------=_NextPart_001_0018_01D02B6C.76F93410-- ------=_NextPart_000_0017_01D02B6C.76F93410 Content-Type: image/jpeg; name="46A.jpg" Content-Transfer-Encoding: base64 Content-ID: <001501d02b96$5fcccb10$6401a8c0@JAYDELL> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCAD2AcYDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6B+Hv /Ih6B/2Dbf8A9FrW7WF8Pf8AkQ9A/wCwbb/+i1rdqCgoqnqt/ZaZpt9f3xXZAIRGGmaMZdiCeCCc AZx7Go9E1O01bSbDUbNQgn81ZFWcyDKMADyTjI5x71j9Yp+29jf3rX+W3oaexn7P2lvdvb5mhRRR WxmFFFFABRRRQAUUUUAFFNlkjijaSV1jRRlmY4A/GubuvH/g6CdoF123u51O0xWKtdPn02xBjn1G OK2o4atX/hQcvRN/kJyS3Omorlv+E/8ADv8Ac13/AMJ++/8AjNWtK8a+E9UuBbWXiHTnuD0gaYRy n/gDYb9K2ll2LhFylSkl/hf+QueL6m/RRRXGUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVl634j0DRADq+s2FiTwqzzqrMfQKTkn2FZK/EHw u+TBNqlzHnAlttGvJo2+jpEVP4GuqngcVVjzU6cmu6TZLlFbs6qiuV/4WF4RRgLrUp9Pz0bULGe0 U/QyooPv6d66HTdQsNTthc6dfW17A3SS3lWRT+KkiprYPEUVerTcV5pr8wUk9mWaKKK5ygooooAK KKKAPnD/AIKA/wDJLND/AOw2n/oiaij/AIKA/wDJLND/AOw2n/oiaiqRLPcPh66DwHoALr/yDoO/ /TNa3fMj/vr+dcN4H/5EzRf+vCH/ANAFbFetHK1JJ834HC8a07WE8cWct7o8skJieO3uLZp1ZuqM ZIyB7/OPwzTfA9nJZaVFLIYkhnnnMCqeQilE59/lNOaW4SC5t44LSeC6VBKk4f8AhJK4KkEcn9KR Zbh4La2eC0ggtg/lJAH/AIiCSSzEnkV4n+rM/wC1vrfN7vLb597bbaHof2wvqXsOt7+R0fmR/wB9 fzo8yP8Avr+dcxfDdZygqzZXovU1NXuf2Ur/ABfgef8AXXa9jofMj/vr+dHmR/31/Oueoo/spfzf gL68/wCU6HzI/wC+v50eZH/fX8656ob26t7KzmvLuZIbeFDJLI5wqqBkkn6U1lKbspfgH159jppJ 4Y0aSSWNEUEsxYAAeprjf+Eo1XxLI0Pgy3ijsgcPrV+hEDdP9RHkNN1+98qccMelYUNpeeMmS61e 3ls9AxugsHYq93no84HRMdIz/wAC9B1qgKoVVCqBgAdAK7llVHC/E+af4L/N/gut+kvGt9CrB4G0 SeRbnxFdXPiS6BDbtRm3wq3qsAxGv/fOfeuns4bKzgWC0it7eFAAscShVAHQADisKkJrGthKtfSp VbXbovRbL5AsZbaJ0nmR/wB9fzqlq2maNq9u1vqtjY30TDBS4iVx+v1rH3UbvesYZY4NSjNpjeOv 9koyeDG0lfM8F6/caI6kstnM5ubFsjoYmbKDP9xl+h6VJo/jOSDUItF8YWKaLqUh2QTrJvsrxun7 qXsScfI+G54zVrdVbUrW01Gxmsb6CO4tplKSRuMhhXf9XVZcuKfN/et7y+f2vSV/Jrcn641sjrvM j/56L+dHmR/31/OvLLa8uvCd3HY6pcy3WiTMEtb6Ztz2rHgRTN3U/wALn6N2J61WBrlrZF7Kz57p 7O2//B7or6+/5TpvMj/vr+dHmR/31/OucBpRXP8A2Sv5vwH9ef8AKdF5kf8AfX86PMj/AL6/nXPA 0Uf2Uv5vwD68/wCU6HzI/wC+v50eZH/fX8656kzR/ZS/m/APrz7HReZH/fX86PMj/vr+dc7mjNH9 lL+b8A+vP+U6LzE/vr+dHmR/31/OudzS5o/spfzfgH159jofMj/vr+dHmR/31/Oueoo/spfzfgH1 5/ynQ+ZH/fX86PMT++v51z1FH9lL+b8A+vPsdD5kf99fzo8yP++v51z1FH9lL+b8A+vP+U6HzE/v r+dHmR/31/Oueoo/spfzfgH159jofMj/AL6/nR5kf99fzrmIRi6nO1hnbyeh47VNQsqX834DeNa6 HQ+Yn99fzo8yP++v51z1FH9lL+b8BfXn/KdD5kf99fzo8yP++v51z1c/4g1q7S/Gh6Dbx3OrPH5j vIcQ2iE4Eknc85wg5bB6DJrWlkjqy5Yy/wCB6h9ef8p0vifxVp2hyQWnl3Goalc/8e1hZoHmkGcb jyAiDu7EKPWspNG8ReIAJfE2tHTLVhxpekzlCAe0txw7H2TYP96oPDuhWujRyuJJbu+uCGu7ydt0 s7D19FGThRgDsK1q61g6WHXLh3r/ADNa/wDbq+z6/F5rYl4xt6os6H4Z8MaIxfS9JsLeU/emCBpX 6ctIcsx4HU1s+ZH/AH1/OuczSFq5KuXzrS5qlRt93r+o1jbbROjZoXUq7RspGCCQQa5rVfBHhS/u /tyWSafqHUXunym1nB92jIz+OaXcPWjdVUcDVoO9Kq4vy0/UHjb7xMyS48ZeFG3yufF+jrwxjRY9 RhGc5IBCTAdPlCt0wDXUeH9e0jXtOTUNJv4rmBjgkHDI3dXU4KsM8qQCPSskuK53XtGn+3NrugSr a6uFAkVjiG8UdElHrjgOOV9xxXXLL6OKVqjUZ/zJWT9UtF6q3mnupWNa6HpHmR/31/OjzI/76/nX C+HNct9ZtHdEe3uYX8u6tZeJIJO6sP1BHBGCK1ga4amSunJxlKzXkX9efY6TzI/+ei/nR5kf99fz rnKXNZ/2Uv5vwD68/wCU8T/b/ZW+Fmh7WB/4nadD/wBMJqKzP25/+SYaP/2Gk/8ARE1FefiKPsZu F7nXSqe0jzHtHgf/AJEzRf8Arwh/9AFbFY/gf/kTNF/68If/AEAVsV9JT+BHjz+Jl7TI7L7Fqd5e 2k92tpEjrHCzBjndn7p9h9Bmk1BbJtO0u+srOe0F3GzvHMzkjG3H3j05PPeq1td6hZu7WF0IPNAE gMYfdjOOv1NF3dahdyr9uuhOISyxgRqmAevT6CuT2dX6zzX93tc6OeHsbW1Kt9j7HLnd93+HrU1Q 3xxZyklh8vVetTV29TnewUUUUyQrkNo8Ya44f5/D2my7dv8ADfXKnnP96OMjp0Zv93m543vLlks9 A02Zob/VpDGJEHzQQKMzSj0wCFB/vOtbOmWVtpunwWFlEsNtbxiONB0Ciuym/q9P2n2pbeS2b9ei +b3sBZNIaKaTXGAMahd6VyScKCSeABWvo2kQ3MAmeUOXBCjkBW/qR+VTVrQox5plQpyqO0TNgs72 4x5Nu7ZxjtnNR3EVzbMRPC8ZHByK7lpRFhYijlBjOQFB/wAiue12/ZlW2Ko5kOwYHygk15tLM6k6 iioaHXPCRjG/MYJl96mtra4uk3xAEZx1rTttDjEyAlmkjP71JB1HHYfWuh0LS5ooZIp12Rq/7vgZ IHANa18zpqP7rVmdLByb985698P2VzZPYzwyTebHiVZNuwqeCCD14OMVwfhqafQ9Vl8IajK7mFTJ pk8h5uLcH7ue7x9D6jafWvWdW067kuCyZcdfMc8AHtgdf0rhfHfh++1vTfJjmSPUrWQTadIicxzL nDHvtPQjuCRV5XmDcnRxEvcl36Po/wDNdvRGmIoRUfcWpcRs1IKzdAuJr/QbXUZoRbyyM8Nxbk/P BPGxWSNh6hgee45rQU13zi4ycXutPuOKzW4+jNMzRmpsA+kpM0UrALmjNIMkgAcmlYYzhgcHFABS 02kzRYB1LTM0oNOwDqWmg0opALRRRQAUUUUAQw4+1T/e/h69OnapqhhI+1TjLHG3g9Bx2qakipbh RRSOyopdmCqoySegFMkx/FmsSaVZRxWUS3GqXj+RY25PDyEfeb0RRlmPoPUin+GdFi0WxZDK1zeT t5t5dv8AfuJSOWPoOwHQDAFZXg5DrN/ceL7nLC4DQaYrDAitQ3DgHvIQHJ/u7B2rqq7K79jH2Ed/ tevb0X538gCmk0E0x2rkSAR2xTEEkrbYkZz3wOlTWFt9sukhaTywx4O0nOOoHvXV6bZQafE0qMg3 KoxnJZhx1rmxOMjh1bdm1GhKrr0OWk0/UI4zI9tIEzjI5qoZCpIbII6g12l9eSQoMbAFBAGcsT3r moYE1OSS7lV44Uby8oOre5rnw+ZOV3UjZLqjSrhFGyg9SgjNJIsaY3McDJrV0/SWbfJeCQRqOPL5 zV7T9Eni8g26I8gfDPj+A85Oe/0ror2wf7K4id8sSzKuBuNZYrMm3y0djSjhLazPJPH2jT6NdQeL tIglea3XZeW64Zrm06kcdXT7y/8AAl/irT029tr+zhvLSZJreZA8ciHIYHvXSX1lqFsoKmKMHghv m2j3PA/SuC0fSbrQ/GJ0uJdukaxJJJYuw2pHdAM8kY7AOqs4Hqr+or1MDivrVBwqyXPBXT7xW6+W 68r9kY16NpXgjpVNOqJDT81VjnPA/wBub/kmGj/9hpP/AERNRTf25D/xbHSP+w0n/oiaivnsw/jv 5HrYX+Ej2nwR/wAibov/AF4w/wDoArYzWL4IP/FG6N/14w/+gCtjNe7T+BHlz+Jjgac5/eP/ALx/ nTAadJ/rH/3j/Ol9v5D+yQ3xxZyneVwv3h1FTVDenFnId+zC9cdKmq+ougUEgAkkADkk0Vz/AI/v Jrfw7JaWZ/07UmFjae0kmRu+iruY+y1rRpOrUUF1JKvg7/icapqHiuQMYrg/ZtN3drVOrgf7b7mz 3UJXUZqDTrSKw062sYBiK2iSKMeiqAB+gqUmrxFVVaja22Xotv67gKTUbmnKruSEUnAycDOB61LI BbyW7xHMmA5KuG/px9K53JJ26jSuri6IkUmq24lYFSxOAM9BnmtaW2vIbxvss6hG3MpZc4PU49M8 /rWVdvps8pntlaKXaHEbfd3A8g9sEVow3yajNl4JIo0VSNhxhsZHA7ccdq8/FqbftEtLap/1qdVD lS5evSxr3E9vp9gzNIHmYEtLIQCc+36VgeG2TV9VumaNHmAyiEfIqZA4/Sn+MZrJ547dwSxZS0id Qnf8eK6Hwnb6TDbH+zcOSBvcr8x64BrjVONLD+0knzS2fb/hzdyc6vKmrI2Y12oBjoPXNOoorhOo D3rnL+BrCR2jGd3zGQj7gznr/ntXR1geOnddEZIxyzgMfbrV0qaqVIxfVkzlyxbPJri4l03x+X3M dP192O0/8s7tEzn/AIGi8/7Se9dQK5vxjYXF74feSxXdf2TreWYzjMsZ3Bf+BDKn2Y1taPf2+qaT aanaMWguoUmjJGDtYZGfQ819rXipUoTXT3X8tvw0+TPEu3qy5HHJKxWNC5AzgVq2GifaEKy3Kwzj 5tpGQFx1rOsJzbXayAA9Rg9OeK09WYyhYiEjnih3lwdpP+z+XNeRXqVFUUI6J9TopRg4uT18jJdQ krpvDbSQGXoaFwCCRkelMWnV1mBaWaCOeN0QAJgfMm7d6kjPWm3FyjrsihWNcYJxy3JP4VUaTnao 3N+gpNrN95+PReK86WJjKXLRi5tdtk/NvT1tdrsJ1XsiTIprH3pvlxf3FP15pjpEP+WaflVqeN/k j/4E/wD5Am8ux0a25uPDe2JEaRT5kkhYf56etYAao4ZmiJVJZI0bhgrEAj6d6n1Nz5qSxxOInX5C 6hWYevHB/SsIVsThpNV6fuvW8XzW9VZP7kzSdTmSdtvmANOBqCORW4B59KlBr0adWFaPPTd15Epp 6ofmjNNzRmrGOzS5ptKOtAEURzdTjcxxt4PQcVNUMRzdTjfnG3j04qakipbhXMeO55LtLTwxaO63 OqvtmKHBitVIMz57ZBCD3cV09cv4bJ1XxZrOvD/j3hxpdqf73lMxmYf9tGKf9s67MJ7rdZ/Z1+fT /P0TJOjgiit4I4IUCRRqERR0UAYApxNBNNZq5d9WAMajb5jjcFz3NWYYAd5nG0BCwBbaT9MjmnW8 9r9he3vEbJBaFx/Cf58kVHtOyuPl7mlZWqy6JbtbyFJgxbJHfofqMZq7o0UrKrXs+YlUOsaJtGcY 5PqDWJaX8dglxDax+akqho3ONy8gYPtmtuB7WDTrmSQOB950kOTnnP1rxsVCom+qb001/wCAehRl FpeS1Mrxbq8bSJaxlFjLAOYyCyL6V1Xh+0SC3DxxJHG6KV29xjuK47w7DodzfyzXgYN5hMcTDKle 31NeiqAAAAAMcCpxcIUVGlFNNb+f/DFUHKo3N28gooorhOkoazaC5iVyT+6y2PX2rzz4k21xqmhn ToZvsd4ki3Fo4GPIlTlGx1wTwR3Ukd69RYgDJ6V5jrrSSa5dPIMZkO0eg7V6WUxtiVUT1jr8zlxk 3GnZdTJ8KaoNZ0G11ExGGSRSJYicmORSVdPwYEfhWqTXLeHP+JV4t1XRGBEF5nUrP0+YgTL+D4f/ ALaV1LV9JiqcYVXy/C9V6P8Ay29UeYjwT9uWKWP4X6OzxsqtrMeCRwf3E1FT/t0ztN8I9BQgARa0 i+5/cTUV8jjJSdaXMtT2MOkqaset+BmDeEtFTcBmzhGT0HyCuovLBIGRY72CV2bbt3AEfWuM8Hkr 4U0naCR9ihzx/wBMxXWLpV5LYwTxRIS/PD8sD046CvTo4l6Qqy5ZLp0aezXlp8ndeb8uLcpSjy3a ISCkhRhhgcHmnyH96/8Avn+dU1YrNsbhg2CKklk/fyf77fzrv5Xz/Im/ui3pxaSncFwpOSMgVNmo Q4YY654xUVtLgvAzZeM+mPlPT/D8DTtZhe6Lea5i+Y6p8QbG1QZg0a3a7nbt5soMca/UKJCfqtdC ZK5jwTILi78QaqOVu9UdI29UhRIePbdG/wCZPeu3DR5YzqdlZer0/K5NzrCajdqjMgpjPk4zXKoi ua2l3sSp9jbbDHKf30hPLD09qdqOnWlrDI/2pePniDcM6+mOvXvWrcWlpPbxWhSJpTFxJgZAGOc/ WsZ9EniMsl0/mhYmZcE5JA7/AJ/pXkU8RTlPm5nHy7/1t6HdKlNRta/6EaCz8qJ7MI0zbw6THPGP 84NXrWxvVytnPbwWsoDEsent6mqlna2IsrW6bZL87eYFJycKTjHtUlhp9veQLOqyIk0xChWxtUA/ 4UYipFXu3bbVX6vzW1tPIKcX0Wvk7dvIztdlmm1BxcGJpIwELRjAbHer1r4nvrS0jgSNGKdXPVhU WsaaLeMSxROgB2tubO7/AGhWURxXo0o0MRSjpdI5ZyqUpvo2epaLfpqWnRXaDbu4Zc52kdRVyuN+ HV0EW5tXIAZgy/XBz/Kuyr57F0lSrSgtj1aE3OmpMK5jxrtjgCrM4lkJbg8DHAz6da6S4bbA7Zxg GuB8RTyksJPnLNt3fr2/rRhYOdaKXcK8lGm2zKhHFYPgH/Q4tU0BuG0y/kWIf9MZT50ePYB9n/AD 6V0EIrAciz+JiE4VdT0kr/vPbyZ/PbOfwHtX2VH34VKfldeq/wCBc8dHSEUrs0jbnJJwBk+3FeHa /wDH6bSdRu7d/At88EFxLClyboqkojk8ssD5eMZx3OCQKwpvjv4pXzLtvCN9HFGu9lP+qVckZJMe cZBGcjkGt3kmZOEakKEpKW1rfq0dNGgqralNRt3vr9yZ9GjimZMnQ7U9e5rxLwz8eW1zxFpejS+D 7m1W+mij843WVVXYKHxsGVyR35r2YzNL8sR2p3fH8v8AGvJzDK8ZTr+xxUHCNr26y+7aPTu35fFh GjKo30iuv9f8OyYske1MgEnCjuTV4zWlkQBazXNwBn96PLjB+h+Y/iBTNFhEInv1BLQJkM3JLVny Ss7liSWY8+9RCEW/ZwVox000+XyR0c1GjFOMbvz2+5f5iNJcEk/ul9uTRBHe3MwhhjSVz2BIxV28 0q6imjiQb2dVPHYnPB/I1u6DpttAqXAEguAu2RWboe4xUV8bTpU+eOr6F01Kc+WUFYxodJERU6mL iBc8sqh0x9QSR9SBXRtBp99ChAiuEjGFKsD26ZFXSAwwRkVmXukRy4+yMLPjDmMY3j0IBHH614U8 ZLESTnKzXbb/ADPSjRoJWUbfiv8AP8/Q5XUBCl/NHA2UVsKQelNjl52t19fWtaXRYjJ9nmcwXTN+ 7kyWjk9h6H2/nUOu6XFYWkboZTJlVY/wknPT8q75Sp8ynh3+8fTpL18+0t11utDx8RgqtJuVvPyY 7TrSO6geWS8ig2tjDnHbNQSRMieYGR49xUMrf0qHRreW8u/KEathSSGYqMUXlpdWQBnTCliobPBI rsw+IhWleM9+jtdd16prUzT5qakojw1OBqqsvvUiyV2OJCYsR/0qYbgeFOMcgc/4VNmqdxJ5RW4z hAdsnHUf/WJz9M1OXqEuhT7lTxHqkWi6FeapMjSLbRFwi/edv4VHuTgD61X8G6bNo/hew0+5ZWuk i3XLL0aZiWkI9i7NWJ8R7+1SLRrG4nRFudUgdwx/giPnH8P3YHvnHetey8SaVdziCK6CyH7okUpu +metdFWrTo0YUpSSlN3tfVpaK3z5jWnhq1SDqQg3FbtJ2XqzZY0kEyQzrJJF5oU52k4BqAygjIOR Wz4VWJjdSzbCipghsHjucVyYiapUnJq5nSjzzSRMYYNWiF5JcKbhSDIvRQgPQntxVBIdMTUTbzTi SLqJFOF5HQ/41c1DRpLrE9iUijkUEx5wPaqkWn2yarbW0xAV4gx3kjeST0/z2rhpVafK7Tez0W6/ 4bodM4SurxXr3FtbZ7lF8pbcTIgaF89QCR83vVjVTqVtpsjXNxbS+fhHQclfT8arrbWjz2tgseJW di0q91BPQ/hVr+xoGi3+VM25mGA/3OeD+FZyq041U5vTdXX632dhqEnBqP5/8DzMfSNQl0y5M0Sh wRgqeh9K6nwz4mlvtS+x3caL5mTGwPT2rj54mhlaJx8ynHFNtXaG9gmQDckisM+xr06+FpV4uVtW tzlp1p0ml0PXKKjt5UnhWRDkMKkr5U9oiu1VoD5jlUXkkHHSvNNSYyXzPvdlJyNx5Heu08SyyrhE b5TgMvrmuFdzLcO5XbzjGelerlUG6kpdEjixsvdSOf8AGP8AoV/oevDhbS8FvcN/0xnHlnPsH8s/ hXUGsjxdYHVPCeq6egy89pIif7207f1xVjw5qCar4e07U0ORdWsc3/fSgkfrX0dT38PGX8ra+W6/ HmPPPD/24+PhjpH/AGGk/wDRE1FH7cZz8MdI/wCw0n/omaivk8w/jv5HrYT+Ej6I+G01u3gTQ3g2 Bhp9usuByWEYHP5VvQsbS4MBwLeTLxH+6epX+o/H0rjvAkItvCmh3/mFoTp1t5qZOceWoz+H8q67 UIWuYdglOSN0LDkDA459K8HG0pte2p6tbfrH59POz6G1WDS9pD+u6/ryYy5fTpUkuDaq7EYLmPnn OD+YrK/sJpd80V2rlizBNu05yeM1HFFcSbGBJGcLk+mc/wAjXT2qYUNyCeSN2RXdg8xqxip05aO3 3HPGEa6u0YkugyQIJ7W5IlUZCsO/1rnL8ywTmWberocSAjqD3P065+vrXdaleRWluzSZZsEqAM/5 FcvruoWWoacypBJ9vkXy8r/yzHPz59K9vA4utU1mrra/b/gGVejTi7Rdn2HwwW9lod5rmo4a3trd 5wobqFUk5/Km+BPDtnbeANCgvUCXS6fE1wyHGZWQM5x/vE1g+PJ7X/hB7nSrS5n8zVmh054z0Xz5 EiY5x2DH8q7BpFlTyg8keR/AM1OYYutQp6Nrmk/LSKVvv5n62Cl7PlSauVL/AEIJGWtJ2Zh/BJgZ 5qGXSI4Yz5lzukxxtXjOOKv2U4acwShozydzg8+9SXiGW0MkDeYq/MdvTFeX/a+McbJ/5g6FOV5J FWHSJ7OeK8hvFliwQT8oYD23ZFasOqWctuERpLrKZcbfm29/TP4VhWLXT3JjWclDykeeMgc11Nu4 eNJHhaNx8uGXB/8A1VdXFqs17X3mlutPk9DSgv5NEctoqpHqcl1bRsYllESxEEnDcZzjtj+dXtLj vdO1M2I8vyJN0iEqTgCuhwp7Dg1naldkSvBaz26TpGWZnx8o44Pp/wDWrqeLliJOPLo1bXXbZ/L9 RqgqSTvsVdJ1YX80sV1EoXO1WUHbn/I71h63bC2u2VYyqY4PY/SpNESM3oN3dKhE3MRJG5h0Pp1r V8STPFbCN0WWNlwCcZV++fwrtSWGxaVJaPp/kc7brUbzexjeHiV1WLZG7yb1K7TjGDyT7Yr1CvMv DUyQavGXGQ+U6469K9D1O7WxsJLlhu2LwOmTWOaJuuklujTBNKm2M1a8tLaArdTCNXGM5rgNXuIZ 7gpbPI0Od2W7nGPT0qPVtQuNUnWSfgL91QelTaPaW9zIUml8ojkc9RXRQwscLH21Tcyq13WfJDY4 P4z6nrmjfDnUdS8O3q2WoQBZEmaNXwinc4wysCSoYDI6+nWvlXU/ir8SNW8k3+utMbZjJHmytlKE gqekXoSMHivef2kviL4RttI1nwfpet3o1qHAzFZM6rIuD5bM21SGHGRkAE9elfNdl4v1COXWs6JD KNYlZ52feGjBLMAhDcYZs87vur75++4fWGWHlLF4dyUtvcvo7d09LX/pipRnCScXZp7lm38ReNLW WWeGaZHmxDMxtIj5vzpIqvmP5sMiFQc7cDbir3hrUPGGsanLbJbXWqTy3L3qxM0cam54QyMSo3AB ypUEDpngYqvc/EDxC9ha2bWETx26SgloxvkLx+XuLDDAgYPykZIyeea5G7v9QubmVjDcIksjSYMr HbuIJ5JJPQDJ54Ga9ytmEfY8mDpuM1teE3FW2VoxT1VuyS3NowXPerqvJq/43PddAtfFdx4m0CO/ 8NW2m6RYXloSwuonaNYXPOQxeRQrMNoz6jnOfbZviV4Gt55befxRpsEsLFHSWTYVI6jBxXw9F9pk OB9oJ3YA8w5z9PxrTn8I6/Cd8+gakhMnlHfbSDLnB28r97kcdeR615VTJcxzDEKeKnBK1koxmur1 969+twxCw0oWpqSd+rTX4JH17L8Z/BtnNILTXLWaMrsdhIvzA9QFPX8cVJpvxe8BG/t3k1u2gAdS d8yFePUg8fy96+PtP0u3tNUs31l1tovNmWWFgwfMaA7GAXcm4ttzg45OOK67U/8AhB2upI7C4sfI aBleWWG4RvPMOFeMDOIw5BIbJ4PBGKmhwWq05fvp6Np2gmtEtL6d/Up1cMoW9lrbfmf39v0PtGy+ Knw5v9ehtLXxbo9zNcrGkKLcoSX3HAxnryK6u913QbC2mvLnVbGKNRl2Myn2HAOSegxX57toHhnU LiF9P1e2wYHS58yYQpFKIsREeZhmVpQSSBwGwQuKuy+FvBjebJaeIIJLVnVo7h7hUaOMNErlomUO zYM7AAZxGuAdwzwVfDqlUtyYhx3WtNvZ2195W2vbqtVcUMXyv3o3+Z9y6R8QfC2pXn2SPU4o5WJ2 eadgf6E/y61uWmr6bdTCGC9t3kP3VWVSW+gBr4Bl8PeCLZbOT7a97FcXhVpI72JAkB+7uDDerDPO Uxwea1/gBZaVB8WvCM9ndLNdtqNysmxvlEf2YlMAqG4LMCTwSMAcZPnY3w8eEwdXFfWb8kXK3s7X sm7fG7bdjepjYSmlThZebv8Aoj7l1DMoaKRQ0TH/ADz2NVorgxoLbUAJYi37mV/UcgN7+h70oHOe uevvUV9Ct1YvblipJBB565r8yo12pWk9Py80a06u8Z7M5T40/Eez+G+j2Gq3mm3N88t2YUEBUbfl JOSexxj64rynxB+1DBd2SQ2Hg3UI9+4u9wFcYXrtHTjuT09K6f8AaM0vxBqnhvR7TRNBm1+e2vm+ 22qAkSwmNtrHHON20+zLXhstp4/0W1hu9a8Da88zYV7maXYHZZEkA2qmMZTBzkkMQGAxX6Hw1kWQ 1ME6+OqKNRy1vVjDTo7O339dLeWT9tSr2hG7dtLXT7etztU/aJgZkh1LwnfJJwI2gjVGfPQFc4PT givWfgv4htPiRo9/qMFlfaYLK5+zMlxt3F9iseB0GGFfOvhS1+IFwLe8tPh3qepwwTWhmm3OZC9s sWwKxBVeUJIKt/rGHvX0V+zPY+IbHw5rU3iPQrrRZ59QQxw3CKGeNLeJN/yqq8lT0UV38Q0MrwGX p5fVUpXW1WM3rvotfmzKVGVSu3VhyvqrNfh0Op1ayurOMRO5mtgTgjoM+oqhpEMt5cCzV8unBZ+M j19//rGukvtZshcvbTxt9mdMOx4x7+46Vg2rWD6tPcyG5s4DjyMZBGP4sckZ618zh69WVP3o62um lv8ALuc1SnTUtHofPv7TvhXw7dfFO1FzqPlXMltFCYDIikpuUb9zDA/1j8d9vGNpz4xB4b0yXQ5Y 2jdNdiieXy/tcRiZRNGgG3bkHDSHG4n5M9DX1nf+BvCHxD8UeItZ8S6a968MqafaS+fJG0axxKSc KwGd8jdR2rkvAPwc8FXMuozav4eNxHazG1CfaJwu9T8zZD/QD6mvrMu48wmT4engsRTlKcbNtKNv 5ratPrZ36rc7IYH29GpXjJJQtprd3000PTPhfo8knw88NySzqkX9kWbDAySDCtdHb6Kty7xwXmwh cYI+9/nir2kWun2Gl2Wn2AWG2ggSK3hBJKRoAqjJ5OAAKo6ktzBMyI5ik6q/Svzv+1sVOqnzKK9N Pnuc86EIrmtc0tNuF0xEt7+5KsinCrtKMAe2BnP1qn4oltroW5EMiTsQEkwcbCevGQf51o6K8oAM iPKsvSQDPPQ59K1k2bQqgBV4HH8qVLGwVT23Lr5Oy/I3VJ1KfLfQ5u4tblrGB4FUS2DsgcjAdQM5 /SprvWbq3s7OV44ma4GWUKQR0rbupYba3eSVkSMdc8A1ymvPcTTWvm3EKwkArtH+qz64/wA8V24V rFSSqRVlf/hvv1M6ydGLcXqaetww3dgLmGJmdQQVxhge+R/SuUkHrXYaOFTTS1rcpLJ8xLseGkJ7 55z0rmdTlE90zCPy8cEe/euzLZuEpUlsn93yMMXFNKfVnc+CmJ0pvkdI9+U3HORj+VbjEKpY8AVi +DJ0m0hNowUARuc8iszxbr00Ny9jbKBhcM+e59q8t0J1q8oRWt2dqqRp0lJh4l1LTpAWiuHecYwq EYyD9K5dMlix5JOTUcKDcC3PPNbVxY2ENj5y3RaRvuKO9exCFPB2hq3LyPPlKde8uxQHArl/AeLW DWdJHC6dq08aDsqSBbhQPYCYD8K6YnArltHP2bx14jsxwLiO1vgPVmRoSfygWvWw65qVSL7J/NNL 8mzBnlH7bx3fDLSf+w1H/wCiZqKu/t0QR23wh0FCR9ok1pHcdwPImxRXx2MrQq1pSg9NvuPYw0eW mkz3jwAceBNCJGf+JdBwe/7sVfsNSisTJY3joq43RZGcKf4TjsD+mKzfArynwBoYtwplGnQBd3TO wVnX9rcQv5k/zPnOc5z0z/OoyrCQxEpRnKy7dfUn2zg+RbS+6/T+uxs3OoxxSMtjJ5glII4+5n7w weev86vz6pHatJFdK0rsQdiHCoOwz696yNACLdGTarfu2Kk9uOtLqcv2i8klK4C/LwPSu7D5ZQo1 Hh0rxV397ul6L5afjxxqThTbvrfYTVtYvLpvLR9gfIjjzgEf7WKpRQCMEjl2+83qaktELr57EkuM gEfcHp/jVjbXsUowpq0FZHPOUpPVmZrtzaSXfhTSXKqZNZErseAVjhlk6/VRXUXlzBps3lOd7BN3 yjlie3tXC6jiX4jaLDsV/stjdXWD0DExxqfyZv1roZvMlP7xi3U8+9Z4vLKc5UpPazbXm5P9EjaO IcYWS1NGzudLuXQSGWKXkkHGCfr3NXI7eaASCFsKxIxj174/wrmnixyOCK2dO1OSVDFO6mTklj1Y HPH1rxsyyyFGHtaOy3LoV03aW5akt8q5RRHLt+V1HQ/Snre3VviJpBIwwxZx7f1pIpdsPI359+ho kspiu4FW9s8188ptKxvrvAqeL/G2heEvDC6tr2owaeszmGFmUkNKVZgMKD2Un8K8evPjL4GhYTRa /HdTM2f9W/5klf8AGj9rh7G38D6Naausgsp9XVXeNCzRZgnw6+4IGR3GR3r56fV/B872UotrO3t/ If7Rbi1ZnBP8IPkg59D5h6HDR5zX6rwhkFHHZc685uMm2tEtktN++vkZTmpTi5q6XT/hj6d8J/Gb 4W3NvNDrOsW9pMDlHMcjKRjHBC9fqO9dF4f8R6T4vtr288O6smq2dg4jkmVWXGeR94Anivki41P4 d/29dT3Cl7aS8jeDybNvLihjcMQcRx/fUlMbG6DJ7175+yRc6Tf6J4nubFja20s0CGJQobd5Q35C qqZzkZVQCMHrmts7ySjk+DeLhUlN3jfmSsr9rdd0OpyVpWjFRXk3+p6Smcgg4Ird1LW5dQ0xbaZM SAjLDvWTPAILho1cOueG9RT0FeDJUsQo1Fr1TOOMpQvFDFTFPC0/FBrS5Nj5N+J+reGLP4m66mpW aSTpdEYa3Rx5pBIlYkEsm0ouzOMqTtOawLzw54f8QalJrGm406wuLd545JrYJAvlIVaMEZ+fMZcg ZO0k445+0YIfPnWINtz1J7CvAfG/wn0e+8fanqV1HdJYvJvdo5ggOIcgLkHA+TFfQQ4tw+G9jh8T B8sUo3Vpa2svdlZLq730ta2p6mBwrxMZuMknFX16pb2t12suvfQ8oTwHbyafezGG9ieJJGg3Wg23 JWRUG0g9CzBfckAZwawvEPg25099PNjGswu4oQ6lAskVw65MLLnIIIYDPXHY5ALiGzSO3S48JaxG 0pTZvuivmbs7cZi5zjjHXBq3Cuq6ZF5ml+FtQhXeju9yJJAkwz5TrhFwQJDgNuB3Dg8V9dhKs3XT +rSinbVxppdesajl22T100RVejBRuqsZeS5r/jFL8SkfD/ie3spbOOSL7Nvjklgivo2Ql1DI5VZM Y2gHdjAAznArX0CLxakVv4ZtNH+2S3E0lwqmbAmSfbbtzu2kHGA2f4sjIxWCus68Gj22qMoiDFQj YmijhMJ3YHKiNXBPbL8jJr2XwH4B+LfihNM1f+0bXStNnSLyczuZFgWUSrKkf97gAFyGIxk96fEu ZYLJsHKtWlCE7Nxvzq87NJJK7lq9upyQjOfwq/3f0i58PPhFrF3420vUfGthBAk083l6aAjQwpHH GCfkYryF24IznmvS/AngLw3beKdaF9o+mGGwfyoBLaxsMN82SCOSFK/nXWeFPhxBoyyXeo+Itf1m /dCpe5v5Ai5xnaqkAdO+a6bRdC03TI5/stuWklk8x3nleVicAcFyTjAAwK/nXEZt/a2IeKrVVOfX l0S8km7peTVz2XjsRSw0sNSgoqUbau+vNdvZdNNN12ON8R/Dv4Ya1Ikl54U0x540ESSxZhygZiAV jIBOWPOM4x6ViX/wh+FMVrPJJ4YhihjiZnlE8vyADJP3uw56VlfGb4o+IfC3jh9A0zwLBqcAiylz lxvZUV5B8ox8odCfQMPWvLdR+MHjbVYnmTwmsVi2NsEbvsPzAdCPmO7HHTJUY5Gfs8DkHEOJwsK2 F5/ZtaWqRX4OatrfoeHSVd1eWrKCXf3vyUZXO38EfCzwEuo6mdd0a2lis3MAVppQrHcAXBDc9V/7 6r0jRfhv4A8N63batpXhSGzv7YloplmkYoSCpxliOhI/GvBNC+KviCK1+zN8N7C/uLmXy/NlkcM7 MAAu3p2X/gQHQ19BfCLxTf8AizwvpniC/tEt7q6lnSS3jkLrH5c0kROf+AZ/GuHNcpz/AC2ivrk5 KMtNailfd6pSelk99D08di6eKrupBKN7aJWWyWmi9Tt4y7orldobkDPOKfWD498a6J4J0Z9W1+aW 3tBIsWYoS53NwOFrz1f2k/hdvKHUNSGPTTpT/IV87Qy7FYiPPRpSkr2uotq/bTqY3S0ueqajK9s0 d3GADDksT/Epxlf896zfGsuma74bvLVZkMzwExfK33wMjt+VeH67+0boF9eMttbzJZRt+7WSGUPI PU4UgZ9OcVNZfHn4ebFWa61CF252NZSHHqM4xXu4fhypjMM6NeE03p8Ela+1rrV31VupvXlWoQjJ NXWqtJN/g7qz1Xz7Hrvw9+16f4Xggk/c28UStKQOdxO5gPck49q27vX8q/2KFo3Y8u5zx9KpaXr1 jq/grTrzTPmtb+3SaEspUlCM5IPIJqhIpaVYFLLn5mbHUZ6Z9/5V0YbCUZRvKFraJbbaXOHE4qrO o5OV3LV+r1GMZL+Tzp382PjYWyS2O/09Pz9Ku6dJHb3iTTDcq9sZoVAAABgCq2qTLZ6dc3j42wQv K2fRQT/SvS9mqkfZ99Diu07i/Dw20/ha71dZEYT6lfXJXuQ1xJsH/fIFXILjSreWRBDL5crtLI6j q7dTj8OvWsDwBFLZ+BdDtf8AVstjE0mOrOyAsx98k1ptF7VzV8qoPE1ZT1Tk7elzolipWtH5+ZvR wWk8EcllKzYOSzdvrjoalljlkJE6q4AAGRz+dYOn3c1lL8pzEW3Mh6HAI/rW2lx50iOJAQRxjge2 a+bzPBfVZe78L2NqVaM49mA8+1kaWKZkhUAiIDv/AFq3Y6g8t0kcojCElgcYK+gqEq1znYAm3ggn rUEttNAWkIzsBIK8578V5yqSukWpSi7rYo+NLmZ72OHLC3CBk9GPc1m6WfMvraF1V0MgG0+hIrZL RXK4uIxMnbd1GfQ9qzZbG0i1OCMTzJbuSS7L8y47cV9Tl+ZUJUfYy92ST/XU46sZSqc/dm7remm2 h83TEdS3yPEgyGB74rnrq3ltrloJxhx15zmuwd7bUY3EM8iFAMsMjb71i69bwyETRXJkdAFIboR7 f571z5fmlpqnU2fX8joxVCLXNEj8PatNpbuFXfHJjcvofWqt4/2m8lnwfnYkfSooxxUyjivc9nGN R1EtWcfPJxUXsMVKdjFPxTGqiRjBiDgE4GTjsKwRJHZ/ErRrsgZubC7tj7suyRD+G2T/AL6Ndhpk aoAjqJPtaMmAOU/2ua4PxZDjxPoBjng823vpI3UyAfI8MgyPxC/nXNLH0KdKu6krJQn1/utf+lae tjaNOatKKueW/txzy3Xw6024dy6/21GoY9yIJqKX9t+JofhXosQCmNdZT5wT8x8mbJ5or5DBqmqK 9nJSXdbN9X83qepRacFy/wBefzPc/APmDwjoMm//AJcoABz8oEY5/rVieUTFiAvMjMMZ6YA/pWF4 OeV/CWkJzj7DCAP+ACugbekSwEpjG44UZB9Ca+hy/A/Vmpy1k9vJHl1anM2lsQWQKSPEDjaePof8 mrUg/fSf75/nUcVvPJco9vbTzY+WTyomfaD0JwOORVm4imimPnQTQ7mYr5kbJu57ZHPUV6TnH2m+ tjSuuaKn3/PZ/e9fmUpk8gNPCApzukGOH/wPvVnFQ3wY2c21dx2EgevHSp8VS3Od7HM2QE3xL1R+ v2fSraMe2+SZj/6CPyrpCtc54aHm+MvFVx2Wa2twf92BW/nIa6U12YzSaX92P/pKYiCReKrMWikE i9RV1hVaZa50lJOMtmSzStoHe0+0GQgcEc8nv/hRruvX2nfZmtNCutSEiMZDAT+7YFdoICngr5hz 2KqMfNkaHh8QvbBWAYsvGfToRWXrvhW+1C/ubmHX7y1WVlKJGuFiVUeMgEN3WVv+BYbsAPgZRSqy jJWs2exQp+6pHkX7UPiK1fwfYxeKPDNwNO/tVBHKshXzJEyfl3KCA0ZY84J5XPUr88Qaj4GSK5a7 Ec809mywmC3wIZxbBNzKdo5kBYYyBkEgHgfaqeCMCAy63cboJS4YRDkMX3ZyTyQyjPbb09Ob+Ivg vdaadcWs6M6Sx2hjjttqYkbG/kk53EZ5r7bIeN/7CwMsPCk53bfxuO9tLcr7fPqdFDBU8XiYwqT5 E9L2v+qPlW413wW9lJZ2OnQ+fPvCO0CfK+7g5ILAMdxUKw2ZRWMgUs32qLd4GYWkUUOeWVFVc471 ZW30zStPjgtoIj5KLFGCg6Dp29Kz8vI7OxPzHJ5rfMs1lxFUp4h0+SMLrV83Ne3dK1vx+88is4w9 1O/4EuVdQSWMncnvUiimItSgVEIKCsjnFArM1fWrDTpBBLI8t0wyltAhklf6KOg9zge9VLjVLvVJ ns9A2iNGKT6g65jjI6rGP42/8dHfPSrul6XaaXC6wBnlkO6aeQ7pJW9Wbv8AyHasPayqu1Lbv0+X f8vU9JYWlhlzYq9+kVo/WT15fS135KzMtx4i1AZeSHRoG/hjxNcEe5PyKfoG+tT23hLw7Np17c3t u2o3aQvg3p84k7SARuyB+AArZtdjXsQk27N3O7pVrxG1tY6c0cMSRzSkAheDjqeM/wCc152ZqnFe ykm21e76Jb+S07JHVgsXXqVFGk1Tj2jpp5v4n/282fJbfDz4uzWjTW3gYIs1tteWTUbVmMh483Pm D5trOoJy2HOWPGI/EcHxMW4/sqbwp9huo3ZgI7iEyrJIyOCjBvVcADqGIOTzX1JZ3Fwqxhw0oYCI xvwpXjAz2rh/iPFqyeKdJufD8AmviWiSSYApb7eVkfsQhYkepAFfW/61Z5KnStTpOWm8ZWV7J/a6 efTYjArBVMRONZyUbStZq90m10e9rHhMvhv4l2nim+0YeB7IajeadNE1rHcwsYbZo9gyVlwgAwRn G4g9e32j4XhW38N2EaRmMrbRqwOM5Cgdq5vwl4M0XT7OS4S7u7m5ucSXV1PJumuJCOXdj/LoOgrp 9GtJNOVozcSyxEjarDG0H0FfOcU5zTzj2bqtc9O60i1va+7e1l1/yWNFSjLRe6yezuYbySZLZjJ5 PDkA4z6A9DVlo5FxuUjPSsTw+0lp4gvLFGIt+ZQCvfjp+f6V0bFyud+5u3v+lfIZnl1BVEl2TTvZ 6rurNeh04ebnC787nz38a/BHxQ17xXqR8MWmmvpF7BhnnnCSEtCInAyeOgIx3A6jivJta8I/FLwv NNFqWmaYXvjHMsjXHmBTG0bYX5sA7o4yeOcDtxX2v5csjKGdVdyeCMAYrE8beFF1c6Puwy2t/HK+ MY8vneD7HivewXHGdZRh4YSChKCsk3DXe/vd/VW811OnB4XC1a6eIvy63s/LofMFp8K/jPLGl1/w j+g/aHeObzZZ1EoAmE+w/NwDJliPUnsBj3j4FeEdU8JfCvR/D+txJDqFq9w04icMCHnkdRuHX5WW vSZgISGJJU9wc1FO4dAyOCG75p5xxXj84oqhiOXlTvora2t+pzfVqcHdHjP7W1pHd/CUxvDcyINR t932aLzJFGTyBxnHHGR9RXynqd34QuvF13qNx5un280exrA2YV4G2BCRg7cg7XHTPzZwQob7+1C6 ks1LeW0hUgbVPJz+FYeqTLdx/aRFEwc4+6CVx6+9evwpxBiMrp+zhS5k5PXmtuldbPtvv2OLESh8 z4wt9e8CxtdXcdlEFcPJHbtbIW8zytqr86uFTeC3DcFlBDDO3A1XxHoU+q6dNa6PGsVvbSJcOlvH iWR4ApwoRRhZNxB5PORjCgfVXijQY7jxvpf7hPJv8+d8gwfK5b81wK8M+JeqeELXxn4nhv7GKa7k uWhKJAFaMiaQs6twASjrj3QZ4r9EyPiOWb4uph6tHl5La87lezj3Uej1bbN8Vh6VGjSqQnzOau1a 1tWrbu+qfY7v4efGvwnovgfQ9Ju5yJrOyjhlDRzbgyrg4xGR+tdn/wALu+FdxAnneIXUnDbW0+53 IfqI+o9jXzzq/ibwEXd7TRYJlW582GP7OkX7oqqNG5HJJzJIDk7TsHbAj1DxB4GmS4TT9Phs7kCC K0uJLNJI1REIZ3Q53M2cHg5JVjyuTceE8JKTnOpN82uvJZa+Sv18/K5y1pwmkowUWuq5tfW7a+6x 9i+GdXs9d0qLU9OuRdWc6h4JhGyb1PTKsAQfqBVD4lsU+H+vBSQ0ljLCpHYupQf+hVkfAk5+GWhl R+7ayRlbGMjc/GO3T9a1fiUN3hcW463OoWMGPUPdRA/oTXxuFgo4yEFspJfic01ZnQQRLFBHGoAV FCgDsAKVlFSYpDXHe7JKkyVLpnmzSC3U4I+7RKOKfpAUXuD6Zx645xXJmUVPCTur21HT+NGtbP8A Y2nU5mUAt8vOSPSsWPxTrj25x4QvFlHlq0RZs7iSrkHYAVVwRnIyGVsAZrote0w6ppLW1pePZNKV /fRKCcDkDqOMgZ9sjvXMt4KvDcyTT+IruQOr+WjoT5ZYyNuA3dQ0zEewUfwivjKfLa8j2o0+RWZJ LqmqkJ5vhmULMykvEzfuwTECX3AHA8xug/gPQZxLDci4KoI134ztJyRSQeFmtlkjXW7hkYOqF4iX hVhg7CGABwTzgjpgDFacFrDZ2dvDJcNKYoEieRlAaQgfePfk81tz0eRprXujnrU03dMrS/aY4TtD RK/B59KplplYC5YlCMgKRz+VP1W7+0S+VGT5aHrk81AiknJ5NfQZdlrp0+arbXy1XzOCpNOVkSIB njOKkApqiqmr6pbaXEhmDyTSnbBBEu6SVvRR/M9B3r1pzUI3k9Ao0Z1pqFNXbLVzNDbwPPPKkUSD c7uwCqPUk9KwX1u61FimgWX2iPveXJaKAf7vG5/wGP8Aap8Gl3Wpzpe+INhCHdBYIcxRHsXP8b/o Ow71rynArGPtKv8AdX4/8D8/Q7ZfVsLo17Sfr7q+7WXrdR/xLUwo9Fku51Ou6vd3Kk4McGYYVH+6 pyR/vMat654M8M3LWui2fh/SnCAzSO8IUluQp3AZ6n36102kwWstiJJYonKk7mIHHPGeawp7t59X neFnWJjsBTJ+TOP6A14ONprEVlTo3i07Xu799H8V+VStrppY78Njq6o1J1Je7b4VorvT4VZfgfPH 7YvhddA+HGnzJL5azaxEotI7qWWOLEExyAxwpIxwFFFan7bkjTfCzR5JI8OutIhkz97EE3BHrRUV qU6U3CpJya6ttv722zmw7Tppo9X0bU59N+H2lPaRrJdz2cEFuGAOZGQBeT0A6n2Fa2haWmiaTbWN rueKFMMCeWbqzfUkk49657wOn9pJpW85t9K0632r2M8kYJJ/3UIx/vmu3r3sIk26i22+7f8AHT5H JmdFKhDD3tL4210bXu/+Su//AG80whu7qGKUWktr5dwFDrPCJFbaSRwfrUkl1c3OyOaS2MUJcRJB CI1GTzwPpWt4QhkA1N7S0trm4CwlI7iQonJfPzBWI49jnA+tP8VJMsenNc2dra3DCXelvIXTquPm KqTx7Vi6tP63y8uvf5EUo1fqqdR6+W2/9PyOev1BsbgbC+YmG0dTx0qeob8ZsbgEM2Ym4XqeO1TV 39TDoc14E/ev4gvP+e+tXAH0jCxfzjNdLXNfDn5tEvJh92bVr+RfobmTFdLXXjv94kuzt92hI01D ItTU1hXMmA/SL57K5VGIMLN8wI6e4Paumt5o5weW+YZKMfun0rkJEzU1neSQ3KM5+XgE4z06GvIz TLViE6tNe9+Z1YfEun7stjf1CaO2tneR1XHAyeprLn1C1uZVhYq6ZUghc5Ixg/XPNSeIf9OtY3tg 0oVssVU9Mcdv85rFNu0OwyAgk8r0IrhwGWYavRUqknzO+g8RWnGdo7FjUJZpLlopflWNioUdBimx rTmAlkDJIWd2xh+D+fSjlWKngjg19FSjGnBU4q1jkldu7G3e4WcxWcQEIT5pGdg7t9QM4965KS9v PEcrRrqy2ejmUxyTLlTcncfkjIXhR0LZycdccnQu5G8RXr6fAzDSoHK3koOPtDD/AJYr/sj+I/8A AfXG/Fb2qRiNLW3VFAUKIlwABgDGPQ1yTjLES0fur8f+B+fpv60Gsvim1+9eq/urv/ifT+Va/F8N LR9qwxQW93A9vCm3y4Y9qqOdgA2gdOwx0Gc1clNPVI0B8uONM4ztUDOOnSoZjXZRhyqx5VSbm+Zk ukWLajqCw4byxkuR2Fbeqafbf2gsSQRowSJDsHUu+D/46h/Otvw7bRW+kQCLkOgctjkk81nx/v8A UYbg8+deyMv+7GjIP1yfxr5DO8bOvCok7R+H/wACdvyufRZVh40f3j3tf9fyuXtX0i31Ky+zMxiA YOGQDrXOQeDZ2eZZrpVUf6plGc/Udqt3XjvQoJZURri4EMjxStEq7Y2VlTksw6s4AP1PTmnxeOdD bT5L/NwlpHhXleMAK5IGzGc55B6Y96eGx2Jw8OSm7I56uGpVZXkjJl8K3VvIHmu4BCGGWyRnnpiu sKgrtI49DVjUrdbuylt2AIkUrz29/wAKzdDu5Lq2e0uCpu7R/Kl4wTjgN+NRi69bG0/aTd3Hy6Pr /XkFGlChLlitx1nNA7TKmC0TFWyMEGppIgRvBOB1xUd/pWmy3H2ydmRymJHWQqMAYyfcVx8ur6hH dN5N5JJCjnZvUfMueM1WHyz6226Ett7/AOa3/AmriVRVqi+46qa2xhwCS3Uk/kRUpmCIAQeB3qnp +orfw+YFYMvDAjgHH8qj1fUYbO3/AHnzs/AQdSK5PqtWVX2LT5uxTrxUeZPQsfaUkYqJQ3sDxToi 2wOy4IbIGe1Zmm3CXCRTW+NycFHxwc9PenXWoNBteVfmlXAUEALjrnPen9WqKp7NR97sYqvFx5mJ qcDSJKskmC4J6msCAuI/LJ+TOce9Wbm+kvWClDjpjPJrJ8Q3cunaLPcW6qbkgRwK3QyuQqA/8CIr 6bL8NPCYeft/W3b/AIJxKDxVeNOnvJ2XzKsKnXfE0mpSgLBpge0tCg2/vSf3rADjAwF/Bvat2Fzu 8uQYfHHo3uKg0XT4tM02GyiZnEY+Z2+9IxOWY+5JJP1q28ayLg8dwR1Br0MPD2cLS3er9WYZo3Vr +0w70iuVJ/aiu/ZvV36NvocX4h0Jbnx9pshjzb3IMk4xwTGM8/X5RXcAcVBHtaYCZVM0YO1sdQe4 qxUUsLCjOcor4nf8P6fzOqvm88xo0U3pTjy27Wb/AB2XyIUGL6U7SMxIN3Y8vx/n1rA8c/vLrw3Z 9ftGtRcf9c45Zv8A2lW+g/0+U4b/AFSc9jy/+fyrA8WfP4o8HxD7y6lNMf8AdFncKf1kWvQwP8W/ ZSf3Js5ZHS0hpaQ1zCI3GRUDbo3DoSrKcg1aIqJ1zVLzEze0vU1ubZEl+SQZyyjAyO2Pcf1q/NtO HXGG7+tccrPFu2HhhyP5H61uaNqEb2/lTP8APn7oU818rmuWexftafwv8D0sPiuf3JbjLvVLeGSZ RKjEYGBz9aq3F45tDPbsSWbYzH+HjPFZ0ljOLhxJGyDJJZlIFOt9nlGJpHQFs9MrXpUcqwkWpRfM 1ZvqjjlWm3Z6DY15yeSasIOKZsZU38FMlQQe9UtY1SPTbZW8tp7iVxHbwIfmlc9APQdST2AJr1p1 IqLk3oiaNGdWapwV2/6/plLxJq8+nXMdtbTia7udot7RB8xGGBJODgZOSR02jqcA1tGtja3D397r 1vd6nISs0uwkKo4KRrt+VQSOB1xk1o6HpQt1ku9REV1qVyMzyldwAzkRpnoi9vXqeTWo0NuWLG3g LEEEmNc4JyR09zXDGhOpL2k/ku3/AAfy2Xn6NbE06EHQoO/80v5vJf3fz3fRIXesSiVt0mPmPHJ/ AD+VV5m7VYlJ5NaPhC3iuNXLycmJN6rjjPTP4ZrsqVVQpOo9bHmxg6k1FdSex0qO20Ce7uYFkkeE vhxnaedoFafhuxhhS5CqpCSiNCR/cVVP/j26rmsASNaWnaaYFv8AdX5j/ID8ayhrmm6JpFrNqM/l C7mlKYGSSS7k/Ttn1IHevhcdWqYitT53e7lL7rRX5s+oo0o0cK0utv6+9M+dP+CgekRWHw50m7il ZvtGuqSpH3T5Mxoqr+3r4nsNa+G2i2dtDcxTQ6xHI6zKowDbyEdGPOGH6+horuVSdRXm9TiUYx0i epfDayhsfBemrFktNAs7sepZgD+gwB7AV0eawPBTz/8ACIaTstnfbZQgYYc/IPetdpZ1JBtX4AI+ Ycn06/5xX1FGVOMVCL6bHkV5TqVJTm7tk7pubcss0ZxgmOQpn64NQlGgkMrSzzIevmSs5T3GT0oE 03/Ps/3c/eXr6dacJZSMG2bBXJ+Zfy61quVO9jkr0ZVI2jKzWz8/Puu6/XUW+I+w3GS2PKb7vXoe lTsQqlj0AyazbmWWCzkR4pFVo2CEMMpweOv5Ua1dTQ6LeTNbsoS2kYksvy4U1UY3mo9x0KvtYaqz Ts12en/Dp9UZ3wvU/wDCv9Fkb789sLh/96Qlz+rGukrA8DedD4N0KH7MwC2MCn5hx+7XnrWwJpyF zauMnB+ZeB69a2xk1LEVH3b/ADNVFk5ptRedNj/j1frj7y9PXrQ0swDEWrnBwBvXkevWue4+Vj2W o2ShpZhuxbMcHA+ZeffrSNJN82LZjjp8y8/rTUrC5WLFJNCcxSun0NWmuY7qLyZYIlm/gkHGT6Gv I/iT8Z9H8IeIJdAl0+9e9hVHkkEatGAyhgB84JPPtVHwX8cdD8R67a6H/Z9+t3dvshcRKqE4J5+c kdPetZZViKsfa+wny2vzqMrW781rfodCoTVL2nMrdrq/3HsENrLJIysQgX7x61keIYr+a+j0HTpQ s0sXnXMyHmCDOMj0djwv0Y9qv6lqR0TSoCtm1xeXnEEW8fO5ztQc9MAknsKXQLO5sYHkuo2uL66J mu59y/PJjAUc8KAAAOw/Gvk8dnFZVpUqbXKvL+nr+R34TDww9L6zUWv2V3fd+UfxdlqrkVhDDY20 dnbxCGKFdqoOwq4j1PMkkg+eyKlh13LlfTvVEQ36Y3WUhUnBZSCB+Vexgcxo4iPL8LXT/I8upGo5 OUndvqWs5FQyjNRxzSnbm3YZOD8w496cZJiP+PZuuPvDp69a9FOxnytm/b6sg04sGZfJTlAemBUF nOIZrJd5zFbMW/3iV/8Ar1gXDzBCFhdSzbPvDkGo5ZrpppSBKcYXAcDI5P8AWvl8wyfnnCEJWU5r vpZOX6M9ihiZwoOT3s/0j/7cztLZbaJGMUFsqSbS2IlG4rjbnjtgY9MCkFlYhtw0+yU7SvFug4Oc jp0OT+Zrm9KvL7Mg2PJsA2jcvStBr69+b9y/HI+ZRn2rzMXQnhqrpSd7GcMRzRudC91O+QWIyewx VNreRLlr+zRftZ+R/MJ2uvHX3GKrWt5cEqJbSRt4+Uqw646Hnj60mq60bTKfY2aR1yq7xj8eaWGh WdRRpq7fTuvPyNXODjzSZl6496bhYbq6WUhc7I+FXPaqSx00z3E0plkgdmfLE7h19OtSI8x2/wCj MMjn5hx+tfc0Y+xpxh27KyPIqe/Jy/Ut6XO1s0ibtqSLg1Tu0d52aQkknjJzx2pweU7c2zjPX5hx +tJvmbbutnGTg5ZeB69azhSjGu6y3asDTceXsFiZY51EZPJPyjucVbuLuGeyZHVt5+6vHyn1qnFL KrAtasMtg/MuV9+tTXwmNz5hszGkhyNrLg8ckc+tc9enRniIzmrNap97dPP8xxUlF2IrYtHIrr1H Ssu9jN/4uitGBNtpiCeQHo0zghB+C7m/4EprWv5vstlLI1uwjhDSM25fuKCS3X2rE8JC6XS2vJ7W QXN9KbmQFhkb/ur142qFH4VKxMcVKNlZbv0T0/H8md+Eg8PRqV3v8K9Zb/dG/o2jogaUGq7PcqGP 2SQgdPmHP60nny5P+jMcAEfMvJ9Ov+cV2xnGfwu553KyeWPzFGDtZTlW9DSJMNjmQbWjGWH9aYJZ s/8AHs33c/eHX061BfGdoHdLdlcRtyWGDwflPNXdbHHWpSpS9tTV/wCZd1/mvxWna3nf/C+Phis0 sy67cuDEu0DT5/mILHAynXkdfaudn+OHgq68Uabqs95IkFnHMgjW2mZiZNg3fcA4Cnj3/PxOy17R pLbZc6XbRHy7Jd8WkQmQGNEEuMjby3mk8ZbK5OAAKtlrekXOpWlxf6bZ2zNevLdeRYIyeSDvSNU+ 7yzMpOOFVOuCD+gU+EsG4qaryjp0cNbrVaxfmtNT1qU4wUk6alfvfT7mvxufV3h74w/D7X9atdH0 vWZZr26fZDGbKdAzYJxlkAHTua76vjz4T6hZ3PxR8PGHToxfSakRNPFarDGYgHKlEUAITuwQMcRr 6tn68E0xAzauMnB+ZeB69a+Xz7L6OXYlUqMm04p62et2unp6nNykxppFR+bMR/x6vnOPvL09etI0 swBxaucHA+deR69a8W4uVjmTNR7SrZUkEdxTmkmG7FsxwcD5l59+tNd5huxbMcdPmHP60+YOVlmC +mjwsoWePptk5/KorxFdvOtkCxMeFyMg+mKryPL83+jtwMj5hz7U/T0ee7JeB9kaeYwDLk47fnWE 4UqN6y0t9xSUpe6x17ALPT5724uI444EMkpbooA9aw9Isbxrj+3NVhZLmdMW8Tf8u0R5C+zHgt+X apzcz+JdTB+zn+x7KQnaCMXNwp+vKIfwLfSug3TSLtNkxGMsSy8egPP0/Ovmqed1p1FKok4rp+vy 6f8ADHr1qMcHSdKOlSXxeS/l9XvL5R/mRSST3qVWzUdxb3LyK0Fo2T95Qw6/nUIa5jKiW0kjyedx AxX02HxVLEwUoP5dUeM4SjuWn5FT6LdrZ3TFsrvGAw7VRWWVgubZhk4PzDgevWms0pHNsw5x94dP XrV1qca1N05bMceaElJG/c3qtftI0jEQW7MD7sf8Fp1mLeext7eeOKYxwquJIww7E9fcD8hXKSzX PlTYD4ZvL+8OnT/P1p32q9ikZ0Euc4yXHI9ea+XeSVKmKaU17kVbfq3f/wBJPYr4pwpRXn+SX6yZ 5R/wUBKP8MNEk8uLzP7bXLqoBP7iXqfwH5UVQ/brmnf4X6OkkbKi60m0kjn9xL6UVhQvyajhLmVz 1zwVBdf8IVpNyqMIlsovmzj+AVuNcl4EZosIxI3ZzyPT86XwLfaOfBGg2U17aiY2FrE0TOAd7RKQ uPU5H5j1rQuE0ltIb7PqFmtsDvE3nKVHylzzn+6CfoM16EcypVXFV4ap6PXRd/U4qmDkruLMtXye tSCq+1o5DG/Uenep0+71r6TSya2OD1FljWWMow4P6Vh+M52t/BOu+afni0y4cN03ARtzW8DVHU7S C/P2W5hEsMsEiOrDKMDtBVh3yCRj0zV0aihUjKWyaOatSkpe1pfEt13Xb17Pv5Nj9Di8nRrGHGPL t41x9FAq7UNu4I2FQjrwV/w9qzbp447t1W/uIW8xi5Cgg5GQMA5AAY9eTjjoKyrTak2+pvQqQrx5 4PT+vx8jZwcZwcUlYltPbS3yPDe3JlwgkVoiMqzfKDlsjqPrkda26iEuY1lGwYpCKWirJPl74+/2 xbfEu/nj0LVJrdpbRob2CyLhE8tfNVH2ldxKIOc4CsOjNnH8A6jqjeM9HuW0PVtM0aPUVuLkNby/ ZbYJBsREJHABL9SWOUyWIyfqPxZZLf8Ahy+tyBu8ouhPZl5X9QK5jwVp76hpmm3E0Pl6far5sKMO biY9ZSP7oyQvr19K9WXFOKp0Vl8aMXFwaT1vro3a9tN/XzZ7eEweGqYN4irNpxlZrTa11bzbVvLd 6JnTeGLe71Sc69qUbi62CK2tyvNtAemf9tsZY9uB2yZ/Et2kKwWyapHYXInik+Yv91pBEMhR8wLu PlJAyMk7VIKGSWCTzIXZGHpXRXulaVfeVc3unWs9xNAFkZ4QdykDIz6cDivgMywCwk1UTupfffqc /wBZeKm5yVraJdEuiX9Xb1erODh1m2mtSreJilvOAkcivOTG7I23DFQxX94jliR0AxgZrrfD99Fb 6lsn1iSdL13WyjlhdcBGkdtrFRuARkG45+51q6dE0UJ5P9nWpRwQ6eXkAcdug5VenoKiurHSLQG5 FrapcoWeJti7vmHUdxnPbiuGC9s+SCu2W5qCuZHjDWLKwtNQ1gxMbaytpJ5REAWcIpZsDIBOB6iv nP4h/tESXNvZr4Ggv7KVXY3RvrWEhlwNu3Dt3z6V7x4pEo8JawYLaS5l+wT7IY1LNI3lthVA6kng CvmnVdX8TwaVMU+HOu6YfM8xX/suRYzIzFstlMcSMWA56KOOo/WeG8DgndYnaHLa84xXW9+ZO/Tb Y86KdWV7avyOf1P41fEHUVRbm+jKLyEW2jCk+pHetfwv8RvifNpj3Wl6jZlHmaPyJIU3DYqF3GRg KBImeffGATWM9x4s/s67i0zwtr9tpcdzbukK2kzQxIiyAo4K4JcyAnPU/hXX+Afhx408X6PealBq LeG7T+0G+y213p5WUxiOIAq5AYx4RFx0Jj5ya+oxOG4dozjXtTbvvdSdrPpBX307b6nXOpiYUXRn dQ7Wsr79evU9U/Z98TeJPEkV7N4guLe7eK5jW3kt4wqSRMucjAGe/UAjHNe3NCsjlmGTxyTXk3wT 8Iah4Ea7/tfVLfUWurhXBgg8pIlCbcBRwAOuAAK9lkjwx449a/HuL5UpY7moL3He2/fz1/4cjCwU kyDyxH+9j3MWwCvbr1H+e1c/4ijxqYfOQ6A/TtXRTMUidwMlVJA9a57TpJL/AFVJLgK+ATtPQDtX Bk/NCU8R0itf6+RWJSaVPuV41K4yCKmHSluW33Uhxj5sY9KFr6aE3OClJWbOC1nYUUhFZ9xc3YYr HPZJ+8cZkO0hAeG5wD3BIz0qSznunuGSeSywHICxyBnIC9evXOO3Q1Cqpuxbgy0wpC52hWG5R0BJ 4p5qKStXFS3IMLxfItyLTSIgU/tCcLIA3SBRuk/AgBf+B1rxJJM6xwoWY9AKztAsU1PV7rXby8gt bRXaws2lcDfsBeUrnrko34RE12/2/QLIG1OoWSNEQCvmqWUlgv1ySQPqR614tXNadFylTXNJ6eiW 3rrd+jPZxGDmoU6D05Vd/wCKWr+5csX5pmDC1xb3P2aSMmQ9F3dKYZg5zgKT1AFbYm0O5uY7iK+s 3myQhEy5bG0dM8/fT/vpfUVlarFCt5K9vcQzEfNIiOCY8sygkDsWRx9VI7UYLGUK9e7jyya37vt/ kefWw06cb7oYhzUgqCI5xzUw69a9pnKiGRTDKZ0BKt/rFH8xXJaJo8EXxF1CZVUxRQLcQgdFMuRn /wAdk/Ou0zWdp9vDaBLoQ7DNDGsjkfOAoJAY+gLN9CT61hWw1OvKDmtYu6/r+tgw2Oq5Uqvs3anU XLL+7dp39Hs+177XNMUoBPQZqnqXlfZ0eZ3WNZASEIG7gjGT0HOc+3HNZb3MAt2ju9TupMZZz5JB xuIK/e45OPXgjpiqlU5XY0jG6ub544NFVdLINrxM8wDYDMu3jAxxk8Yx6fSrVXF3VyWrMMU006kN MRFIOKwdQvprvUW0GwuGhWVQNQuE6wRH+EHs7dvQZPpm5r2oy27xWFhGs2pXIPko33Y1HWR/RRx9 SQB1pul6bHpmnpaoxkfJaWVh80rnlnPuTXPVisTeh06/5ev5L1R6OHSwcFiZr3n8C/8Abn5J7Lq/ JNPcWG20nTwpjW1s7WPoF+VEUdsewrlH1PbqEsC+JE81pnMMSvOWGVTKn5cEHz4cHGE7Bm3Edd4e xexXVleqlxbbAdki7hwRjr24/SrFpoehxTJcRabaQtGMJKse1gB05HNfJV8P9UqulJ3KpPnXO+vc 5fTrpdTZjp/iWf7VM3zCKKZ1XKsOFK4VQWB3ADG0cjmuputX06+0NLi2kjuUnz5TAHjBwTzyMEEU DRdGCKx061TaoVv3YUbRwPwGay79bSOVbexSJLePJURKAoLHJxjjqc/jXVl1D6xXi7Oy1uTXq8kH bqNjqQ4AJPQUyMUl5/x6uo6uNg+p4r617nDRhzzjHuyrtJggBHMkm4/q1OmSp5gPtMCjsGP6Y/rT ZhxXHhHfEVpeaXyUU/zbN8XLnUX3u/vb/wAjwj9trd/wp7RNykY11QD6jyJqKm/bglST4N6EgGHi 11Vb8YJiDRXh4lNV53VtWd2Ht7KNj23wRYeH9V8G6GLqPzLhLGB8h2RkYRRDKkHg4jUZHv6mt2Tw roa2Rs1tZDavP55h899ofbtyOc8rxjOMVxfgxCPCWkMpIP2KHkf7grr4dXuXtRCsTNIq8uDnj1qs VlNSEVOjK6e97aGMMbvGaKeqJDDcpBASUijVBk5OAMDk9ajj6UxiXkaRurHJp619Bh6XsaMYPojz pS5pORJULY+3xfez5T/Tqn+fzqyVUQKxOHz09qrMf9PiGW/1b8duq/5/OmpqauhpWZJLHvwyna68 qf8APanQzMxKNlJF6jP6inCmyxiTByVYdGHUVpo9GcVSlOE/a0d3uu/+T8+uz6NSbm9T+dcv8TPG Vn4F8Nf25fWdzdxeesPlwbd2WBOeSBjiuhWUoQk/B7P2b/CuH+O9rqF34HEWnaLday5uQslrbkh2 jaORGIIBxjd6VvhacJYinGp8Lkk9UtLq+r0WnV7G2Hrwr7brdPdeq/q/Q4K+/aQ06SEJp3hjVhKx +9KEIAHXADcmtn4VfGiLxd4pXQJ9NuIGkiZ0mkVVwQVG0gE9dwrzfUNS+INnpt5IvgDWLIyK4WeR N6w7zjODHz1/iJ5PGBxWv8CrHXNa+Ilje6joN1ptppenGNpShCSuBCF3cDMhZGYsckqAvRBX0Gb5 ZlVKhOpQqL2itaPtoSvqr+6t9L7Hs4dfuXzw9zW8uV6O2mvTW2h9IsoIKkAg9QajZVVAqgAAYAA4 FSmo5K+XW55d9CpMuSB6mux24Ay2AMIoxwMCuWtQhvYt+NobJyfTmunvbmO2gWaY9twHcnHSvBz5 yqTp0oq71/r8DswaSjKTIr5o4YXmk6KuPrXLEtNM0rklmOeTmrOo3ZvbkuqskfHyZ7+tMjXFd+WY H6pByl8T/DyMK9VVJabDo1xUOsWSahpN1ZPjE0TICexxwfwODVpRTq7ppTTi9mRTnKnJTi7NanJ+ FtHLfD37FIgWW9gd3z/ecHGfoMflXQaZaiy0u1swBiCFI+PYAVcxgYFIRWFHDQo8vL0VvkdmMx9X FznKW0pOVvNlWVc11WnXf2zTlkYhZF+Vx64rnGXNM2kDGTj0zUY/BLGU1FuzXU5qFZ0W2upoa/dB l+yxnJzliD0HpWZCChBUkH1FOCe1SKuK1wuHhhqSpR+fmRUm6kuZgop4oApa3uSQGytGVlaAENkE bjyCQcdemQMDt2pYLO1gZmgt0jZm3kjPXBHr6E1OOlFRyrsPmY01j+Kb2Sy0pzbYN3ORBbL6yNwP wHU+wNbBrnrJf7X8R3GosN1rp5a2tfRpf+Wrj6cIPo/rWdaTtyR3lp/m/l+djtwNOLm61RXjDV+b 6R+b38rvodHoGg6RP4Zs9NvIXljsVaJGErKfmxubgjk88+59atLZaBYXpmaU+cWUtmV3yRIJATz1 3DP5+prNO8IUDsFJyQDwagaKvP8A7FpyqOTk1HokKeY1Jay1k92zas/CnhtRHLZ2zwmMRmNo53G3 aVKkDOOqgnjkjmm3OkaZpyXl5bwtFPc/6wmRjvOc9Ccdc9PU+tUtKvZbCUkAujDBXdipNTu57oqJ Iyin5lB9K4llNaniYxvePf8A4BU8Yp0ttSpFU61EgxU9uoaVQ33c8n0FfSVJKKcmefFX0EqHT8fY LcfNjyl+916d6mOAxA6VFp5zY25yxHlLy3U8d6m97MroxVLW3/XHPUfwf/WqwGYj7xx9aaOlQ7Hg 5iy0fdPT6f4VWkvU89KWE+FN0+3WPp3j5brpdbWCSepzSU2ORJBlDnHUdxTqVrHbCpGpFSg7phQa KKCiMom/zNq78Y3Y5x6VDNU7VBNVQ3E9TS8LodtyQcF2VM+3JNbO3ch5z1Bqj4Z2rZkL1yXbnvnA /QVBq2pxCJ7WAFmP8YP3Tn+dfJYqhUxuPnGC629LaHpU5RpUYtlTX5gZhaxs2FwX54J7VSiTFJGp J3Nkk8knvVhFxX1GGoRw1JUo9PzPOnLnk5MVRUc/zTwIP7xc/QD/ABIqYUoHetLl058kr+v5ETIx uvMP3QmB9Sf/AKwpJBUxpjCsqNKNK9uruKc3O1+isfPn7bmV+GOlL2OtRn/yBNRUn7cS4+GWkf8A YaT/ANEzUV4eY/7w/l+R6eE/hI9m8FKD4O0b/rxh/wDQBWwoK5KkjIxxWV4I/wCRN0X/AK8Yf/QB Wxivdpv3F6HmS+JkYWpYCiSBpELqO2aTFGKqSUk0yU7MJGaRy5xk1BFukn8351RQUUHo3T5v0wPx ovlzZyjbuypGM4zU6gKAAMAdKSSS5VsiulxRS0gpaokRgGBDAEHqDUXlOn+pfA/utyP/AK1TUU02 jCthqdVpy3XVaP71+WxTvljurKa0u4iiTRlG7rgjHWsv4fae2neGII5QBPKzSSn1JOB+gFdBRWMq MJVVVtqk199v8jpw9fE0qEsNKd4Np7Wd1fe2nXsughqOSpDTGGa2RIWNs1zdrGqs3c4HQVo+K2O6 CEMu0DJXvnpk1RspjbXKydujfSn6piW7MwkV94B4OccdK8+dCUsdGo9ktPU3jNKjKK3bKca1MoxS dWztA9hTxXotnPYBTqQUtSMKSlooAbRgU6igBuKKdxRxQAgpa8W8efF7xV4f8XX2jWHgkX9tBJsh uPOceaNoJOAp75H1GOtcbffGf4iSE3p8LTW8JIKBGYIoJ4HK8/j+lerHIsyq0o1aNHmUtrSgt/WS /wAzooUY1JWnNR9b/omfTdFfN0H7Qni5bBppfA0Uohj3yyiZ1GAWUtjbxyrf98n0r6Dm1O2ttGGp 3jiGIRCRu/UdB6nJwB3rnx+W4nLrfWo8t79U9t9m+5nGnKc1CGrbsrdfQreJ72e3torOxcLf3sgh g4zsz96THoq5P5etXNLsYNO0+CxtgRFCm0Fjkn1JPck5JPqaoaBZzy3Emt6nHsvbgbYoic/ZoeoT 6nqx9eOgFbPFeVSTnJ1ZddvT/g/5djsxco0oLCwd7O8n3l+qjsvNtrRjSKQqKfRXRc88i2ClYE4y ScDAz2FPoxTuAwCpmkXyFjRNp/jPXNMxRiolCM7X6DTaIZnZQFRSWY4GB09zUkCeXCke5m2qBlup x3NRRKPtkzFecKN2eo54/U1Yp7g9NBRRQKKYiOSFXbcCVf8AvKeabunj+8olX1Xg/lU1FPm7nLPC RcnOm3GT6rr6rZ+tr+ZHHNHIdqt8390jB/KpKKKTN6Smo/vGm/JW/VjWqvIKsNUTCqiUzc0SBrXT JZ2/ds67gXHHTg1zuCzlm5JOSa1luPP0trZ5VQqB1OM46Cs9BhSNoOe9edgKMqU6sp7t/gdFeSlG MY7JCxrTxSKKeK9BmACloopABptOooA+fv25v+SY6R/2Gk/9ETUUv7c//JMNH/7DSf8Aoiaivnsf /HfyPWwv8JHsvghgPB2jD/pxh/8AQBWxurC8ExXLeDNJkSCQxrYREttOMbQOtaay19BSjeCseVN+ 8y3kUVAslSK2apom4y+GbOUbS2V6DqanxVe+5s5RtZvlPC9asVPUvoLRRRTJCijNGaACikzRmgAN NNOppoAQikxQTUtrF5xcsxVEXczYzihuyuwSu7EYpwolaIv+6UhR/ePJoWjdAOFFJSUAOopuaTdQ A/NJmmFqQvTsA+jIqIvTGk96aiK54l8QfDPxQvPGl/daHpGnXGmM2ITLfOvmISHIZPNC/fz/AAjI GDkEg+f+JNC+JEMMOi33h3Sop4oWSGaKbMhEqsjtnzCHZwzAlgTnpg19YRR3MsTSxQSvGn3nVCQP qa5XxfbySapo9/b2Ml5LBMw8tOAflypZjwoDAcn9TxXpy4jx+Dw0Y4ZRvGy1jfTZ9d7P57Hp5XGj WxChiE+Vp7O2qV1q9LXVvxPn3VPh/wDFC1sri61TSdGZTGUSS5ukcxM0axsyAvy7BR1DfNyACa+i 9Bs7zUhY6jq0PkQ20Y+yWbDlWxjzZM/xY6D+HJ6npLZadczXsWo61cx3FxFkwQRLiGAnqRnlmxxu P4AVrNLXNmGY4rN5QliUko7JK3bf7tF83rsTr08JFwovmm95dEnuo38t5fJaauzuFG8VWiLzSrFE pd2OFUdTT547qB1Sa3miZvuh0IJ+ma5uVXseZfqTbxRvFQTLPDN5EsMiS8DYykHn2psZkkYKkbsx 6BRk0cqtcLlrcKMiq8wlgcJMjRtgHDDBwRkULL70uW+qC5ZoqJXzUgNKwyKEf6VOdpGdvPY8VOBU EI/0qc7WGdvJ6HjtU4qUVLcWiiimSFFGaM0AFFJmjNACGmkU400nimgExRSE1Zljjt0CybmmZQdv QL9fek5W0GlchFOpgp9DELRSUmaAHUUzNG6iwHgX7c5/4tho/wD2Gk/9ETUU39uQ5+GOkf8AYaT/ ANEzUV8/mH8d/I9bC/wkfVPwvVV+G/hsKoAOl25wB3Mak1q6jpNjfROksKBnH+sUAN+dZfwx/wCS ceGv+wVbf+ilroq5YzlF3i9TVxTVmcTfeELqGLfaXCzkZJVhtOPaufDMjlHUqw4II6V6txWTrkVg bVo7iJCdpJcjlQB1z+FepQzOd+WornHUwcd4ux5/dsDZy53fd/h61aFULph9klPzAbT06irwNeu1 qcP2UOzRmkzTWYUhDs0ZqFpKarF2CoCzHoBVcork+6kLVXMnrTTL70+Ri5iyXFNL1bXSruS0EsNt PIxOAU2sh/I5qvd6XqdtAJprOVUOc/LnH19KiM4N2uW4ySvYiDBnVdwXJxk9q3J9Ku10SVneMCCU kBMfOPXj9M+tY1lFcwzAvZtKrIrbCD8ykjBwOvbiu5g86fTrppIDbLKw2JIOcbQDkdulcmNrOnyt bG+Hpqd7nCIc1KtQJwxHocVMOldrOZDiaazU1mwKhdiWCqCzE4AHU0JXBse0mKjMtdN4c8OSuZJN UtwqFRsBb5gevSt9dD0tbtLkWoDoSy/MSMk5zj61x1cwo05OO/odEMLOavsedky7Q3lvgnAO04NN kMiEB43UnplSK9YwvGQODkUEKeoz9a5lm/8Ac/H/AIBt9R/vHmunaPqd8Rst5I0IOHdcAnHFa3h7 ws0u6bVFkj2vgQ9M47k+ldp+dFYVc0qzTUVY0hg4Rd3qQW1nbW1sLaGJViH8PXNZtx4a0Z9zG1Kc fwORitmkbp0NcMa1SLvGTR0unGSs0eZ2GmTapqckVgjfZVlK+a3RVz/PFd1p2g6ZZKNlusjj+OQb j/8AWq7aWltaiT7PEIxK5kcDux6mpq6sVj51naOi/rcwo4aNPV6sasaLjaijHTApWVWxuUHByMjO DS/nRXDc6SKa3t5yPOgjkxnG5QcZpRBCGRhFGDGCEIUfKD6VLRT5nsFkRzQxTJsmiSRT2ZQRXP6p 4Utrq5863mNtn7yBcj8PSuj4orSlXqUneDsROnGatJHmmq6Xe6VIq3KqVb7rocg1XjfNenzLEV3S gFQOcjIrg/FC2iX0ZtY1iLrl1HGPTivawmOdd8ko69zz6+GVNcyehlwH/Sp/vfw9enSrIqpbH/SZ +W/h4PTp2q0DXac8txc0maQmmM4FFhEmaTdUDSChmYKGKnB6HHWq5RXJ91JvqqZRVnTYHvZvLjRn OQNqMA3PcZ60SXKrsFq7IQuKYz1cbRdUeZlispwnODIuOlUHtb0PIjW0qtGu5wVIIGcZpQlCWzQ5 Rkt0amhWk9xPHNA0TYlCMrYyB1zz9DUOsW0llqUsEj+Yc53eua1/DT3JUQrpzeY0kRM2DtwuMktn HToBUXjhMX8UmQdwK+/GP8a441n9Z5HszodNex5jGQ0/NRR08nFdjOYUmo2fFNkfFS6fp19qTkWs JZQcM5OFH40O0VeTsgV27IgaWkRnkO2NGcnsozXoEPh/TEhCPbBiQM/MeDt2n+tXtPsbWwtlt7WL Yg59ST6k15881ppe7FtnXHBSb1Z8bftulj8MtJypA/tpOo/6YzUV2H/BRwAfCfw+AMD+3V/9ETUV 5GJre3qOdrHfRp+zhy3Pf/hj/wAk48N/9gq2/wDRS10VFFYosCcKT6Vxvj+FRbRXId9xlKle3T/6 1FFdeAf+0Q9TDE/wpHIzOfsknJX5eo6irytxRRX0sl7x5CfugXNRPIaKKIoGzZ8PaC+phbiWdUt8 8qMljg9Pb61vf8Ijpnm7xJcqOSAHHH04oorw8biq0KzjGVkelhqMJU02i22gac8apKssoXON8h4y cn86rXvhTTLg5UPE+/LFT1BOSMfpRRXFHFVou6kzodGm90amk2f2CwjtBIXWPIViOcZ4zVo+9FFZ Sk5NtlxSSshAAMYAGOB7VjeK742diXXcW+6o7ZORk/SiitcNFSrRT2uRVbVNtHBx1LniiivqHueM iGVyK6jwFp0MiPqUyh3D7Ys/w+p+tFFcuYSccO7G2FSdVXOvooor5o9cKKKKACiiigAooooAKKKK ACiiigBcUhoooAKKKKAK98izR+SxIB5yOteVzDyryaMMzBJGXLdTg0UV7WT7zXocGP2iOtnP2ibk n7vHpxVnfRRXqHC2MZzRaQy3l0tvEVVm6FjxRRVbRbEtWddaeELP7IFuppHmJyXjOAOOnOau2Xhy xtceXLdZ/wCunfGM8D0NFFfM1MXWk2nI9iNCmkmkObw3pLLs+zkDOfvE9iOp+ufrUWl+G7fTtQW7 t5nyCwKNyNpHA+ue9FFSsVWs05OzH7GndOxu03aM5wM4xmiiuc1EkbZGe3HGK878Q3hutRZOdsOV GepOeTRRXp5VFOq2+iOPGtqCRTQ8UjtgUUV7i3PO6BYQm91GC13bfMcKT7d69Os7aG0t0t7eMJGg wAKKK8jNpPmjHod2BSs2S9qKKK8c7z5e/wCCjv8AySfw/wD9h1f/AERLRRRSGj//2Q== ------=_NextPart_000_0017_01D02B6C.76F93410 Content-Type: image/jpeg; name="46B.jpg" Content-Transfer-Encoding: base64 Content-ID: <001601d02b96$5fcccb10$6401a8c0@JAYDELL> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e Hh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCADeAdQDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmbhkk ZvLXy1PQA9K7T4eeB7TxRoV9q+oeJINEgtJ0gPmW/mb2YZ671/LnvXFXNvLbPiQcHo3Y12fwt8a6 x4fnn0OwtdLnttRfzZPtcTuQyKSMbXX0H5V7tbm9nemzghbmtIzfH/hZ/C/id9Ehv01NfJjmW4SL YGVxkcbm4981mLpp8ohnG8ngjtXQ+IvEF54q1uXX9RFqLmaNIytspVAFGBgEk/rWeXHJ6AdRiuaW Imkl1NVTjuZsOi3s6ytF5JEY3fPKqk8Z4BPJqgySpnfG6465HSuhMi+p/Co5n+Uhtu0jp61SxbXx IToroYG+lGWyQCQOvtWi1rAZUkwAOMgdDUjlIywjQY64xxVSxtNK6Rn7N9TNt7mWzmLJ1HBB6Va0 m+kN7IZXkJk5IRc5NT2hheX94qht2QT64xUslpAlwtxExt5AfvL0P4ULE05rVWGoS3TNSGdZQf3b pj++MZqHU7X7TYPDDsDE7h6Zzk1Qj1ZkDI0Us7KT8ypgEetKl1diIXCRCZG52Lxj6etLklF3Kumj KjlurQvaktHuI3r3rR8R2qRQwzRIF2/Kfcdqi0zEl5I9xauQ6kZc4HXoM/gK07HT7q7051e2ds58 rfycdq6KklGSZnFXVhLW7gubdGadDIMEcbSPapmnUryV6gZ+vSq+n+HruPWpFjgZoo0+bcM9R0qr qulXUV9IkVsyLx8p6Z9RWXsYTnyxfS5ftHGN2Xr2zjuI97LuYfKGz0rn7iB7dwr4IPcdK6W3tdRh Y288Lo4HrnIrO16zu8rIISUHXAORRSm4y5JMJxTV0ZBORU9i8658pgoU55OMn61WBqW1MzO0MThB ICGJ6YrokvdZlHc7e1k822jkIxuUE1LVbTFCWEKhg2F61YrlNxaoaocFCELENnjPpVyWQRoWbGB7 4rFutft1X90C7e3Smot7CbSMnUA/lAXEbJOGPUYyKqL0xS3E8lxKZJTkk9OwpBXRGPKrGTd2OooH NFAgoJoprGmAjNiprS0nuJCoUqF+8SOlW9GitVkW4uMyshyIwuVY46Z9aluLyf7dskZN0i7xHnBH JOce/Nc1bE8j5Yo1hSurspy2TRxPJ5igp95SecVUD81ce42usjSx7ArFum09zn25qa9tYmMRWJoS 0Yy27IZu59vpWdPGraYpQ7FANTWNEkckThJBgnofWpfKaK4aAxiZyuBg9D6123W6M7MnhvUNo1vc E4xhSBVKQFQGIO1uh9auppM7qDvRTgscnjjsPU1dtNOe3VmYF4iADuXjdz/gfyrH21OF3FmnJOW6 KWgqkly7HlkXKknir0wV77YQSJISCR25/wDr1GbUW1ys9uwVWOHQ9Me1LdbhfwbJApkVl5GfesZT U53i+holyxsy00YaExvtcH1HX60lvkQID/dGaIGdky+MglSR061LHMIGDlEbngMM8/5Nc0m9jVJb iHOKQAnpSLu5LDHNDZRDkEjHFJqwXH/SkY4yarxzNkbsc+napXYbPmwM+tSpJoExPNXOBzTt67ee QeKquNp4II9aI/8AWD61mptPUm4T2Ub3ouDjZtwy46nGKEs7UYAi5HvzUtxJtTGQWPTnFFux5yOc cit3XndK4uWN9iVtrDDAHPY1Dd2y3MeDwwHyn0pzOrFcYwDyfSonuDu2oF6dc1CqOMk0VKzWpANL ATBmy3+7xWbJlHZCckHFbDTyqFb5DuHSkRIWZi8CZ/iyMmuunjLX59TGVNP4TIVmPCgnPoKN/rW1 9mTfG8LbAhJ2joaleNJEKyorcc8Vq8XHohexfcx5ZoWjVY4ipHVi3WoFba5XsfmGT+f+ferd9YtH mWAEx9SO4rPlbCb+Pl5/xreDjKN4mbTTszsPCPOmyf8AXY/+grRTPB5zpknP/LY/+grRUS3EUgbe +gCqwPIZlzkik8NpCvjG0S3cFSsu4E/d+RqwoZZIZB5LEP3x0x71s+DkUeIrVg5ZyJN2Rz/q2qPZ cidnoac97XWpDbWs9s/yyqUP3gf6VNIwJ2VUt47yXy5WmOzOcHviprjd5h3d/SuHEt81m7vyLi7L Qrg3d0rPDOkMaOVUFN24qcHPPTIpLafzIvMcEMCyMOoBBIOPxFZGsxyW94IhJMsl6u2wEchAjm5L Ejp0+bnPCt+OvJFFHFsgLlVHPHU9zXgYGONWJre3leF9NPnp8t/M+kzeWWPAYb6rC1S3va38ndd7 6ryL4jYrkKSMDpTZUfyjhTnHWoLe5mSEAHIHHNWrOZJ2KH5D2969hRiz51WZnSMUUkEZAzk0W09y 64kJ4z3/AKVYvICkx2AsDyDWr4Z0C61G6jVoW8puDgc1fOoRcWte5nZpjbHfc7EjQsx4wBnFdPoX g+8ucAoyqSSAB0zXeeGvA2n6fDDcS3AjMhwgxvLfgK9BsNOt7XMkSL0wNncZ4/GsXXairHRFX0Z5 9o/w8G1WkjH/AAIV09j4LsbeNV2qABwAK6SGUyRhmUxkOVwRnODjt64qK/vI9Os2lmlLtzs3dWPY cClepOXKty7xSu9jn7jSNNt2WSG18xypMg24YAcD9TXM3ul2l9dGVocM2Aqjt6CunsNbkN1NcXEe 6V0CIqcKMdvzqteuRqCypF5NwpBfZhl3ewFe9hKLoTalHW29/wCvS55lep7SN09OxS0fwfb3Elxd XSyxzKpWMyLgZI68+lN1rwtb20UUMqRsZ8qzqMKG+hrVs9aukuSmoZkgc7XDLjb/AJ9K1tYubWaw YPhoWH7uRfmGfT2NcmJhV9uvaRun2/T87G9KUPZvleq7nh3inwJEl0/2SFlC8E+9cgmg3dlqChtw RsrnHNe8oARzg1S1DTLW4IZo1DA5BAr1Pq65OS5yKu+bmPLrWNooFRsg+mKWeaOCJpZW2ooyTXq9 94Ghu9IS6sxvBBOe4rx34iWVxpv+hSxtycg4rzKTUnyndLRXMTVtYFzAYIQfm4Zj6VjquKVFqTFd qtHRGDbe5JBbGZMo435+77etTyabKkLPvViOcD9aqR3F3bs32cw4ZQP3ik7Tu5PHtSS3uryw+S09 uEBxkIdxHrn1rmnOrzaLQ1jGFtQFOpBSn0zXQZCE8VXmniSRY3lRHb7qswBNP+ae6FrHKsbFC5Yj Jx04FMS8ttOidZv9LhaP7Q9zGFYeWT95hnOPoDwPavms34lpZfU9jTjz1Fa62sn59/I+uyLhKtml P6xVn7Ok72e92vK608zfYrb26QIB8gxkDqxHJqjcpbHZJdeUCflBYc8ZPb6mqlvpe61DSXt4pYO5 TecRrk4BGOy4qzp9nDIBcF53hiyqedJuJbOfTpzXXTl7Ve0ndLr316ep85WioTcYyvbT1Irmwscl FtgAWHUknGMDmnXd1Iki+YS64+Uf3fart9FJ5ZmwMg7ic81SugCsYCsZGbEYHc9fywKzhWp0/fq/ CtyYUateap003JuyXcGd7tEIIRY87SepNWFO2R5FADPyaiid1ZbaSBYmOWTBBB6Z59elP/iwOTRD GwxNNSoyvDpYvFYOvg6rpV4uMlumaOlXrW9xCfLMpV1O3Gc4PQVbnZGmkEJbyt/ygjGffFYyHy2B DFXByCO1Mk1ExvhVmlZOWKRltv1x/LrzUSrQpe9UlZeehWHp1a8vZ0ouT7JXf4GtcErFhFw/OGz9 OKp24CXJnuXBk24X0A+nrT471ZI0kYZUqDkdCc1djtFaQXBQ7QoyApYcjjOPWuj2tk+VkPVjNRkt optltKXjf5lcoQfy/wA9KqJdZZRj5e5NWtTSBXmi+YsGXY4zgrg5AyOAT/KsplIIANZRm7ClJpmu MEYodkHBPtzVCO+hkt1dJFYHPKMCOOvNJNI0qlVcHB5A9fetXOyKbJXxvIA4zTMc45KjpmkjG1Rn qetKDk7R1rG5AKAFwOlEZxJ8314paQgE5xzQmBHfqfMRt5KsOParFopyCcj8aYNwHX8+alt5G8w7 iCDVppu40tbikMC4wxBOcg8is+5V0f1XscYrSMTiQtlvUEfyqCcpJ/D1ORwT9c1UloKSuUoyyOG6 4NaaxiTEiyexqtDCpbO0YHGferWYoyCCFycfU0oxCCtuPUhMjrk9aRFG4sRyetNBBfy+rH24ptzl V/1ioCcEsen0rRblti/aIPtBhZlVhjGT1zWZq9vbwWjYbbNg4/2qpTgxTuWfJVvvdc805i05D3Dn KjCjrXoRo8jTTMHUvujqvB8ZGlsSyndKTwenAopvg4n+zJOf+Wx/9BWirle5kcvGgUepzyTWx4PX /ipLb0xJz/wBqyq7n4WeLbjQ5pdKi020uUu5DKZZGZXQqjcAr2NFVtQdkVFJy1OXsZ4yBCWBfGMA EdO9SzR7mR2ZVI4PoaPGOv3HifXm1V7KCzkaNY/Kt87QFGM885NUVna3i8tnLyH73faP8a46mFu0 1u+hrGorWZNNLZFRcSRxSyQuTblgSVYAjcMeoJH40W1/asCZi0RP3lAyprNcKXJUEDtmkK8V1Rw1 NLUzdSVzVcWrRkwkFFPbk/54qOJJd6lF3HIwV/lVG3eSN9qMQHODivTPhx4X+3ul1dDZk56cf/rx XDiqPslzLYuMlL1IvBHg+81G5WaePMfXHpXrml6Ra2No0UECiYL94joauWogtIlhhjCKMAEDGe1X lyd3HH6V4dWtJyuNq+hl21ounwK4fdtOS7Ef5xVie/uCWkhYLG4Cso7YHWlvGU5QgcEYx6VXIzkd AemKU6sqsuebvJmF+T3Y7G7o8rSWpd1YuT8xIxmua8U3LT6w0RyEhUKB7kZJrRsrqSCAq4JZu4OB mmapFFqhjKlLeVersPvDFenlmLp0cReptrqXWftKSinqYsY4qaykdL2AKWIMysQvcg//AFzUd3b3 FjJ5dxGR6MOQfoahS5eCZJojh0OVNfWO1WDcdbo89XhLXSx3t7aw3ds8Ey/Kw6jqD6iuIe3ePUZN Phdm/eFQCcZ9K7UTM9ks6g7tgcqvfjpWNDcKt8rS2Y+0HCBzxwT3z7V8thcweEcovW/5nqYmnGo4 sxEyrFGGGBwQacwyKm1vYuoM8fKng8dx1qGNsivpaNVVqaqLqeZKPLJxNDRdXn0xHiVQ8bnoe30r A8eaXaeI7gzKgU7OBjv3rQkZI03OwUe9RqZ5fuJ5SdmcfMfcDt+P5VjKnSjV50veN4upKFr6HhPi fw1caVOzBDsz0rAx6kV9F6lolpfW7JKu+Q/8tH5P/wBb6CvHPGnhifSrl5EjPlk9qznTm9djaFSm tLXf4f18zlsL70cf3R+NLikPSs/Zp7t/f/kae1a2S+5frcjupHS2keJRvVSVx61T1W+0izhJiJMy jKyrzuPue+e/XFWrh3SImNC7dlHU1XttLkvtHgWOYWkewYjEYJYjuzdeSOxFfF8WVPq06FWM2km+ rt0/E/QOCaf1yniaLhGTaW6V7arTbQzfFkkn2e2uLGYpLtcJsQsZBgEgMOnAI9yQKTT9Hka0Wb+0 owJEVJbdwQZEGCIzk/KM7uMcbyOmMWNNlgi8pYr62tpQjCO3cmTYSeTnOR0OM9AavrcrbATTwy37 XKb/AN3CDIuMDaR0x154HB9a+fznNliK6qUI2dle+t3v1VtLb3PpchyH6th5U8VO6u7WbSSel9Gn d31VjSsYZ7/TYyozLLEG+Xp0B4o0OW2QGCZmDM4wFQscHg4x3qnp91FJYRW4drQGcKytjdFGXwDx xgL79q6T4j6TpXh/ULV9MUW22CMhg5YykuQc56kjvX0tbiDD4VUaFWLfttVa1la279X0PzfD8P18 TXrU4NJ07731t29VtcoxxvfPNDCzW+xGdGnYLkgE457nH51i38qi6ghnciSNMgqzKMtnOSOQBt/M itOKeOZvNDo4YAhh0P8A9es+S/axuLmL7FNcuAZ5GjKjEfQdSMngjA9Ky4grzjgpKnHR2Xp8+z2+ Z3cHYenUzWDqytyptXV7tdLeW/yJYI5YLmA3Nws8TbhCVB4JGeSScjAOD/8AWq07gk7VAIPX1rK8 JB9VnuL2GRns3lItVY4Csc7sZ6cbRjsdwrorWBwCUQnA/u5FPJKM6OEjGpvq+2/fzMuK8VSxeZzn Rd1ot76pW08ipHG8sg4wzHoay5r+bTpLyBLeORbZWuZGaTaWRmY4HuMEc8dPWuiijK4kljAGfukk cetZGr6MNUubSfz0j+zThpEwcyx4J29MffCHn0rbM8BHHUfZS6NP+vlc5shzeeUYl14K900/zW6f VL5FvSwq2yRzMBHIxlZccjJLbQfbOK2U1m3hjaK1ttod9yhudqdNoPpyevtWf5CBUGCxweTxiq81 sy/NGS3T5T3ruhTjCCjHZaHlVatSpOVSW7d38yS+ninuJJQjou7hS2do7D/69U94JyDzUkqssa4R g+TuPYim+U20MoweDjPNWtEYO7Kz2FmEH+jKBjAAJHXr3qW0jit2cxwbWkI3kE846daupFKVx5Ry uN3HTPSopkeFgrAPzjI9aOZvQp3EacY27SGp3mqp2od/pio45UD7jErtjADcjPrU8ECoVfPOO/am k2JXYZbPIpwqRgjLuLZOeaYvAJBHpQ1YsCxKgZ4HSopX2FcEjkVJ8p5C1DdypBHufrn5V9acIuUr RE9EWYrpkULI4GR60ySSJsoZEGcYANYjFpHLuck0oBHQkV6iwenvSMvalrULiRG8mPKY5Yg9antn cRxXFwxSNBhV6ljjrUGn2oncs/KLjI9as6yRsi2sRjjaD2qmoJqkgV7OQ5tUi+YKjHjj3NZ80skz F5XJ747CmqtAAdv9lT+ZrWNONP4US5SluJGu4hz0/hFSMOKWg96tEs6fwgB/ZknI/wBcf5Cijwhx psn/AF2P/oK0VnLcDmK9K+Dfgyz163u9bvNZ/s8WUwhUGLcGLoe+a81P411ngX4geIPBtrdW2jiz aO5cSP58RfkDHHIpVlNwahuXBpPUh+JHhyPwl4mfRra9N3EIY5RNs2lg4zXMYrY8X+I9S8Va5JrG q+T9pdFQiJNqgKMDjNZFVT5lFc24pWvoIBS0Ctnwpo02sanHEikxg/NVpXJehreAfC8mp3K3EyYj U5GRXsWlxQ6eI4o8iPaUI7AnjP60aPpsOm2KW8SgYHJA61JOnFbyoRqwcJdTllN3ujXimUkYAwOD kc0sdwRI0OcoOcgVkfaW2fIG3nCnHJ61PKZWjz5c23OGIPXH/wBfNfE18POhNxmjqjO+qN1beOW3 ByVYkYOOlYi+G9TjjcJ4huAoiCxgx7yrfNltzEsSd3c8YGOlbVlO0tqo8qQsnB6f41YWZgeYZMH2 H+NYxk0dkYrlucnDa6jpl95t5qU95BPldrxqoRyRhuOnC4wOOTWijbz0Ix0zWncxJMrlopl4YHGO /wDkVy/inXLbw3oM2oyxO0oOyOAkAuzNhRnnA5yT2H0xV1qkORS2stf8zJUKlWqoQV22kl5nQLdy CHypFSaPrtkXcKx4JIbfXi88EciNkqgGAp6jjp2rhfBnxCvb/XotO1i3t0S7YpDJAGGxsEhWBJyD gjPHOOOePQpDBJIrMPmAODiqyzNIOnOVJ3i012szbNMsxeXV1RxUeWSs+j0+Rtx60pCB7dkDHG7q Pep7j7IQBLPHvBJDEdDzWCwQbDvJAPAz0qvd3kpYiHDYPzFzxV0lKrOyt8zm+syS97U1Ly5hu4Eg YYTHzHHf1rmdS1Gz0wj7TdQQ7mCoZZAg56ZJqw2oXE7i3tlG9uCwH3P/AK9ed/HvwxNdadpWq2s8 Zls7pYCk2CGM7LEJDn+6xXP+yW9BXo06mJy+Mr6tp2jfd6fcXhqVPE14RrSsm97XsvRHpMEQLCWR hI+OD2H09KndlRSzsFUdzwK5bSpb+y0ax0fQ7WS8FrbpB9suv3aHaoGfU9O1S/8ACO6nfOJNW1yY n/nnbDYo+h6/yr05Y6Xw4em5PvtH73v8rmscuj8WLrKC7by/8BW3/b1jTvdasbXhpQW9M4/n/TNY Gu6naaratD5EkufumOPIH4sR/KtS38I6JEcm3klOc5klJq+uiaQME6fbMR0LoGP61hKnmlXdxivJ t/jY6Y1cmofCpzfdpJfdc8D1nTza3T4QohPAOCR+XFZ5QDq3/jor3jxX4ZsdR011htoo5VXgogFe Garaz6feSW0uQVPGfSuWeXY5O7qp/Jf5M7aea5c1aNFr0b/LmQ20soLmbdMpfYDjgDr1rl/EMRsr 25tbOS5Wa6Mj6UROypEVy7r6DAycHORx2rfMrgEZ4PWn2N7GLq3lECGSB2MM8iFlRmG04J4HHH41 5OYZfUcV9YkrNrsv8m79VbY9TL8ygpSlhIvmSf8AM9O73StunfR2MiwvLfU7C3tLC0SNZbcFZNuR FJgHrjBxkfU9e9WbC3u9F/0O3hS6M7F0ZpSioABleckewHHJ6d6Ws6P4usdXElg0UtkIPtEskUSx 5lOVZETnHGDj1waht9H1jxH4UM8d1JNOX221ysm0oDgSkAfeBUsoz3z0r5F5JWlV9nFrld+/47eR 9tHirCwoe2mn7SNlpyr1tq13+6xf8JGTxFqVxqdrp7y2oJXZIducbAeQcdSfyNXLO9ul1ZdG1QS+ dY2ywWrzMGLx7ncYPfAIXP8AsVr+B7ZNKs7e2Fg8BS0jjnl3AiXZ7YwrEs3OT35qt8QJ5Lt7JrQm 2R7gKjSgOqPnKsTwexUAYzuwa+gzDLaU8AqD0VNNp9u/39T4rKs6rxzlYu15TlZrunp+HQrQXdu0 90ls8chd1jVA38YDbm9hx+O01W1eyuru+05WEWGnCTNH8vmQ4LPGRzkHaD+B9ec3SLe+i0eSKwt4 5poJHWKUEAllQjeCeu5skg9NxGcVP4Ol1u6Q3bA36xsqJ5jBQsrbg/bJCjA+pPTkCKeHxMJ0KVOS dLlV7rf8NOljqrYrA1aeLxFaLjiOZ2adrdEtHr1vudXFYQWSlLaIQo8jysFYnLOxYn8yasxIrylW cIhIG7k0xjK0jLKMFTt656VHOHkm8ot8iAAjrnr39K+hS7HxTLEwJUsV3YUjOPbiq0cjoqwxgfvB hyQPlA5z/L86csRB2xFkDcEJwGqK6lgtb9ra5lKTRkAq3YkkAfmD+VUo6i8x7Q73UtIWAPTtQBMi mNdhUnOSOR/nNVxqdgZPLFwN2A3APA/yRTl1SxdgiXC+YDjGMcYH/wAUKpxfYCdd2CjY3rweOvvU N7MpV/MGdzZUKNoVh1wPTk1MUDMGJYEehxVU7klDbfNxkhu4+vFTy3E9dAlYtDHJGzCTvTIePmIL g9VY8574q2sDyDcko9cADFRi2C7g3IIHGPQ0corFW+gSJRLG29ZOYwOp9c1LbLMLYBxl+Sf5082z KC0YBkAO07eaLdJwQzA7z1JPAp30sJRs7leW4EYY7SQB+dNa6cYyoAPcHOPrVqSCOZiH2Dk5IPJx 7VVMDSpIQMqBgHpxSaE7k0bllznPaoLq0Esocu3oe9JJOCVCgpgcj1qRHTYzZI/iyD92qpzlCV4s HZ6MpyQeSineDliMY9KaRntT2Km2XLktuJAxximjpXtQcnH3tzBlrTWCpICcAcn6VBdTNPLuPQcL x2pOQCBnnrSAVMaaU3PuU5O1hshwvHHqfT3p6ABQB0xRTcFOVyR1I/wqxDyKSl3ZAI6GkoEdT4Sw NNfGf9cf5Cik8Jf8g2Tr/rj/ACFFQ9wOYxRgUtV4Z5WVfMt3RiwUgA8cDn9T+Rqmx2J8CjAqFppQ ARbt90NjvyGJH14H51P3oTuFh8ETzzJFGMs5wBXuXw98Px6TpaSOo85xknFcP8KPD/229/tC4TMU f3c969iAAAA4AFdFOPVmFWXQQ1FKOKm7VHIOK2W5gQ6eCLw4OPlNdDIr/YkgjUsqrlzt69+KwbFW N2FU4LDA/OussD5lqBuOVJBHoa+Tz1v618kd+BhzJoyIPMt4xIytiRsDDegrTcsU5UgKwXOM1W1+ 7i062+1XKNLCDt2gZOef58Ae5ArHufGWnq4SWC9jiI+VjAQD8pbnn0H4ZFeVySeqOyNPkurnQsrM rDdnI9K5zx54cTxB4futN3IJHQtbvn7sq8ofzFOl8W6ZbkC4trtFaGKTcEBA8xQyg4Oc84/A1b0b xJp+syC2hiuYpWQsVlTaVwEJ/EbxQ6Ta1WhUW4SU4uzWqZ80/D+W103xJNc6zdXbNphaJ4XUO63i nDAAf3QTntyuK9itPGWktoq6vcSEQB/KKjIYyY5XB5zjnHpXG/HTwxb+H9Xj13Q4oz/bN0UulkkO 1Z9rPvzz95QRj1Fcdqmn3um/Di38eTruhmmeE2qudq/NsDg45yUbnHIKV4yxNbCc+FoUk4pXT63f Xt5bbI+5q4LAZxTo4/GV2pzlytfZSV9Fu77PfeR7z4e1K28QWs13ptzG0cZ2lB95Dj+IkZH/AHz+ NQ3EcdvdNZxXc1xKyAuUfAQ85PHTPb6V5v8ABG7uprO71lD9mS4CwCJW3ZK4bdkdR84A75J6V6TZ WIEe0oUiznZnlj3LHv8ASvo8nwFXGUVUrLlb8/6/rY+Tzelhsvxc6dCXNFPTS3392np+dis1nDOS ttaxKpP3j8+PUknqfYZ+tWrDRbG2mE/kJJMOjso4+npWiiBQABgDoBUgWvqqeAoxs5Lma7niVMxr yTjGTSfnv6sRRTqjmmigVWlcIGYICfUnApEurVhkXEQ4U4LgEBsbcg9M5GPrXW2jhsyaioYru1ll EUc8buV3BQ3UZK5HrypqbFNO4Aa84+K3hsXFudRtk+deWAFej1XvYY7i3eGQZV1wRScebQcZcruf Mbo75jQMWIPQcis6310/a10P7AQyRpCzM2PmOFB24+7kjvnHOK9I1XQZNK1/UGIdbb7Ozbl7EkY/ WuPj8OX8niGPVDqULL5XlGExcl9oAc9s4LDPXH1r5LP8vp4+UKdT7L7vrv8AkfXcPZ3Wyr2kqT+N W2W6236a6m3pljqfnRx3MomiCgqVTllAIzyOuR/MfSXQdJ0CKxtNOvNRaJ4kZvs6LgIATnJPU4Oc 9qxNWvGdI7ZAym3bDSGQ7nYcbsdh1qoqqsCXRZHl80ja3JxgZJ5zg11zyyVSHNzWl0PLpYz2b5Wr x6mjeajHYwu9pE6SLKkUau4YKXbau7AGRyOR6GqetfbJraVb29Nyl2Rbyb0AKmQ7Q6kdwzA/hUni T+ztT0S7vIIp7O6Rd8ghQyBSPulB1PQYHXOK5y01PUdRmgT51/s5k+2MId484k7Ay544XOexYV4G YYfHvFUVSfKr2kv63TX3M+nyqrlUMDiXXjzTteD6rpbyaevmvmjq74RaXaQQ2xjYRII0wOOBgH34 rPspobSzSG3l8gvK8kmEzhncsx/Nia1pLSHUbJbmZ5lkCFl2YIbrkY7fXNZ91FpkcZwt1xgMyru2 HBOD/wB8kflX09H2MIqM1qtz5CXPJtrY3IWhlhjW3mEihABgY4//AF1n6zcvaeWqx4kbkOewqHTr SNYGmikdxnH7yPGCPTmn6gBc20huLpx5JO0OCSOnQk5OaypxhGsluhybcezNO1SRbJPOcyynBBxj rjimvbxyOTeQRHB+UsAw/Udap+HhNNaH/SVKoQAvUjnIrTEbIcpls/ezyT71VVck2upUPeSZAtrZ YzDbwLjg7UFMNpbI6lIYUxwSIwDj0HFWrpGtnWaQfu3wCAMFuM8fhVMIGiiz50kjg796YA9hWCb3 RTQtyHC7YwSzcAt0FWbWGIJkSAvj5st2H1pLayYt5khOfTcTz3z61aa0iDAqCMepzRZvYFoUlHlu xQblY8bSDVSXSRcXTXSX11EX5xHJgDIA/wDZRWuyL6ggdajWOEtt3cnooJoTaHoZR0h2ZhJqV28e RtXd0xjrnrzViKM20SweZLO4BO9yCx57/nV3ySSSWYADOPahrdUj8wuBuXPPtRKXcTRRaHfzIfm6 /L2qxbpFHbspTKIMnnBAqS9t2sbFL+eSPyZR8gJwx9sevQ/iKz9Ru45VS2tU2Mq7pizZPOOPwqEp TjzRWhN1Hcq+YI1wqgscntx+NZt5dGIC2hhmuZmG51jAJx6nJwPzp0r5lyhYEcE561k6nq8miXoM do1w92iqrZwoKk8Z+jE/gTnrU49V8HhHiKSTkrWT9d36Hdk2Hw2MxsKGJk4wd7tb7aLru9DUtZvt MIQIyNFkOjja6E881KBWFousrquuXsnlvEwVbfA+aNihYsQ3fkn8BW8K9DLMRVxGFhVrJKT3SOfN cNRw2MqUqEnKCdk2FFKDxjt1pcCu488QCl4pMUtADI8fN0+8adgU2Lo3+8ajklkWbaIGZMZ3AZ6A nH8v1pXsPdnXeEwP7Ok/67H+QopvhBt2luxVlJmbgj2FFQwOWnV2TbGwU5GT7VGPtBZtrKU+UK3B J9T+eKmkQSRshyAykHFRm3Uqw3v8ykHGO+ckenX+VU0CF2zby24Y6AdvvE/ywKuaPZz3t1Baj5pH ODjtVD7NHnO6TG0LjPGAQf6fqa9O+DehCSZtTmQlIxtjz3qoRuxTlZXPR/DOmR6TpENqi4IUFvrW lRxRXZsce4GmPT+1IRQBWbdHIsiHDKcg10emXEdyS8Uu0kfOnoawXXPaoYT5FyknOAfmx6VxZhgY 4unp8S2/yNaFZ0pX6HYuwjYlmYbgeQOhqMxvES8UpEZGSOpzVG0meQTRvOU/jTbgh4z0IznB9atI HESyrumRlwUwuRz1GMV8bVpSpS5ZHsKansOUsvDOT6VAJN8rLvPtuHWpopUYMW+TYcNuPT/IrHfU LQ3cp+0YbOFYJkVdHD1a1+SLduxz1aiha7M34i6AviXwVqehb0jlu4SsMhXPlyDlGHPYgHiodZ8M 2l/4MudInCCJ7Q28WVwkXy4XaO2DjGOmKvRainmAyRsyg8c9aTVRM00Zk4RkVkHbFd1HKKsq0YVV ypmH1uUYe6zmPA3h8aD4fsbCVklnggVJJFHDOB8zD3JJJPck106LgVHEoFTCvrIU4UoKEFojkq1Z 1puc3dsUClxRxRVEGfd3FtNLNZzW7yiPYvK/Kxc7CAe+A4z9fWmR3NgLvasDeayLIoAyMBlRfYE5 Q4+npVy9+1FVFs208knjg9s57dzjngU3df8AnJiK3CGYhieoiB4xzySPyPaspXuWtiCK5skUTLAy hVABPUApv/8AZgOfWr6HeisOjKD1B6/Tiqlq+puIzcwW0akt5ig5OMHGOfp69auGqhcUhDUch4p7 HFQTOAK0irkM5X4gaXJf6XJJbJuuFUgDbkkV5ldyass6rGILVk2gsFO5W7n86+ifDVm7+Zcyw5R8 Rx7lyWz1wPp36V5R8UtEj0DW2muN0NrO2ULnlm5Pb2HT2rxcbiYSxPs4pNrr/XY9DDUpezu9jiLP Q9PKFZvtEjk8ybsY/D/9dV9R060t7a5dImUrgJkliDxWwmoWKnAu7ZsEEjzB/jU0ypJKsiBTFKNx wcqw7Y9uayVWopXbZt7ONtDjbm9lnhjicIAmc7VwWPv61DZstqLgW6rEblt0zAcudu3n8ABXVatp ttfuH3JDNggbAFDfUU4aVBFpqxTRQuUXkjqTj25rr9vT5VoZ+zlfc5+31a4t4BAMSIgITdnjn+Va ujX8l/diJ1BiSLe5XOV5Ax6UaXpvhiTVo4b+/uIoBIY5QrBSCOCQSOn86nsDp0EeoW+jlrmGZ8CV /vqByB27NyawrzoyT5Y6lU4TTV3oXoo7a5uEgZmETMRJsAyMn6cnqaY9kJSba6UPGh2ZPBYDvj15 /SqVzpsTyRzxyzpIuD8jlejbv5itW2l0+20p5b2O5d/M2u+0ZG4Eh/cDBHHrXC001ym9k9yhHpln YtJFamSRSeWY4zjvjt196r6hqNvYSCM7y5j3MvBAXO3P+fSpb21vJpTLHqmEdy2VjHC9gP8APelv nWGEyyoXRUYsAM8Yz0/D9au7k7yd2KyS0MyPWLGUgNJIXYE52kcA9fpzUa3sKAOGmWJidgC5BPP4 /wAJ6+oqY6pY7zAI5oSkeSghOQOOP1HH19K3tG1TR7qX7ARI8r/KR5ZwnO3qPU/zoqScFdIcYpvU rW10SNvHTNPeRmHp9KTW7KTSL51xvjdtoJ4IHUfpVUXCuCAQCOo70lNTV1sD0LBn8tSGyR6Yqlfp FdR7dzoMg5UjPBz3FNnnCruyCScAZqLzlYHa4JA5x2pNsi9x0FrFGqql7eKBtDBpRggHOOnTgflW 7BsMxWR4h/FhXyMDnAPP+RWbbw2xtEkMh87axfd3OeAPwpsIzkEttU84HOKyk3IrYn1PEmmbkiSV lkDkP1wOoHoDx+Vc1oct0niKxuZRarAkymaPyiQ6ggkY+nb1rq9Eura11CNbuCOeDPz7xyVx0Az1 rndUMMGu3D2SGOFZi0annaM9PeuvBLnUqbuYzlazJddtDM8J02W2O8MZpCh2qx3bVHToMfXmsrWf DNhfaZuvb+2XUwsi208G8m33fdbHQkEetWWmcxtGDhC+7HpUWK6vqrlHklJ8olWalzRWpR0fSrTS 7dYrZFyERHcDG8qMbseprQApMUtdUYqKsjJtvVijrS0UUxBRRRQAyLo3+8etRKLhQoEiM5cM4/ur 3qWL+Lp940xrdWZm3sC3pjjp/wDEipaKOr8Hb/7LfzPveac47cLRTfCMarp8xBJ3Tk8np8qj+lFS xHOUGig1oIlsLZ7y8itowS0jACvofw1p0elaNBaIuCqgt9a8v+D2jfbNWbUJVzHB93Pc17Gu0A5B 6cexremrK5hVd3YSgUtFamQUUUUAIRULrkVMetIRxTTsIRZ3eERvLiSLBhY8YHdSfQ1DbeKbi21U 2ceg6lcRFhmWIAou7Zg5OOMs+e42f7Qp0iZpbK5eylaSMZJx16V5uPy+Fem3Fe8tv1/z9fU6KNdw mmwvtbe+gcjR9TtPMCqTJDtABBPzemOn1z+NGJRiuiN5/aELRM6hSpBUDGc1ny6cLWPz5LiJ4wwA A6tkjj261y5Vi6WFpThV913vYvFRdWSlHYqKoq7KZ2tokkiIWPo2OTVaaVXYbE2ADpxUltNJE4ZH K4r1lKVanGql56/12OVWi2mC8U4GneZFJIzyfJnsg4phK5O1j+NWptuzTQ7D6UUwNTgaoQtHFFFA BQaKDQBHIeDVnw/YC/1DMq5t4vmkz39BVSWtfwXJB5t1HceXtIUrvx15rnx1SVPDTlDf/PQ1w8VK qkzoYbVJ40kLugBJjCqFwOQO2ehrjvihoSa54WWW+toppIQJI5NuQvHf0Pv0+ld75kMYC71UDgDN cpq/i200yf8Asy50rULiHHlmaCLepGG/X5QMe9fHU9JJxPclZqx84ppGnRB0FnHzkNkZJ5zjmpji 3WLYMRxjasYHbjGBWv4stWs9TEqQvbw3RLpFKOU5OR+lcmmuwRSzCe0uw6uUB2A7uCePbjt/jXrR bnqcz0LF/YWl5P5klxOGD+YAOFU4A9O+PWrVpaR2dnNHHLLIHJcmRs87QP6U+CRbkJKqyIGQ/K4w evGR+dLJHsXCNtyQCvbk4/Crba0ENezsZJlnaGMuDuBzjnIOfzArM19o9Okj1LT4AsceEkgjBwRx n9f6Van1fTrcSrM5QxNtK7eWPtSi6sNRtbhLaZXG0qxCEYJyPTmqi2ncGroamuxoY3TTrudGfJVo yFZQeD64Iz6VNdarbW6Tj+zLu6A3xmExHa/HykHrtJ/lVbw1fmRZdL1CQiW3T9wx54HVf6itESjc FRSxP1AFTKHJOw1Lmjcy9IU3Es8SzXtnAiYt42HOTnAyR0xzkVXv9QvLSQ2t5bpuIBJVuGFaVxew wM0txIgMbcIvJJxxXN3txJeXLTyEnJ4HoPSumjD2jvNaGM5cq0NbTtZjlmaOaHazjauD1z6k/hW/ YLNbxJOVCPnAK4zkY/xrgyuCCCQR0NdFoF213FPFcTOZV+ZCfu9KzxmHUY80NiqVRt2Zam8RWUjK Z7jzQ3by+QDk+nt2zS3FtBfxtLbxqGIyoz144wMUsqmBI5UEQbBJwqkgHisDU9SkmBgib5Qf9YOC fb6VyUaDqu0NDSdRR3JpEjhYRwhHkZflcA8ce/p7UluEhnfemTjI9/X+dZ9hIyXK7iWDHHWpPsl2 xaNb9sIoJDJuZuADhuvX+daVqHspWbMoS5tTYN3CJ1W2dXDLyeD1FWrC1ury5a2tkLybC2NwHQZP WueRL63xHcXSsjHLAQqOM5AB6j0p093nCxFz8vJZj8pPXH8uaVLCuqvdZUqlmaQ8p51gM4FxMwVC D8qZOMk9selZEm0TOIi2zJAz1IqONSzADqTgVIyGNyhIyK9KlSjR91M5276h1OcfhRQOlKK1EJSg UtFABRRRQAUUUUDGR/xf7xp9Mi6N1+8afSBnT+E/+QdJ/wBdj/IUUeE/+QdJ/wBdj/6CtFS9xHMU qIXcIoyzHApK6b4b6SdV8SQhlzFCd71old2Buyues+AtJXSfDsERH7x13P8AjW/QoVVAHAHApcV1 JWRxt3dxKBS4o4pgFFFFAAaTFLRQA0imMgNS0lFxFcoQcgkfSiGSSGQMuGwc4YZGanwKYyiicY1I 8s1dDV07oljkjmtjG4KlWLHanLZ9SPeqWcCpSCvIqtNqVvDD5TTwwqWMZLDG4g7ce+D+ufSuSnRj hJSlHZ9L9i23U9SdYpmRHCHa5wp9TRLFPDIVeM8HGQMim6he6dfLDaWmvpZSo2EeJweinr2+8Qee pGO5qOGC9aJWtvFU8tuYw4kREKkbgcgjHZSO45NeY87mpX5Vb5nR9Vjy3bsTbmQ4cFT7ipEcHvVO SyvJ71LiXXZ5YxKzsFgXy8ED5OOnTIPJ5/OURSoqsdpDKWHPYev5134bNKFZe+1FmFSk4PTUtg/S lqtHJUysPWvQasZXJOM0HpSA+9FIZHKOKfp1zJCTDGIiGOSGXl/bNIwqvKnessRQjiKTpS6lQm6c uZG1A8EIzNEuwuR5rOGAz0HPPt+VTJMrgeVJsgDEKI+Cx6np0FYSyhh87MoXb8i8AgHPHvVn7XAt 1G4fGwE7gO/p9OTXx1TAYiEnFwd/LU71iovU4/4u20dxpkd4rKzROVE8jfMeCdvzckgV5WLllI/e RZB/+tXtWt2Oma1BcWep2xmhkk3xksRsbPDV4R4i8PWmmazc2YiBOSfMJJO3JwBj0/pXdToVaEUq kWio1Y1HoySSS6n8xEuzGckh1yCQRwfwpsMl6t4r3V+sqjOFEYXHAxn8j+dQ24jhXy0cRxoiqB7A YH6cfhTmkhCbdzcnPQk59ap1GXoaUlzERuYxc9yBzVWSfzThMp3PQcDH/wBaoopEGS6qrdNxXGar Xmn295dCWRyQQFO09MHP9DSTuOxcliCSJfRhmljbHA5YYpr3ur3IK29u0SHjJHOPxqGDS4jMHN/c jAPyiXPpg/59atXEn9n6eI1mdmC7I95yT75rqpTvZWu/MUo2V72MRgzSMZHLPnknmnAU1BUlemzl GkcVJp0rW94jKSATgj1pvamkVMkpRcX1DZ3NnxF5RtFKs+93Hf2Oaw0WrT3BlDef852gL7VCBWWH g6UOVjk7u4wqAM55q3o9zDaTPLcQmZCpXbnpnv8AhVYip7ZCS0DgbZAcEeo5H+feqrKMoWkEdyZd 13gqxJ544GOc/lxVO4Ci5k2nI3daWYPCzRF+np3qIcnA61FCgqd5J6MJSvoSwsUkWRcEqc9KfONz GTaFDEsAOnWo2AWMYkBz1HvUkcsYhZCmWxhTV3UvejqHkyMUopKXIrQQ7iim0dKQDqKTNGaAFooo oAZF0b/eNPpkX8XT7xqa3ieadIUGWdgBSQ2dP4UicaYzEYDSEj6YA/pRXXXOlppdrY2gGCLZWb6k milJWZKdzyTMuPuL0/vf/Wr2X4R6VcWOiNetbx+bcEEZkI4/KvKvDdlJqur29mq/MzgOPT1r6MsL dLW0it4wAsaBRitqUb6kVZW0F3XG7/Ux43Yz5h6evT9KQPc4GYIuhz+9PXt/DU9Fb2MLrsQbrrB/ cRdOP3p6/wDfNLvuMnEMfUY/eHp37VLS0WC/kQh7nj9zH1Of3p6du1G+5wD5EWcf89T1/wC+aloo sF12IS9yM4hizgY/enr3/hpd1xn/AFMeN2M+Yenr0/SpqSiwXXYhD3OBmGIdc/vT+Hajdc4/1EWc f89T19Pu1NRRYLrsQl7nnEER6f8ALU/j2oLXGf8AUx43dfMPT16VLQelFgv5FV2udozDEOuf3p49 O1N03S7a4N1dT6Zp8rRqXxIoIdz1z8v45qxKMiptLW2ljkgkMiyE7iBjDgcgfga5Mx5lhpOO/wDV zWhL94jNW2sWx5ui6YgDZjJVdpBznHyevbv1qWyt5khT7NFbRIC6BUPyBN2RgAYq/IxaRIgSoYEk j+X606CNIolijGFUYAr4tyZu5t7lfbeCFIhEPl5z5xPIyB/Dzx/OmrazBA3kq4UYAM5x2yMY4HFS 6jqFvptlJeXLuIkxu2KSeSAOPqartrukqHZb1W2IGO1GPBxg9O+4fnQlJrQFd7IS6tLsXDPAkToS CBvIPv2qsstyp2vCinnILn/CumSKJ0BY42jBwO9XLPkMswRgxPBA6ele1h88qU4qNRXt8mKOFU3p pc5JJrgj/Ux9P+eh6/lUvmXODiGM9MfvT+P8NX9as4LVkeFShcncucgfSqkfSvoKFeGIpqpDZnPU i6cnFobuuN2PJjxuxnzD09enX2ph+0kDMEXQ5/en8P4as0YrXXuRddiky3BH+pizj/nqevp92kKT /wDPGPqMfvD+ParuKMe1Vd9w07Ge6T/88Y8Z/wCeh6flXlvxX0aWO5XVkjRAwxIQ/wD9avX3HFc/ 4v09dQ0eeErk7SQPX2rOvTlWpOCY4SUZJ2Pnq6mEEXmzAMpyEIbPYZ7VI+oxIFMhCBgGG5ucH2xn tWo0Mtsxjf5ipwcjke9NRGZ+cjvzXzTVtGejp2M+3v4ppxCsi7jwVBOcYz6VZju9TaRpLe3hWNsK vmsR0zk/njH1NS3cXlfvIlG9jluM54wCfUA4pUuNSeMg2UTgYXIf744ycdhjP6VcbJXKXkRSX+oW 8mZraAbk4KsevH6dfyFU5ZbieXfLhj0+90H5VFcy3jXSia2UHIDfvfuD/wCtzUygV6eHhGMbrcyq SbdmIvmcZRf++v8A61LmT+4vT+9/9an0o61sQMJl/uL/AN9f/WpMydNi9f73/wBape1JigCPMn9x f++v/rUZk/uL0/vf/WqTH1oxigLkTGTP3F6/3u35VLZTzRyr8oGG3AhyMEdCOOtIRTSKmcFONmF7 EuptcyTCZ4UDFcsQ3U5+lNijl2bo0HQHO7np9KngmSdFt7qUxouSrhN2DjpjI/OoZNJSSN5Y9VIw SwQTbSec8Aj3rlqRl7NQbs/wLVm7jZlcskSqpPP8Rzj8qiPmDjy1B7/P0/SmNZv5xZri+JYYIMnX 9KljjdRtzLIwySX5brnmtaMZRSi9hSt0AeaxO1EHoN//ANam/v8AnEYOP9r/AOtTix9elPDO6yRC Xy9ykB+6nHBq588VeOpKsyEPJnGxev8Ae/8ArU4NLj7i+/z/AP1qqXZmguRG98yIU3Lug3ccLjOe T7+p96gMzs0MQ1CeOTcAx+z4D5LY4PTqPyrOOJUlsaezNMmX+4vT+9/9ajMmfuL1/vf/AFqS3SRE Ilm85txO7btwPSpK3WpAwNJ/cX/vr/61OzLj7i9P73/1qWlzTFcijM2G/dr97j5j/hXY/C3SZtS8 RJM0KtDbncxLf/WrkFJVyuPvHI9z6V7n8K9I/s3w8s0iYluPmP0qqcbsmpKyGeMTIdTi8xFRvIHC tkfeb2FFP8bf8hWL/rgP/QmoqZ/EyY7HL/BvRmM0ustGTs+VB0zXqyMroHQgqwyCO4rM8K6amlaJ b2irghQW+tX7E5s4TkH92vIGO1dMVbQxm+bUmoOKKWrIEo4oo7UAFHFFFABRRS0AJRxRRQAYFFFB oAY44qldxSM8TRXM1sY5BJuixlsA/Lz2yQT9KvkVFIvFDipJxlswTad0P0vSNSAjlutW/tCF4Qfn hVWD8c5X/gXGO9Sw2TO7wtKd8b4jLdOMHHH5VShu7izkDxNkA5KHkGrTeGIby9vNSfUL+J7lo5JI opFWPiPjggkfe9a+TzDL5YWV29Hsd9KUa+26JvJ+0Si2nt1ZZOMOoZGxz396k/s6EzBzZW4fpnyl zjgensPyqnb6NHZyfaI7/VJzBE4KPKrL83PIwCSABj8PXnekWVzGJNoZlG4L0PrivLemzL9nZbkc TYjCt3OBz70RziEMQA2Mn3qR48NHkdOnHP41U1T9zE7bgSAecd6KcHOaiuoSbir9jGuLlrq5aQ52 Z+UHsKmjqvAmKsr0r9AUI04qEFZI8y7k7scKOKBRQMKDRRQA1ulU7kHa2EDtg4XONx9M9s9KuN0q jqFxcWointrKS8YSjciMAQuCc89eQPzocuSLYJXaR478RtL13RdWhFxpcWbiPLGOT5Aw6/Qdxz39 jXOwfapEPnxeTIpwNjAhl45/PNexfEptV1vw19tj8PampjKuryKudp+9wFzxzXkMDXVxIxa3aAxt tIkXrxn19fSvlqcpTV5b9T12ktiRfNRwzbSmME9MUyMuLp9h2Kw4yp61PCA/M3zYx8vQfUf41Vvb hYEDgEtkhPTj1/WrjByfKtyW0lcqasgS5U5JLLyTUUMbOGIBwB1xVeS7SW4/fXEZk7qWAx04/UVq 3l3ZixVYZ4QH5GHA9P8AEfnXpSqOlCMFqzHl5m2UlpwqFJIjj99Fz0/eDn9amxhiDXRdPYmzFooo oEFFMkkCMF2k5HGPqB/Wo0uUZwoU4IBz6Zx/Q/pSuh2JTRUUVzHKEKq2HJAJHTGf8DU2KadwsNIo wKWmscU0IN205FJGHlYJGpYnsBTo7W5m/wBVCxB79B+ddDp2nNaQq7R4cjliOM1jXrxpLuy4U3Ix bOxaZWMu5ADjpzVe+hW2m8sOWOM9OldRKELZX7v8qrXdpDcqBKoJJ4I7Vy08ZLnvLY0lRstDDeJ1 s4p1LENndjtzTBIxHLE1tvbKLP7Og4AwM1hyxPBKY5Bz6jvXTQrKq2nuZSjyjxRTQaeBmtyRKKKV cBgSMjuKQGr4T0ptY1y3swDtLZYjsK+g7JVihW2ACmIBdvt2P44rz/4NaN5VtLqsqYaT5UyO1ehJ /wAfkgyP9Wnb3bvW9NWVzCo7u3Y5Xxt/yFYv+uA/9Caijxt/yFYuf+WA/wDQmorCp8TNIfCjr6js v+PSHJJPlr169KkzUVlxZw8Efu16nPauvqc/Qmo4oo9aYg7VBezSQpG0UfmFnCsACTjnnj8P88VP VO4S5W4eZLlFymyGJmIUtg9R06kduwqZOyHHcUXreZtNrPgz+UDg+oGenvn0460ttcXEkyrJalI2 iD7ueGycg59tv5mnWyagFTz5YSwEe7ZkAkFS/b2YenI96bBFfosCvcJIAF81mYknqWI49SB24A6V nd3Lsi1xRxRRWxmHFFFFABRRRQAUxxxTzTH6UIDO1C4ggA86QpuBIwjNwMZPyg4GWA59RXQRX+k6 pdPaWd3DJJFEEdEk528Df6Y5wD71kwokt/bq6I370Y3KDjn3roNLtbbyXuY7aKJ3X+BApxnIGR9a +ez6bUoRfnY78ElyysIIBaRu8e3y9uWRvYcnP0qAOiXxg8w4ZfMC5+4eOPpWjHlo2Zgu0AjAOciq Nr5UG+S4jWKVxu344YdcD0x6V4CTenU6Groj1PUjbrjYJDMARyQFx1/Wslp7i4ULNIWAOcYoupTc z7udg+6P509ExX2eAwMMPSi5R9/qzy6lVzb10FRcCpBjvQBilFdrIIrvzhbObcEy8bcY9Rnrx0z/ APXqAzX6K/8AoW8qqbfnUFiQu7vju35d803UIW82aZ71oo5LdoUVQRtJ53DBzng9OwpJY5POJTUV jjAkBAPO5yxXv2BGPpWUm7lpaEoOoG4H7uLytxDDI6fJg5z1++fyGKtdqpCNlf5dQ+faIsM2fmAc dM9cuh9TtGatwqUiVSxYgYJJyf1pwbFIU1XnWrB6VFNgKWYgADJJOAK1TsQX7e0l1jwjc6VHdPbO X2iVeqjIb9eR+Jr598Y+HdS0XxBc2/8Aacxy5AxGMcZ55+or3fSppLW+jy8kccjBTg4BPQex+lZX xi0OC70lb22YNcQ5LAkbj3Ofz/lXzWOToYtvpLU9TDy56SXVHhD6RfrYG+m1XgttACruXGM8f571 S1KeORUhQcqQSe3StO6nMDb5W/dgYCd2PpWGxaSRpGwCxzx0rpwdNuXPLoKrLSyIlt7Zplklt4nI IJygyamvrfT5XQxWsYC/7OATx279BSgUY5rtlTi5c1jJSklYiS2t1ZGEEQKHcp2Dg+tTjrSClFUk lsF2xaKKKBEcol3p5Zwufm6eo/pnpTQbjKHy06Hfzz04A5/WpqKVh3IoTcYXzFjUY+YD1yff0x+Z qWiihKwXGtRBtN1GGGVLDIoNRtkHI6jmqtfQR0wAUDHAq6s7CMhMOh+8Mng84IrOhkLwxueMqG/M VJFN5TiVZAhB+8enT3rwZRd7HepaaFOW+uMybdNuCBJtVhyGGR83HTr3qJNQvAm46VcZC7iBznqM D8h+dWBd228p9oQnPTtVlZAWHUnGOvFaqNt0Re4oYtCGKlSwBIPUViX7S3gYW8MZ8tiu9mwSQcED jpnj8K2pThBzXI65cXWn3c8cF00IZPNtIvLDefIzHchJ56lemMbs5448jNq+LoUlPCfFddL6P/g2 Pf4ew2X4jFOGPvy8ra1tqtdXddLk1u4dN2CDkgg9QQcEfnUwqC2TYuM5JJYn1JOSfzJqcV9bDn5F z7219ep8xV5PaS9n8N3a/boKTk5NW9GspNQ1KC0jUkuwBx6VSYhVLE4AGSa6X4b6taaVrEd7qdow t3wFlDZMYPRmXHTuec47dqwxGOw2FcVXmo8zsr9TpwuXYvGxm8PTcuVXduiPcNGso9P0yCzjAAjU A49anX/j7k648tPp1apAQQCDxUaf8fkhwf8AVp392r1Dx11OV8bf8hWL/rgP/Qmoo8bf8hWL/rgP /QmorkqfEzohsjrlqOx4s4cAY8teh46VItMsiDZwkEH92vQY7eldb3OdbEtFLSUxBUU8CTSxOxYe Wc4HQ/MrfzUVNSUmk9wTsU/7Oh3QNvk3QhwpBxksANxx1bjqc0tpp1vbGJkLlo02qWbPGWP/ALOf yFW6WlyIfMxKO1LSVQgoo70UAFFFLQAh6VFIeDUpqGU8GmtxDtLRWvhNJkRwAyOR7V01pFJHY7Cv 7wpnHueorlrORVSeMsQZdsYHrlgD+laniDR7id7i9t9Zv7SVoAoWFvkGwNjgEHq7HqM8egr5XOpO piuR9ErHp4KyptmsIFa3MeCMrg49xXOaneTzu9rIIyEc/Mo64rGnsp2kVBr2uybHZ973JU5OeMDg Yycf/WFW7C2eBXD3Vzcb33AzvuKjaBtB9OM/Umu7LculRnz1Y37eTMK9aMo8sGTRJgVMBQopa9xu 5xi0UtIcUhkdxBFcIEkBIByMMQeQQensSKjeytXI3xbgJRKFJJAbnkDp3P51ZozScUx3aKkOn2cR YpDyZDISWJO4lDnr/sL+VWqWihJLYV7idqhu4I7m3kgk+5IMHGP61PTTQ1dWYJ21MSTw9prXMc8i zymNw6q8m5dwOc4/H8frzTtQ0axvZZpbiKV5JU2MzSsf4NmR6cAdPQHrWwRRtFZfVqD1cUae2qdz 5z8W6E+ia5cRfPscjbk8AD0H41lgV7d8T/D41PSjdRL++iGc14m6sjlGBDA4IqJQUNFsbRlzK7Ep cc0AUtQUJgUtFJkUALRSZoyPegBaKQEUtABRRRQA001hmnnrSUwJRezJCIkAXAxkCq80ks2PMctj pTsClwKmMIxd0httkBSrlnevE6LLlkUbQP6/yqHA7U1lpyipq0hJuOx0G/K5HIxk4HasLXoobyWz kdTvtZjJGQe5Qrz+DH9KSJpdwVJWX8aSRGWQhjlu9cdPCqNRXe2ppKo2hEHFSAU0VS1GRXWS3eO7 AA4e3Uk/d/8Ar++a65z5VciMbmvpmnvql4liqkiX5Wx6d6dpOk69c/Ew+ELtNtsshSQiP5vIAJ8z PQAjbz6tjFdf8JtONgk+sXNrrl06jYiNFuUtwQQfx649favVV0OxtPE9zr/J1CSzSyBAGBGrs+fr lv0FeTmGX0Mx9nzxvKLvby0v+h6uXZzisq9oqMrKat8+j+V2XUAVQq8ADApEA+2SdP8AVp9erU5a ahH2yTkcRpxjnq3evo2fPLZnK+Nv+QrF/wBcB/6E1FHjb/kKxf8AXAf+hNRXHU+JnRD4UdXI+xRt G524Vc4zT4lKRKhYsVAG4nk+9RwoSfOkGHYcAjlBxxU1de5zvTQKKO9FMQUUUUAFFFFABRRRQAcU UUUAFFFFAAagm6VOagmHFOO4mR21vLLJG0X/AD1QEnoPmB/Pg10viS6e2stkcTEygqXHRao6Elrs gZlbzfM/u5APOPzz19qd4ovmL/YYjx1l4+hAr5qUJYjM7NXSf4I9GFqWFbvqzFgQYHFWVHtUUIqc dK+mk9TzkHtS0lFSMWjikooAWigUUAFFFLQAlH5UUUAHFGKKKAGyRrJG0bgFWGCK8T+JXh59L1Jr mFD5MhzxXt1ZfibSYdW017eRAWx8pqZx5kVCXKz50orQ17TJtLv3t5VIAPyms+uVnUFNp1NoAKKc m3eN+dvfHWkOMnAOO1ACU6kHWloAKKKKAExRilooGJRilooAQikxTqbQIBwQR2oOWJLHJPeiloAS tzwdosusarHGFJjVgWNZVjay3lykESksx/Kvc/Anh+PR9MUlB5rjJ9a0hG7InLlR0uk2tppumIkZ Uuq4Vcc5phLO5duWJyaXbTgKqlQVOUpXu3/VvQwlLmSQ3hVLEgAckntSQbndpSGUHAVSewzz+Of5 U1h50hjI/dr970c+lTitdxbHHeNv+QrFx/ywH/oTUUvjb/kKxf8AXAf+hNRXJU+JnRD4UdgKKq6p dixs2uDHvwwXGcckgf1qcQ35Gdlrz/tt/hWtXEU6TtJmUKM5q8UPopnk6h/dtf8Avtv8KPJ1D+5a /wDfbf4Vn9eod/zL+rVew8UUzydQ/u2v/fbf4UeRqH921/77b/Cj69Q7/mH1Wr2H0UzydQ/u2v8A 323+FHk6h/ctf++2/wAKPr1D+b8GH1Wr2H0UzydQ/u2v/fbf4UeTqH921/77b/Cj69Q7/gw+rVew +jvTPJ1D+7a/99t/hUdz9ugt5J3jtisaliA7Z4/Cj69Q7/mH1ar2J+KPwqKynF1Zw3KqVEqBgD2z UveutO+pgBqJxkVLTWFCES6S8SNJFKcb8GMngBh6/nTdSt3+0NIzguMBlLZI4HPuKhKg0Yz1Occc 1zyw37/20HZ9fNGqqe5yND7eSSIkxsVJGCRSimLT8cV0NK9zMKKKKAFIxg5BzSUdqMUALRQMUUAF FLikGKACiijFABRRRjigAooI4oxQByHxB8Mx6rZtcRJ+9UZOB+teK3ttLaXDQzKVZT3HWvpkgHII 615z8S/DtoyG5jwjHngVlUhfU1pz6M8mpp60912sV9DSYFYG42il4zRigBB1p1JxilxQAUUUlAC0 UUUAFFFA9aBhRRRQAU6KN5XEcalmY8AU2vQvhr4etrmdbichm64xTirsmTsrmx8NvCi26LfXaZY8 jIr0TGBxSRRpFGsaKAqjAFOrqiklY5ZSu7iYoxS0UxEVsP8AWcf8tDUtRWw4kOBy7fzqWkthvc47 xt/yFYv+uA/9Caijxt/yFYv+uA/9CaiuSp8TOiHwo//Z ------=_NextPart_000_0017_01D02B6C.76F93410--