Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on lipkowski.org X-Spam-Level: X-Spam-Status: No, score=-2.3 required=5.0 tests=FREEMAIL_FORGED_FROMDOMAIN, FREEMAIL_FROM,HEADER_FROM_DIFFERENT_DOMAINS,HTML_MESSAGE,RCVD_IN_DNSWL_MED, SPF_PASS,T_DKIM_INVALID autolearn=ham autolearn_force=no version=3.4.0 X-Spam-DCC: MGTINTERNET: mailn 1170; Body=1 Fuz1=1 Fuz2=1 Received: from post.thorcom.com (post.thorcom.com [195.171.43.25]) by lipkowski.org (8.14.4/8.14.4/Debian-8+deb8u1) with ESMTP id v3OJx1aP011934 for ; Mon, 24 Apr 2017 21:59:02 +0200 Received: from majordom by post.thorcom.com with local (Exim 4.14) id 1d2k1b-00006m-Ka for rs_out_1@blacksheep.org; Mon, 24 Apr 2017 20:51:55 +0100 Received: from [195.171.43.32] (helo=relay1.thorcom.net) by post.thorcom.com with esmtp (Exim 4.14) id 1d2k1a-00006d-1A for rsgb_lf_group@blacksheep.org; Mon, 24 Apr 2017 20:51:54 +0100 Received: from resqmta-ch2-12v.sys.comcast.net ([2001:558:fe21:29:69:252:207:44]) by relay1.thorcom.net with esmtps (TLSv1.2:ECDHE-RSA-AES256-GCM-SHA384:256) (Exim 4.89) (envelope-from ) id 1d2k1U-0002rf-Kt for rsgb_lf_group@blacksheep.org; Mon, 24 Apr 2017 20:51:52 +0100 Received: from resomta-ch2-10v.sys.comcast.net ([69.252.207.106]) by resqmta-ch2-12v.sys.comcast.net with SMTP id 2k0rd9MX2dlFQ2k1QdrFAJ; Mon, 24 Apr 2017 19:51:44 +0000 X-DKIM-Result: Domain=comcast.net Result=Signature OK DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=comcast.net; s=q20161114; t=1493063504; bh=mZ2KKNUteZ60X2ADjogKSYbWek95uIhZK0yNE5+lYyA=; h=Received:Received:From:To:Subject:Date:Message-ID:MIME-Version: Content-Type; b=Q/Hv8iJ+t97GtrEpRQLTEgfr+ujUHnOAH9YrYm+Uf3/0IBkGmeSVd9K12WQYupnNW 95BromJniG8n3N0SIisCH82kPyYAGQ+mcKnvfiBmdde2VJQCdsvy+RMlDdwhyJ+uq4 JKutke3vtB4ViIn6EhV/hA0fKDi2Q0/l3xwXTMGazmFQOVnheKaHb4dBt9s0aaTCT7 2WKuUa/PTaLQxDt7URsR1CrZdJR065qAfqYToJqmzfs/c6hasyHgcNOpjMwEFSAgOU oi+nhCNlmkKyQWsFXpvvCIoKICr3+yaE1BijgLIOpR8Xh80pRHrprBBAhErhha/QwW YETWwsNyGUeaA== Received: from Owner ([IPv6:2601:140:8500:7f9f:745d:4dc7:c3a:8c9]) by resomta-ch2-10v.sys.comcast.net with SMTP id 2k1OdfDUwX2Fj2k1Pdl9tJ; Mon, 24 Apr 2017 19:51:44 +0000 From: To: References: <79fa174a-23e3-4c02-5654-ffa8905d38d8@abelian.org> <2232d14e-843d-433d-d2a8-940129c67b35@abelian.org> <001901d2bc1d$23d4d570$6b7e8050$@comcast.net> <1581982.q1LxLSTeDg@x220> <003c01d2bc47$ab6b6dd0$02424970$@comcast.net> In-Reply-To: Date: Mon, 24 Apr 2017 15:51:31 -0400 Message-ID: <000001d2bd34$305fcee0$911f6ca0$@comcast.net> MIME-Version: 1.0 X-Mailer: Microsoft Outlook 14.0 Thread-Index: AQJfYaQfVneftvuz+YPoKaaPzt6/fwHkpeboAk5ERUUA32sWKgEw7zSLAna6KWOgdX5KMA== Content-Language: en-us X-CMAE-Envelope: MS4wfLiFo+IFafv9pydLR5YznReWKWlKpklALeMefZw0s1lXRDkaD2ruyfcys+ER4rKWShcLCD3Qt+LKZcBefDiEMDee1iU2NLhAkWCaDTVy3oARE1tjyp0I cH4tRF5IDk02R/rKwqOwQCJpFJmHznwY7Pk= X-Scan-Signature: e05abe0a317df5557411129b79583b1e Subject: RE: VLF: Some natural signals Content-Type: multipart/mixed; boundary="----=_NextPart_000_0001_01D2BD12.A95078D0" X-SA-Exim-Scanned: Yes Sender: owner-rsgb_lf_group@blacksheep.org Precedence: bulk Reply-To: rsgb_lf_group@blacksheep.org X-Listname: rsgb_lf_group X-SA-Exim-Rcpt-To: rs_out_1@blacksheep.org X-SA-Exim-Scanned: No; SAEximRunCond expanded to false X-Scanned-By: MIMEDefang 2.75 Status: RO X-Status: X-Keywords: X-UID: 11474 This is a multipart message in MIME format. ------=_NextPart_000_0001_01D2BD12.A95078D0 Content-Type: multipart/alternative; boundary="----=_NextPart_001_0002_01D2BD12.A95078D0" ------=_NextPart_001_0002_01D2BD12.A95078D0 Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: quoted-printable Andy, =20 Thanks for those examples; good to know that the HF (E/F layer) = ionosphere (Doppler et al) had sub-Hz signatures clearly discernable by = ear after shifting/scaling; I had guessed that those (E/F layer) = signatures might be too noisy. I=E2=80=99ll put them on my list; looking = forward to capturing and hearing them. =20 Your results also left me thinking about comparing similarly = shifted/scaled VLF transmitter data from Spectrum Lab, captured after a = Dst-index dip (i.e. during a geomagnetic storm). An example of VLF transmitter spectral spreading during a geomagnetic = storm is shown in the attached image. It=E2=80=99s easier to see what=E2=80=99s going on by looking at the = before/during/after plots and spectra in the source document: =E2=80=9CSubionospheric VLF measurements of the effects of geomagnetic = storms on the mid-latitude D-region=E2=80=9D, Peter 2005; Which should be on: http://nova.stanford.edu/~vlf/publications but I can=E2=80=99t confirm at the moment because the website appears to = be momentarily down. The before/during/after plots and spectra in the above paper show that = basically all of the VLF-signal spreading shown in the attached image is = associated with the geomagnetic storm. I don=E2=80=99t know if the modulation that causes the spreading is from = storm-induced motion of the ionosphere, or injection of particles, or = other, but am looking forward to listening to some time-scaled/ = frequency-shifted VLF transmitter data for any clues not evident in the = above-referenced plots, and for any natural sounds. =20 Wondering if any such natural sounds in VLF signals might have = similarities with the sounds that you heard from HF signals. =20 I also plan to time-scale/ frequency-shift data from: http://www.intermagnet.org/data-donnee/dataplot-eng.php?type=3Dxyz http://www.intermagnet.org/data-donnee/download-eng.php to listen for similarities between the magnetic field itself, and its = effects on the ionosphere, during the geomagnetic storms. On the above website, using the =E2=80=9CData=E2=80=9D -- = =E2=80=9CObservatory Plots=E2=80=9D -- =E2=80=9CRate of Change=E2=80=9D = option for successive 24-hour periods 2003-10-30, 2003-10-31=E2=80=A6 = 2003-11-06, you can see a single damped chirp in geomagnetic field = modulation (starting at storm onset) that decays for a week (one chirp) = before reaching background noise level. Raw data is available on the = website (http://www.intermagnet.org/data-donnee/download-eng.php) at = one-second and one-minute sample rates; can=E2=80=99t wait to hear the = week-long damped chirp and all of the higher frequency features. A = 100-Hz upshifted 3-hour (one-minute-per-second) playback of the = 2003-10-30 -- 2003-11-06 week would make simultaneously audible most of = the content that could correlate with the VLF signal spreading shown in = the attached image. =20 =20 Thanks for the interesting examples in your message. =20 73, =20 Jim AA5BW =20 =20 =20 =20 =20 From: owner-rsgb_lf_group@blacksheep.org = [mailto:owner-rsgb_lf_group@blacksheep.org] On Behalf Of Andy Talbot Sent: Sunday, April 23, 2017 12:01 PM To: rsgb_lf_group@blacksheep.org Subject: Re: VLF: Some natural signals =20 I once made an overnight recording of (the carrier of) some HF broadcast = signals around 3MHz arriving via a skywave path. The recording was = done using G3PLX's Dopplergram software, and was made at a sample rate = of around 8Hz saving the data in I/Q format =20 The original idea was just to view the ionospheric Doppler shifted = pattern on a waterfall, watching how it moved, faded and split into = several parallel 'strands' from different ionospheric layers. =20 But by playiong back at 1000 times faster (8kHz sampling) then = frequency converting from zero centre up to a few kHz some really = wonderful 'natural' sounds were generated. The 8 hour recording = played back in 30 seconds, accompanied by some wonderful whoops and = chirps, especially so at dusk and dawn. Parts sounded a bit like = whales or dolphins. I really must try this again, but am havign = trouble identifying any suitable target broadcast signals. There is = so much less HF broadcast than there was 20 years ago when we did this. =20 Andy G4JNT =20 On 23 April 2017 at 16:38, wrote: Hello Claudio, Yes I agree with your sentiment, I was thinking of listening to the = time-domain sub-Hz content; mixing or demodulating to remove any carrier = (using Spectrum Lab or Matlab for example) and playing back 100x or = 1000x faster (using Matlab for example), to take advantage of the = ability of the brain to discern things that come through the ear that = the brain cannot discern when those same patterns come through the eye = (through the eye as with a time domain plot, spectrogram or other). = Basically speeding up the playback of the natural (sub-Hz in this case) = modulation to put it in the ear's response band. An interesting example = of aural-path value comes from noise cancellation and/or weak-signal = extraction work, where listening to (audio) playback of raw ULF/VLF RF = data can reveal signal and noise characteristics that may generally not = be noticed in spectrograms, FFTs and time-domain plots. But mainly the = hope that the ear's processing may help to appreciate and enjoy some of = the elegance in slower natural signals, just by listening to their = sub-Hertz content with faster playback; for patterns that are = particularly enjoyable, memorable or meaningful via listening. It's interesting that you mention tenths of Hz shortwave-RF broadcast = signal fading; I have looked forward to some future opportunity to = listen to slightly simpler signal-fading in ULF and VLF bands by methods = such as the above; listening for characteristics of ionospheric motion = and other processes. Some signatures of ULF and VLF fading processes can = be seen in plots of signal phase and amplitude vs time, but I'm looking = forward to hearing what the ear can do with the same information. 73, Jim AA5BW -----Original Message----- From: owner-rsgb_lf_group@blacksheep.org = [mailto:owner-rsgb_lf_group@blacksheep.org] On Behalf Of Claudio Pozzi Sent: Sunday, April 23, 2017 10:15 AM To: rsgb_lf_group@blacksheep.org Subject: Re: VLF: Some natural signals On Sunday 23 April 2017 06:34:07 you wrote: > Thanks Paul, > > What a wonderful sound. > > Unfortunate that bird's magnetic sensors don=E2=80=99t have the > sensitivity/bandwidth for what you captured; they could perhaps tune > their nav systems for reduced sensitivity to the disturbance that > chorus indicates. > > Do you know if anyone has made audio translations of the mHz to 1Hz > ionospheric-TEC waves (which modulate signals in HF and other bands)? > I'm referring to what some folks call ULF waves, where ULF refers to a > geophysical-community convention of roughly 1 mHz to 1 Hz. > > Or if anyone has made audio translations of the mHz to Hz modulation > that magnetic storms can impress on VLF signals? > > 73, Jim AA5BW > Hi Jim. Interesting question,but how can I made this audio translation? The 10 mHz signal period (T=3D1/F) is 100 seconds. So if I modulate in frequency or in amplitude a 1000 Hz carrier what = sound can I heard? And the sound of the translated frequency like SSB USB (1000+0,01 Hz) is = indistinguishable from a 1000 Hz sound. A 10 mHz frequency signal must be at least 100 seconds long for one = complete sinusoid. If it's shorter how can I measure the frequency? Can I assume that the missing part of signal is a sinusoid? In my opinion VLF signals (lower than few Hz) are better analyzed in = time domain, not in frequency domain. If you listen a 3600 seconds recording of VLF sound reproduced high = speed in 3,6 seconds the sound should be interesting. But each "frequency" is = multiplied by 1000. The short wave AM broadcasting fading is an "amplitude modulation" with = few tenths of Hz frequency (and some group delay distortion). 73 de Claudio IK2PII -- ZE-Light e ZE-Pro: servizi zimbra per caselle con dominio email.it, per = tutti i dettagli Clicca qui = http://posta.email.it/caselle-di-posta-z-email-it/?utm_campaign=3Dail_Zim= bra_102014=3Din_footer/f Sponsor: Idee regalo classiche o alternative? Trova l'offerta migliore in un = click Clicca qui: http://adv.email.it/cgi-bin/foclick.cgi?mid 327&d#-4 =20 ------=_NextPart_001_0002_01D2BD12.A95078D0 Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable

Andy,

 

Thanks for those examples; good to know that the HF (E/F layer) = ionosphere (Doppler et al) had sub-Hz signatures clearly discernable by = ear after shifting/scaling; I had guessed that those (E/F layer) = signatures might be too noisy. I=E2=80=99ll put them on my list; looking = forward to capturing and hearing them.

 

Your results also left me thinking about comparing similarly = shifted/scaled VLF transmitter data from Spectrum Lab, captured after a = Dst-index dip (i.e. during a geomagnetic storm).

An example of VLF transmitter spectral spreading during a geomagnetic = storm is shown in the attached image.

It=E2=80=99s easier to see what=E2=80=99s going on by looking at the = before/during/after plots and spectra in the source = document:

=E2=80=9CSubionospheric VLF measurements of the effects of = geomagnetic storms on the mid-latitude D-region=E2=80=9D,=C2=A0 Peter = 2005;

Which should be on:

http://nova.stanford.= edu/~vlf/publications

but I can=E2=80=99t confirm at the moment because the website appears = to be momentarily down.

The before/during/after plots and spectra in the above paper show = that basically all of the VLF-signal spreading shown in the attached = image is associated with the geomagnetic storm.

I don=E2=80=99t know if the modulation that causes the spreading is = from storm-induced motion of the ionosphere, or injection of particles, = or other, but am looking forward to listening to some time-scaled/ = frequency-shifted VLF transmitter data for any clues not evident in the = above-referenced plots, and for any natural = sounds.

 

Wondering if any such natural sounds in VLF signals might have = similarities with the sounds that you heard from HF = signals.

 

I also plan to time-scale/ frequency-shift data = from:

http://www.intermagnet.org/data-donnee/dataplot-eng.php?type=3Dxyz=

http://w= ww.intermagnet.org/data-donnee/download-eng.php

=

to listen for similarities between the magnetic field itself, and its = effects on the ionosphere, during the geomagnetic = storms.

On the above website, using the =E2=80=9CData=E2=80=9D -- = =E2=80=9CObservatory Plots=E2=80=9D -- =E2=80=9CRate of Change=E2=80=9D = option for successive 24-hour periods 2003-10-30, 2003-10-31=E2=80=A6 = 2003-11-06, you can see a single damped chirp in geomagnetic field = modulation (starting at storm onset) that decays for a week (one chirp) = before reaching background noise level. Raw data is available on the = website (http://w= ww.intermagnet.org/data-donnee/download-eng.php) at one-second and = one-minute sample rates; can=E2=80=99t wait to hear the week-long damped = chirp and all of the higher frequency features. A 100-Hz upshifted = 3-hour (one-minute-per-second) playback of the 2003-10-30 -- 2003-11-06 = week would make simultaneously audible most of the content that could = correlate with the VLF signal spreading shown in the attached image. = =C2=A0

 

Thanks for the interesting examples in your = message.

 

73,

 

Jim AA5BW =C2=A0=C2=A0=C2=A0=C2=A0

 

 

=C2=A0=C2=A0

 

From:= = owner-rsgb_lf_group@bl= acksheep.org [mailto:owner-rsgb_lf_g= roup@blacksheep.org] On Behalf Of Andy Talbot
Sent: = Sunday, April 23, 2017 12:01 PM
To: rsgb_lf_group@blacksheep.org=
Subject: Re: VLF: Some natural = signals

 

I once = made an overnight recording of (the carrier of) some HF broadcast = signals around 3MHz arriving via a skywave path.   The recording = was done using G3PLX's   Dopplergram software, and was made at a = sample rate of around 8Hz saving the data in I/Q = format

 

The original idea was just to view the ionospheric = Doppler shifted pattern on a waterfall, watching how it moved, faded and = split into several  parallel 'strands' from different ionospheric = layers.

 

But by playiong back at 1000 times faster  (8kHz = sampling) then frequency converting from zero centre up to a few kHz =  some really wonderful 'natural' sounds were generated.   =   The 8 hour recording played back in 30 seconds, accompanied by = some wonderful whoops and chirps, especially so at dusk and dawn.   = Parts sounded a bit like whales or dolphins.   I really must try = this again, but am havign trouble identifying any suitable target = broadcast signals.     There is so much less HF broadcast than = there was 20 years ago when we did this.

 

Andy  G4JNT

 

On 23 = April 2017 at 16:38, <hvanesce@comcast.net> wrote:

Hello = Claudio,

Yes I agree with your sentiment, I was thinking of = listening to the time-domain sub-Hz content; mixing or demodulating to = remove any carrier (using Spectrum Lab or Matlab for example) and = playing back 100x or 1000x faster (using Matlab for example), to take = advantage of the ability of the brain to discern things that come = through the ear that the brain cannot discern when those same patterns = come through the eye (through the eye as with a time domain plot, = spectrogram or other). Basically speeding up the playback of the natural = (sub-Hz in this case) modulation to put it in the ear's response band. = An interesting example of aural-path value comes from noise cancellation = and/or weak-signal extraction work, where listening to (audio) playback = of raw ULF/VLF RF data can reveal signal and noise characteristics that = may generally not be noticed in spectrograms, FFTs and time-domain = plots. But mainly the hope that the ear's processing may help to = appreciate and enjoy some of the elegance in slower natural signals, = just by listening to their sub-Hertz content with faster playback; for = patterns that are particularly enjoyable, memorable or meaningful via = listening.

It's interesting that you mention tenths of Hz = shortwave-RF broadcast signal fading; I have looked forward to some = future opportunity to listen to slightly simpler signal-fading in ULF = and VLF bands by methods such as the above; listening for = characteristics of ionospheric motion and other processes. Some = signatures of ULF and VLF fading processes can be seen in plots of = signal phase and amplitude vs time, but I'm looking forward to hearing = what the ear can do with the same information.

73,

Jim = AA5BW



-----Original Message-----
From: owner-rsgb_lf_group@bl= acksheep.org [mailto:owner-rsgb_lf_group@bl= acksheep.org] On Behalf Of Claudio Pozzi
Sent: Sunday, April 23, = 2017 10:15 AM
To: rsgb_lf_group@blacksheep.org=
Subject: Re: VLF: Some natural signals

On Sunday 23 April = 2017 06:34:07 you wrote:
> Thanks Paul,
>
> What a = wonderful sound.
>
> Unfortunate that bird's magnetic = sensors don=E2=80=99t have the
> sensitivity/bandwidth for what = you captured; they could perhaps tune
> their nav systems for = reduced sensitivity to the disturbance that
> chorus = indicates.
>
> Do you know if anyone has made audio = translations of the mHz to 1Hz
> ionospheric-TEC waves (which = modulate signals in HF and other bands)?
> I'm referring to what = some folks call ULF waves, where ULF refers to a
> = geophysical-community convention of roughly 1 mHz to 1 = Hz.
>
> Or if anyone has made audio translations of the mHz = to Hz modulation
> that magnetic storms can impress on VLF = signals?
>
> 73, Jim AA5BW
>

Hi = Jim.

Interesting question,but how can I made this audio = translation?

The 10 mHz signal period (T=3D1/F) is 100 = seconds.

So if I modulate in frequency or in amplitude a 1000 Hz = carrier what sound can I heard?
And the sound of the translated = frequency like SSB USB (1000+0,01 Hz) is indistinguishable from a 1000 = Hz sound.

A 10 mHz frequency signal must be at least 100 seconds = long for one complete sinusoid.
If it's shorter how can I measure the = frequency?
Can I assume that the missing part of signal is a = sinusoid?

In my opinion VLF signals (lower than few Hz) are = better analyzed in time domain, not in frequency domain.

If you = listen a 3600 seconds recording of VLF sound reproduced high speed = in
3,6 seconds the sound should be interesting. But each = "frequency" is multiplied by 1000.

The short wave AM = broadcasting fading is an "amplitude modulation" with few = tenths of Hz frequency (and some group delay distortion).

73 de = Claudio IK2PII




 --
 ZE-Light e ZE-Pro: = servizi zimbra per caselle con dominio email.it, per tutti i dettagli Clicca qui http://posta.email.it/caselle-di-posta-z-email-it/?utm_= campaign=3Dail_Zimbra_102014=3Din_footer/f

 Sponsor:
&= nbsp;Idee regalo classiche o alternative? Trova l'offerta migliore in un = click  Clicca qui: http://adv.email.it/cgi-bin/foclick.cgi?mid = 327&d#-4

 

------=_NextPart_001_0002_01D2BD12.A95078D0-- ------=_NextPart_000_0001_01D2BD12.A95078D0 Content-Type: image/jpeg; name="Frequency Spreading (NLK Signal) October 2003 Geomagnetic Storm.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="Frequency Spreading (NLK Signal) October 2003 Geomagnetic Storm.jpg" /9j/4AAQSkZJRgABAQEAYABgAAD/4QBORXhpZgAATU0AKgAAAAgABAMBAAUAAAABAAAAPlEQAAEA AAABAQAAAFERAAQAAAABAAAOw1ESAAQAAAABAAAOwwAAAAAAAYagAACxj//bAEMAAgEBAgEBAgIC AgICAgIDBQMDAwMDBgQEAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/b AEMBAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAwMDAwMDAwMDP/AABEIAXwBjwMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUG BwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR 8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5 eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj 5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQAC AQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXx FxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqS k5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T1 9vf4+fr/2gAMAwEAAhEDEQA/AP36liWdNrqrr1wwyKdRRQAUUUUAFFFFABRRRQAjNtK/KTuOOO1L RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeTfHHxd8TNH8ViPwjp+irodlp8t3eXt+hk3 OFJWNAHX+6cnnqK+fv2Iv24fjN+2F8CNK+Idn4d8Lx6bJrV1pt9p8YYzJFDcSW5kV9/95AxG08Z+ tfYHxImS3+HuuvIyxounzksxwB+7bvXxT/wbyTQXv/BO6GPzEdf+Eh1oOA3IB1C469xwaAPpf4Ef EfxU1v4wufiJq3guGysNauYdKm065RUjsxNKIhcMZWAl8tUyDt5DcDoO3T4u+E5JtQjXxR4daTSY /NvlGow7rJOfmlG75F+VuWwOD6V+Q3xgljX/AIJ8/tpRJqF4o0zx3qz2bLfyiS3IvNRC7G3bsY6D OPbivc/FnwH8H2H/AAVW+C2jwwzR6X4o8Jaj/a9sNTn8vUfLhmaPzP3nOGY9MZz3oA/RTSfG2ja/ 4cXWLHVtLvdIcFlvoLpJLZgCVJEikrwQR16jFN8JeMND8YW002harpWrQxyESvY3SXCo+TkMUJAO QeD6GvxpT4y6t8BP2ZPF1lperalp/gTQfjCNP1OWIvd/2Tp0kDSDqHk2G6ePOM439h0+6f2EfhF4 T0j9o/xd478J/FCfxdH4ysLeW60uzw2mW5XcUlX92ux28xiVBHuOKAPcfj/+0ha/CTxV4V8K2McV /wCL/G1y1vplluy2yMBpZmUc7Ej3N2B2EZFeNzftl+ONI/4Kc6f8DJNP0BtN1Dww3iSbVFjYS/u3 t4jHs3/3puD6L071w3xjkvG/4OAfhTHfbv7JX4fztpufufav+Jr52P8Aa8sR59sVmfFyT/hXf/Bf nwVrms/6Bo2vfD2602zvZTtgkuftVq/lFugYrFIcHHCmgD6e+PPxW8WeBvjn4A0PRLfR7jT/ABIL s3T3ETGaBYWtgQmHGS3mntxtHWvn/wDag/bp+Nf7MD/DCPWPD/hU3PxK8Rf2GlvsYNpwJADsfM+f g5xha9v+L2p2vjH9q/4XW+l3EN9JpUOoz3fkOHFupaz27iOBna2B32mvnL/guFqEFt8R/wBmBZJo 0b/hYcRwWAIH7vmgD3rxP8dPin8FvC3inX/GGhaTfaT4ZnhkD6dG0bXtq6fvGUbnIZHZFxzkZPHb 3LwH450v4meDNM8QaHeQ6hpGsWyXdncwsGjnicZVgRwQQawf2hVsrr4GeKPtxjaybTpPMJPykY4/ XFfOv/BCKbWpv+CW3wpOtGVpho9uLYyfeNv5Eez+vXmgD6+ooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqO6iae2kjV2jZ1Kh16qSOo+l fnU3/BQr4gfsU/8ABRLxR4L+LF1/bHwS1a8trDSPFjxOn9hX01nDcLBdSZKKjfvQpIQZaMZJPIB+ jNFeB67rfiTWv2x9P0ex8VXEPhnUNDnvBbQHcrOPJ2OrZxjDnt3ryf8A4IrfHzx9+018I/H3iLx5 4kbWrrR/GV1odnGkbJHHbx2tpKuQzMS26Z+cgYxx6gH2pRXxL/wWL/aN8cfs0RfCW/8ACPiqPw7a +JvGMOiaqZ8+ULZrO8mZs7lCndAgySRgnivTtI1Dxv8AtD/GrR9W8J+KrjS/hr4fTbczohceJpCV KtE+QvlAITvAYOJhgjHIB9GUU3YfK27jnGM96/O/wr8b/ip8R/8AgoJ+0N8PT8TF0HQfh7p1nf6N JKu1YWmgglYTEuAygyMBjb25oA/QXxD4fs/FWi3On38KXFneRtFNE4ysiMCCpHcEEjFc58KfgH4O +BuhT6X4P8O6R4b024ZpJLTTbSO1gLNyzbIwF3E8k4ySa8F/4JI/t1a1+2/+wzY/EjxpYWeiahaz TWt7NCGjs7lYYo5GuYy5P7o7yQdzDC9TXH/sP/8ABR3xF8dP27viV8NPF2lx6FYrAus+C/MDI+p6 eqxQyONxw379Lk/KBwvTvQB9G3f7Gvwuv/D+t6TN4F8LzaZ4kuTeatavpkDQ6lMxctJMhTEjEu5J YEksfU1rTfs4eB7jxlpfiKTw1o8mvaJAbaw1BrSM3VnEc5SOTbuVTk5CkA5rt68pb9tv4Yp4vstG bxVpyy6ldCxtLppALK6uCVAhS4z5bSEsoChiSWXA5FAGtpf7Kvw40fw5r2jw+CfC/wDZPiiQzavZ NpcDW+pSEg75o9m2RsqOWBPA9KtfBD9m7wD+zX4ek0rwD4O8NeD9PmYPJDo+mQ2SSEZxuESqDjJx npk1yXxE/b7+E/wu8Sa5o+reMNMTVvDcccupWUMgmuLRHEZVmjUlgu2RDkjABz0r0r4e/EHRfit4 J0vxH4d1Kz1fRNatY72yvLWVZYriKRA6MrKSCCrA/jQB59+0X+zPD8WfGPhDxlpckOn+MvAty0+n XmzDSRSYWaBmHO14y69wN5OK6j4hfBHwx8cNCsIfGXhzR9Wnsys8LXFskz2cuCC0TsuUOGYZXBwx 9TXgv7Wf7Qfjz4U/t7/AXwrpeoabH4N8fTahb6lam3f7SzwWzyqwfftxnYMFD0PPPDfj7+074i8b ft2aL8BfB2of2NNHoEvibW9SiBNxDEjRxpCvIC7muImyQeARjnIAPoT4dfBXwz8KjNJomk2drc3O BNc+WpuJgM4DSY3MBk8E9zVP4ofs5eB/jTqum33izwxoviC60aUT2El/Zx3DWUgORJEXU7HH95cG vJf+CdX7Wep/tGaT8QPDfiPyG8VfCvxLc+GtQmiVlW8WGWSKOfBJwZPJc9TXYftceFvG3izwhJH4 Y8cWPw7sLWBp7zWJky8RGSAG3qFXIXJOcgkcdaANj9or4S6l8XfhZL4L0u6XS9P1YLb3t2GPmQ24 5IQDqxIXuOM11vw3+Hmk/CbwHpPhnQbOHT9G0O1Szs7aJQqQxINqqAOOAK8a/wCCe3xD+IfxG/Zh W88eXGmX2vWl7fWdrqtqCYNWt4bqaOC5xvb/AFkSRucNg7sjiuZ/4Jc/tCeNvj54d+KI8dX9jqGo eE/HOo6FbSWcLwxiCEqF+Vnc9z3oA+pqK534rv4gHw+1JfCq2za/Iix2jXAzFGzMql2GVztUs2Mj JFfGPhnx78eP2TP25/Afg/xh4us/iX4S+J1rcPOqWMkNxoE8ckPzofNYeQN7jleMp83qAfeFFfnW /wDwUC8f/Ez9nH4qftCeH9Qht/CPwz1u5gstEVGMWqafZRpczyyHdku8TlVIAAK5w3Su6t/22/EP 7W/7Sth8PfAOqLoVjp/gmLxdqt9AC0xnlVdluDkAKDLETkEkAjjOQAfbVFfHf7Nf7R/jr9tz9m/W tP03XtP8I+LPBfiK+8L+IdVWJm2NZTy2rTRguNpkaJnBJYD3611f/BNTx98RvFfhXxppvjrXtK8Z 2fh3xDLYaJ4msT8us2qwwMHP7xwTud+QQOnHFAH0zRRRQAUUUUAFFFFABRRRQAUUUUAFFFU/EF3N YaHeT28fmTwws8af3mA4FAHnur/thfD3RPH7eHLjxFZJex3K2U03mp9ltrhgCsEkudqStuTCH5j5 icfMM+mtIqpuLAKBknPAFfjj8JbiTXP+DfP4m+LtQkabxVfeI/7Vmu2/14vIdStFh56g/uYhgdfx r7x8SfEzxLpv/BJLS/FUJmbxS/w+0y9Y7cuZ3tYC5x65ZjQB6h4X/bB+HvjHx3H4e0/xFYzXlxO9 rayiVPs97MmA0cMm7EjjcmVXJG9fUUfEP9r3wJ8MfFN1o+pasDeaeqPfmACWPTQxAU3DA4izuU/P jhl9RX5r/EK3X4ff8Ee/2TfEWhuf+Ekg8SeFbmC4Q5luJpLq13gn+LftUHPWqH7X3xW8Xfs8/tK/ Fi88Gqvjb4c+NrPTn+J3lW/nXvgieWC0t2eEHDODCLdisazbRMzYGCVAP170LXbPxPolnqWnXVvf afqECXNtcQSCSKeN1DK6sMhlKkEEcEGrVec/sh23hax/Zc+Htv4J1GTVvCVv4dsItJvZC3mXNstt GInbcAQxQKSCAQSeB0rpPi18VNF+CPw31fxZ4iulsdE0OD7ReTnGI0yBnkgdSO9AHRUV8J2v/Bxz +y1e2gnj8YXbREZ3CKHGP+/tGj/8HHH7LOv3v2ey8YXV1PgnZHFCzYH/AG1oA+7KK+FdY/4OMf2X dAuRDe+Lry2kYZCyRQg4/wC/tWrj/g4Z/ZltYoXk8VXsa3DBIyYofnJOAB+996APuCiviUf8HBH7 Nj/d8S6g30gi/wDjtY99/wAHJH7Kem3clvceNriKaJiro0cIKn/v7QB95E4FfJY+Fngn9rz4n/tA /D/xNZf2tpOr3dgTHLBNFtZNPs8SxyYUhkkA5VuxHIzXG+G/+Dif9l/xfNJHpvi66u3jGXWOKFsD /v7Wdqv/AAcWfsl+D9ektbjxZ9h1A43r5FukjZAPP73PTFAGF/wTy8E/Fj9m39sPVPht8S/tGueE /h7oMkHhPxUwDvqGmkqscU5UBmmjiih3Erklz8zdayP+CHHx28N/BX9mn4oQ+KLi/wBHuP8AhPtQ 1BIZ9Nud8kH2GwAdQIzkEo49cqa9B0r/AIOIP2XfFF2be28UXd3LtOVEELfL3/5a9Kj1T/gu9+yn YT7brUtkmM/PYW2cf9/KAPJf+CyfjvTP2tfgV8Cpp9H1aTRdZ+IoMtultcJKbKO11OHz22fPGGby yOQfnHA5qz8LfjL4q/4IwftJaH8KfE82seNP2f8A4gTn/hD9Tgs3vLvweEdFNvcMqiRodk0ADN5r YhfnPX0/S/8Ag4K/ZT8V6nDp9rr0l5dAYjhW0t2YAdgPMrUvf+C637NN3qLWNxqV5Lc26AtFJYwM yKc44MnAOD+VAHpfxA+Cnxk+JPxr0/xf4R+N11oPgGRoZzoA0eydZowcuu+W1aYbhx98Ee1fLH7P fwk8NfHP/gst+0ta+JtO1S60nUtK0yCCQNd2cN4Y7e1SUB4ymcOCOvbjivS7H/g4s/ZYk1qPR7fx bcfbS3lpapDDuzjOAvm10cH/AAWr/Z8trppo5tUjm7uthCG/PzKAOu/avXw/8HPhF4Z+C/g2H/hE 4vHUy6BbjT7JnjsLSQxwTPu2sAwjlyC3Ur7V8q/8FIvhF4i/Yd+OnwF+Pmm69rHii48G6gnhvUbG DTIt02mXEU8JO2GJd2yS58wlufkJ5OBXvl3/AMFtv2e7u4R57rVJJYj8jPYwsyH2Jk4qrH/wXU/Z x8S+bH/aWoXv2R/LdTZQv5TYBx/rODgj86APqPxZeXHxY+CV1ceFbxoLjXNOEunXLoYym9QysQwy OD0IzX5jeC/Ddz8Yf+CRnhH4SzaFeab8avD2sabYSwSWzLcWt9FcQOboTgbCq5Ult5z5ZGD0r6C8 Qf8ABxB+y74Cu1sdQ8VXWmzKoKwvBCmF7ceb9Kv23/BdD9muTUPt0eo3n2qRcfaBYweYy8/xeZnH J/OgDyf4UeB7Sx/b2/aHXXdJW8uIPhvaWcl1PYNIlxcJpunI21iuGbep5HPFfQf/AARRWW2/4Jyf Dy1mhubeazsI4GhniaN4dsSLt2sARjGPwrmf+H5H7N5eWb+0b3cw/eP9igywHqfM9qf4f/4Lr/s6 XlhG2m6tqTW8h+TyLSEKx/CWgCp/wUD1JF/4KO/ssssd1JHp+o6s91JHbyOluJLNkQswUgbm461B 8X/BFx+zt/wVxsfjJf29xJ4Q8YeC5vD1zdxxtL9kuxJbSIpVQWAaO0bkAjJHrWvqX/Bbn9nlbiOa 6utTMv8AA8ljCWH0JkqG+/4Lnfs56vD9nudQ1K6jYj93LZQupPbgy0Aec/sgfsi/FrxX4T+MXjbw f41vPhZqnxT8fXeu2VybK2uZZ9N+0TyQFo54ZVQstxnG0N64r6E1XxboHwk+FWmfCz48+NLzxlrX ie0lWe9/s6WAajH852lrKGNYzhD02n86878V/wDBfz9m74eaUl1q3iDUtLs87Vea3hROOw/e1Xsf +C6/7MfxJ02K/j1G41i2hb93M1jBMqEc8EyHB+lAHV/8Eo/ghrH7PnwQ8XaddXF//wAIdNr9/c+F ra8laaazsWubhlXc2ZCpDKVDksFx06Vx/wDwSR+06t4Y/aFs7Ga60rUNQ+Ies3FjcS2rIUWU4inU SLhhkZ5B6cirOpf8HA37NOi2ha68R39vCnyHfbwhR7f62s3S/wDg4U/ZVhDNZeJJV3feMNtAufri WgD0r4e+G/ih+xxpfizx18XvjJqHxA8KafZtJHp6aJaxvbsZAE2i1tY5GJLKuCSOcnua85/Zs/bx +F3x8/aBtNed9f1Txz4iRtN0iwfRLuGPRrRyrEF5I1jDN5cRY7iQw4OM1au/+DgD9me9iihuNfvp I7pwiJJbQssjdhgy81ak/wCC3f7N/hydZPtN9aSHgMunwK35+ZQB82+FPhbr3wL/AOCbnxy/Zul0 28k8beItb1HRtCiSJnjv7a/to7SG58zG0KHDFtxBAGcV6J8C/gfef8E9P21W8Q67b3TeHfFfwytt K+2RRtOIdRhWItAQoJGRbnBxj5hzXpV5/wAF3/2a45f7Sn1W+EtrGT9oezg3xqBk/N5mQKxZP+Di X9lDxIPJm8USXaod2yW3gcAjvgy0AVP+CfMeh/sifBHxZrPxSkvNFX44eOdW1yxtzbXEzC3u724u YA/kKxjJjnGckYI55rtf+CXn7O8nwM+KHxfuPDLaha/CfXNYFx4dsLueWbyZdiCV4/OLSiMoIgAx 6q3A749x/wAF4f2YfGENvbTatPqUcwZ4Y5LKCVWC4BIBkxxuA/GptD/4OAf2adTuFstP8RX0kij5 YYbeHgD0AloA+3KK+Mrv/gvR+zxYSbJ9e1SFjyA9vECf/ItOvP8AgvB+z7p9g11NrGsJbqNxkNtF tx6/62gD7Lor4ct/+DiD9mO5u3t18WXvnRqHZDDDuAPAP+t9qS6/4OIv2YbKNml8W3iLH94mKHj/ AMi0AfclFfDPhj/g4p/Zf8Z3UkOl+Lru9kiG5liihYqOf+mvsa1pv+C+H7O0Em1te1Xd/wBe8X/x 2gD7QorzH9lX9r3wP+2Z8PpPE3gTUW1HS4Z2t5GcKGR1ZlIIVmHVW79q9OoAKKKKACgjIoooA+R7 3/glpZL4d1zwLYeIDZfCnxLr8PiK/wBCW3+YTRPBKIUfOVjMltGxAIB3OCpyc+uW37OWsJ8Ybi6l 8TeZ8NH8Of2HB4QNmn2eBx9nCTB+vyrFIoXGP3vtXrlFAHyV4C/4Je2/hy18B+GtU8RSap8Pfhjq sOreH9HeHlJIHie3WRs5ZYmhQjJbO5uPWfU/+CcF34d+NvxO8SeEfE0OnaT8YYlTxHpt3aC4UOLe K2Mke7dyYYI1wNoHJ619XUUAcf8AAH4KaT+zp8G/DvgnQ1ZdL8N2ENhAT1YRoqZxk4ztzjPFeS/8 FaJjb/8ABOT4tSL95NF3DP8A11jr6Kr50/4K2qX/AOCb/wAXFHU6If8A0bHQB/K/4e+M2r674NSS VbTdJAUISM9Nv1qX9jfxJfaB8avtKxqjeRKMyRnbyr/415joXiG+8NWVrat5W1FUnABr0bwV8T47 PV1aONYn2H5vLC9j3oA+g/iDrXhrxTrC3HiKO6a+VNq/Zk+Tbx/st6DvXy9rOs6p4+1qTSbW2kkX zswZhbIweDXVeKvjjq1vqAW1WCSPb1aMMe3sa3/gv4j8R+EfiFp+salY6e1hGd77bdWbH020Acdo fjnxn+z1FJbLbR/6cfM/ewO3t2I/u112sXfhnxZ4An1jUFul168t/OmCfLGJSMnAKk4yT3rtv2hP j74c8TalYvqFr5bRphAlqq5GW+leceI9Q8H6v4WuprV7z7VNETGnRdx9s0AZX7LXwx0b4ra7qFvq Vy1qltGrKROkWSd394e1fSGm/sM/DOPwx/bU+oSSalZxvMn+nwHJUnHG3PYV80fsw/Au6+Lmt6hb +ZcWv2aNWykzw5zu7gjPSvoGH9j7SdB8KTyXmpa0bq3id2C38xQ4yRxvx0xQB5DB+19dLOyXUMKQ qSAVgcH+dZWv/tS+INR1eJdGt4ZbeTam57d2+YnHXI9RVT4W2/hP4heKZNP1pboWaIzgwrtbIPsR X0B8NPhB4R0zTFXRYZpLVbgMTcLufd8vqT2xQBtfAPwf8RPBPinSfE/iS303+wGgEsgto8zYcArg b2P6V2nxas/F3xK8Ux6v8ObXT4W8vyb+TUIyjyEfcxlk4Hz9j1r2zSr20XwxZ26xowSBFClQRwor yf8AaH+MGrfDHVtPi0f7Dbx3KO0gdFXJG3Hb3NAHivhf4DN8P/ina+LtdguH1DT5/tF19nUMhbbt +UAE9x3Ne46/+12uthP+Eft5oZFOZvtds6gj2yF9vWvFtT+P/wAXLl5pbe38OPasco0kEZyPfKVs /CnUfGfxiuruLxQvh63js13wGzEcRJ467VXPU0Aegv8AErxxrllJfW0mkAMhZFYYOQMjjfmuHtf2 gdW+B32rU/FFrZ2+l3k26RraFt8kuAoJ+ZuwHbtXqsXwZsNH+Hl1qfmztqVlay3EeyZjEXRCy8Zw RkelfL/jK28fftXWTeGY4dM/cyGYfKI+FPqF9qAPR7nUvhh+1G//AAkmoXF3HOP3IAlSLpx0ZM/w 1g+Ofhp8Ztb8PzWbXHhldNbHlkSKH29ufO/pXz34++Fs3wD1tdE8SS3kOobRIFs5X8vacEdCPUV9 tfEDwZp8vwrVrG+mkuGiUhFuSW6+gagD5T8TQ/Ev4LstnJ/Zt4t4pbMCmYAdOSrn0qv8E/2sNZ+G fxI0ZtVht7fSdNula5SOB9yqGG7HJ9D2NerW/jdfhVGbe+tZ7prj5lMkPnEfi2cdK8f1PT7H4v8A jy40vSbd11bWrp44BJHsjDuxxn0GT6UAfVXiv9qTXP2rfLi+FJsFm0nLX39oxlBhvu7dzR/1rpvD 3xv/AOFdeDkt/GMEkmvaejNePZwM0JJYldpAb+Er3PNeOfs2/AbXP2VLrUpPFzW9vHqoVYPsspYn b1z0rsdR+IWteJ9ebSre3sZtDvWEXmSQq0pUjn5tueue9AHD/tD/ALaXgn48eDYdJhtdSnEchd0+ zPyDj/Y9qh+FPjr4iDwV/wAUbDpsXhtWbK3kLCYEAbv41/hx2ra/aW+Bvg/9krwjZ67psE0k19OY G8weaMcdmJ9ayfhV+0pYah8PZrWHbDJdb4kXylT5mUAfzoAq3Ma/tBu/hnUJYd8jGWUQuFIdflPX PdjXqfwD+BkfwS8O3mn2KtJHdSiUmUq5z+GK+fvhl8CvHHwk+I0niy78n7BOZGXEpbiRg44Ix0Fd l43/AGmviN4XvI4fD8emtBIu5/tESk7vxU0Ae1fFTUF8LeCLrWb+1hkh0grcLujPytuUA8e5FR/s t/tM2v7QU+qeY0Z+wqrD5CvX61ytv+0x4e+OvhGLwTrbul9rcYguyiLGoZT5nDDGPuj0rZ+Dv7K2 ifBCS8/4Rq4aQ3gCzbrkyYx0/iNAHreu+FNF1G0upDdQedJG2I/OjBJweMda+bf2q/CPhHQvB9rJ 4qh1FbNrjEf2Nfn3YPX5G4/CvTvGnwAt7HRdT8Ux3WoDWNPt5L6FftUnk+bGpdcruxt3AZGMYrxf wPrfjf8Aa11OXQ/EEejyWlgpnjESqrZBwM4UetAHq/7KMPw7HwatbzTJvJS0WWOE3syJOiswLDBV TyVHbtXzp8D7nw/ZfFPzPhzJct4nw/l/biGg27Tu/hT+Hd/FXf8AiH/gn3ql7eO0N1cWykYEcN9J Gn5KQKxvhF+x14g/Z78bJ4k1D7JFawq0e4Tkn5gV7/71AHlf7buueLpfiXp7eKJLNb77OpQWvC4y OvzN/OvXIf2rfHXhf4OWC+XpslnZ2ESKPIdnKiMAdH54HpXI/tY3PhXxH45s5tcmuJLpIAFMDZXH HoRXUfBf4i+CfiHr+i+E0i1Ai4RLcGWHCYG1eTn3oA4FNC179tLVZNU+xw291pKC2d0jMJdclgDu PPLnpUWp/sheP9ItJt0du2nQjnoXK/8AfX9K+lfiOV/Zrkt4vCq2KJqal5/NCtkjI4zn+6K6Lwl+ 1FoOt6Ja6dqUbNqVwuyby4F8st7GgD418EfCa68N30ksaSw+YoGZBtz1+lfSnwU+I/hnwR4Ehsda nb7dHIzNtYdO3Y1kftt67pvgfwTpc2nQSLJJOytsi7DZ/jXnHwq/Z5k+OHhq38TTNdrDJJtkAmeM 7V6/KCO1AH7rf8G6OvWPib9mDxZfadu+xza9MY93XAnuB6Cv0Mr85f8Ag2v0PT/Df7I3iSx0v7R9 jt9cmVPOzvz59xnOST1zX6NUAFFFFABRRUd5dx2NrJNK22OJS7MewHWgCSivzM0n9uT4ifEb9jDx l+09Y69d2Vn4b8SxW+m6AP8Aj1l0tbm2t5xIPumTElywYqT9zkYBH3LqH7S+m6f+yPa/FiSJk026 8O22viPIyqTwpIq56ceYBQB6dRX5r6H+2X8SPht+zh8E/j94g8QXV7Z/FDX9Mtda0Vv+PeztNQmt 0XygflDRCSU5CqW46YGO8/bY+BXxaHhjxh8Vof2hPEHgvRUghk0rQtM04Sww+YIoolL+cmS8zgn5 eN3fFAH3ZXzn/wAFcG2/8E3Pi6f+oIf/AEbHXffsY2Hiax/ZX8Anxjq0+ueJrrQrO51G8mXbJJPJ AjvkZPRia4H/AIK4f8o3fi5/2BD/AOjY6AP5gP2fv2NJvin8GLXxZIzGFIjK/wC8P3UUMePxrhPi Vq3hltCeDSpLr7ZHLtO5Ao4IB5z7Guu+B/7aXiD4U/BqDw1aw6a1qIWXMkMjN8yBTyHA7elcPoH9 r/HbWn0a3hs1mk3T5H7vplurNjtQBJ8OYNTu9GZrOO2mi34LTH5up9jX6B3/AMLtF8L/AAwt9Vuo 0Xy4FZ8IDzXxRpH7P1v4Vt/s+vSXsV4TuUW0ismPwDe3evaPiSfixa/CyRNes9Hh8KpEAZYm/fBO 3/LU8/8AAaAPJ/24bzT9V17Rm0lW2rDh8IF5y/p+FeQ+Dd9t4jsGfzNqyjKn7v5V6ppPxC03wlEy PuuPN5BZDJj8h7V6H/ZHgjWvAH9rSXF0t/Nb+aY0IGGIBwF2Z70AbHwdvrzVtUu10mG1ikVRvwNm evoK0PHn7TOm+AVv/D+r/ajqccJR/KjDJ867hzkdmHavM/g5G2tahdLoouBIqgv56lBjnpkCvrf4 TfD2HUPhPD/aVvE95IkquwwT998c89sUAfEP7IVroMnxXmOuSTQ2bW7kMi87sjHcV9D65a6kurRj wL9kuNFyu9rptr+ZnngA8bdvesLx9+yZp+o6Rtja+jbzM5SRAf8A0GvnX4veAZPhR8RbDTbe7vhH J5UuHkBOTIR2A/u0AfoJfavrXwu8Gw67ryRrp9vEnm+Sd7ZI7DAr5j/a51e6/aa1zSbzwxLLHDps TxzeaxhJLbMdM5+6a+zfhxZ7/h1oLXAWWNtPgJVvmz+7WvlT/gplp+knxb4bEn2y1/0ebAtUIB/1 fX5TQBZ+HvgDxD4m8Pad4bv44Y7S6TyZZo3PmAZJyDjPb1rq5v2ALfwoN2natrG6T5X3XLjj86zP 2Z/jBDNqfhfRbf5skxKZEbcfvHk8Cva/2r9Y+IXhHTtKbwXBok80sxW5F8+AFw3T94nt60AO8Jov w8+EUnh64maVobWSNnkbc5BTHU89q439nLT9K0z4gTSRs25on6j614P4zX4ta1rV1fatZ6Oqt81w bdvlCDJbH709s+tb/wCzOLvXviA8Fi3mXAhYkE8d80Ae5/Gr4OeDfiH4vF9qskn2jywvCA8YA9fa uZ8H/s0eEfgb4gi8Trr2r3v2POILi4aSI54+6WIryj9p3wj8Q1+Iq/2ba28lt5I5Y98L/tirt3+w v4d13SlWw1jXZdUmAJia8i2Z7/wD+dAHpnxT/aB8NR39v5NrbzBkOSbZGx1rxn4TXVrqf7SWmXyQ Rxwz6n5qkIF2gyZ/DrU3/CoJP2cB9huPOma+/egysJMdv4R7Vk+G5te8QeOre3js447W4uNqSCNl IUng5JxQB9efGr4QWPxmiso2uZk+xkn925HX6GvM77VdN+Em/R4RJLc6aPkZ03ZJ+bk5/wBqsptH +I3w5+bwmujzSXHE/wDaU6gDHTb+8T+tVtY8X+Nte0e407VrHSv7TukMcrWyFo8nptbew6Y7mgDj fjL4n8aftI+H7fSIbfTZGtJfOwzY9P8AZ9q4nwz+xl4mudVsby8VYXjuI3ZIJmCYDA9MCqOvfAzx 18A7ZdUt4Vke6PlESOJB+SsD3r6p/Yz8Y6jdfBiFtchhjv2unBCoem1cdSfegDf+Pmn61H8CLe18 M2tnPrEKwIFnGFIEZB5we+O1eG+FPCmu3lnJJ40hsbO+U/uFtzlWT34FfUmuXNvFpvmXDbYSeory n4o/sq+Ef2itVh1G/wBS1i3ktIzCotbiONSD6hkPNAHnvxG/Yi8M6X8OtQ8TWuoammoLGsyeXIQA S6rxg+hNeE6H8c/EH7NKvJptxcXraoAH+2yF9uPTOa+xPC/iXwboFxaeGbfULmaSz/0dVlcMWxlu cKAa8Z/4KLfDqbxPaeHV0O18wwu/m7V6fyoA9Z8M/FPxF8S/2QtQ1SaG2V9Q0S53FT0zA3Tj3r5a /Y61jxR4J+IOo3GmiO4lkhdWWSQkAbh7GvrL4G/DW+vf2JV0fZt1O60ae3RCwX940BVf1NeF/s1f s9+Pf2Z/Gd9rGpWdm0N5G0K7nWTktnor57UAbHjf9q34reH/ABEbO103S3j4wW9f++KueNz8WPjL 4dbR/GVrpun6HMRI81hKRMGBBXoi9wO9ejTfHLQbBWXxBG0eoqMsIYGK4/I/zqn8Gvj94U+L3jqP RNLbUGunRnAlgdFwFJPLIB29aAPkf4vfsuavpniC3GlPPeW+wM73ErMwx1x1r2f4BeM/AfiPxJoP hWEXUPiBUjtZGWBV2yrtVsMGz97vX034kj/4RicwotptZC370jPT6ivie/8Ai7N4T+LeoXmh2Pma 1a38phEltIYi3mHuMcZA70AepftseCfCPw/vtFXxBqmsRNcRExeS5bIy3XLD0Nc/8MdNS0Ol6hZy Ry6Gh3pJKf3zJyOR65968b/am+MPjL4w3elyeJdPghezQrD9lt5FyMt13M3qfSuL0D7CsVuI5tUX Uv4YiD5e70xt/rQB90fFn4leEfE+l28cayXGxy21oVbHT3rK8J/tg+CfhVYxaTcLcQtC+9kS2XGD /wACryL9mb4ja58OPFF9c69aW6wTRKqbomPPzZ7n1Fa3xE+LnhfxH8S4by8hu/tBki4gtnMfDD/Z P86AP3E/4N1PHWm/Er9mDxVrWkqy6fe67M0QZAh4muAeB71+hVfnp/wbparBrX7LXia4tY/Lgk1l 9i7CuB5s/Y1+hdABRRRQAVX1TTo9X024tZhmK4jMbj2IwasUUAflD4d/Z+8ZfDb/AIJseOf2X28N 69ceL9S8Tx2ulyx6fK1rdadLeWtxLdeaF2BUjNwPvYzERnPFfWl94eh8RfCMfssvofiWObS/h7a2 za8dNmGly/Zo7SHy1uNnlGQlwdgfOEfj5Tj6mNnC10sxhjMyjaJNo3Aemevc07yUEvmbF8zGN2Oc fWgD8sY/g34z+On7GX7PXwDuPC+vaf4g8E+INGPiiaXT5Ut7K2sJ7ZpZBIyhCHUS7TnB2HGa+uP2 zvBWqfE/xB8K/hdY2OoTaJqGpRXWtXkdu7W8EFnG9xEHcDapM9tEME/xDuRX0pHZQxXDTLDGssn3 nCgM31NOMKtIHKqXXgNjkUAEcawxqqjaqjAA7Cvnf/grYqv/AME4Pi4rZCnRDnH/AF1jr6Kr55/4 KvIsn/BO34rLIdsbaPhj6DzY6AP5RPBPwh0vUvDds1lLcSRyIApkJzkj61qS/CrWvg6n9tWaxrL/ AKvPmdjx/WrPiK+vvCkiW/hmFLzR4oQyTSHa2ec8YPYDvUnwQvdT+Onjj+wbwssXltIcOTyoJ/8A ZaANDwp468bahYNJDZ6XcKGxunYFu/qK3vjX+2fq3xB+FF54ZuoIolkQRuYo8EY9DivOf2lfCV18 JvHMOnW91dRq8IkIVyOyn+tesS+PPDVx4Phh1W3tre2MSiWZIFLj37fzoA8x/Z10rSNV0y+OqPIz o+E3DPGF9TWGl/8A2Z8dFjjmuG0uG+wELEqUDHjb06VL8cPEegx31n/wid5O0Oz998vl85PoT7U/ wJ4p0SKTT2upmN2pUuSgPzd+c0AfUMPxS+H+gSNJqn2qyjkGEaztQGY++MV0+k/ty/DPwn4e/s62 utak8tW2FrU8kkn19687+GPxy+H3hO+uJPEjx+RIoEW62WTnnPU/SvWvD37RPwh1XSozb2unSxyZ VXawi3dSPWgDyPU/24tGhi3L5v3v44OP1ryv4kanb/tB+N7PXrZlWOEx2/ZOVct0/wCBV9H/ABX+ EXg39oDw2NF0BY471ZBOTFbrGxUe4Oe9fPXxE+Cfhf4CeKrfR9W1nUrPUWVLmKKMfK2WIX+IdWUj pQB98eHtcg8A/DHSL7UNws7WyhRio3H7grnvEHgzwp+1Ncw3kayTDS/3ZLRAY3Y9/wDZryCD4teP 9O8HWq+ONH0/Tvh7HBGp1CGQyXBjCjyztKqMkcn5q9K/Zp+Mfgy90zUG8MX095AsiecZYghU/Nj+ I+9AHzppXg3xp4O/aJhh0m00s2dleYg3OAxGz0x7mvo3xX4O1z4tLHF4xlm06G0YvbmxlZS7f7WN vqa+WfDej69qH7c1rei4uGsZNULbDK20r5WOnSvtL4+/HTwt8CrWxm8VXD2cV/IY4DHGH3Hk9yPQ 0AcGngm+060/sC1VbjSZVNu08zbpyjfKTk5Oce9HhX4Q+E/2T9TbxMLnUZGmUwkODIBu9sn1rJs/ FfjT4m+IbfXvB+m2t94PupkeC5lkKSNHuBJ2hSPukHrXsFhFNq7LFq9nbm325ww3Dd9CKAOdh+Kd j8QU+3afHayQfdzcRqrZ6dD9K+SfBfiH4paJ8Qzc6VDY3FwsjeXHLMShGPTBr6e+J37Fuj/GHxF/ aia5qujqECeRYsY4+ABnCsBniqOofA/QP2f7D/hJIdQvLyWx42TLlWzxzljQB5P4g+JHijU542+I Vnp9neLxbi3AYFc9+B717b4B8ZeF9Z8P6XYw26LdzQxoHW2UHdtAzu/rXjnxVs/Cn7SGpWt9quqX 2lyWS+WiWqfKwznnDD1r6I+F3w50rw74G0VrJvtEdraRCGSRBvkARcE9eTQB8/ft96Emj2GgeXqW o2fmM4JgnaPd9cEVzHwq/bP0n4feFdN8PzBru4tdyGeaASSNuYty5yT19a+hf2jv2bNL/aTttNj1 a+utPXTSxjNuPvbvXkV5vq/7JHh/wB4MurezkN3NYwlopJoxvds55OT60AXNV+PDfESBbWzt7O4k hO8rLGuAPy9q5e9/a0s/hn4nttB1COG2upJE+SGIbcM20elcl+xl4S1bxx8QdQtdaj+yW8dsGR4m LEnn2FemfEb9gzSPGPjyLWpL683QFG6f3W3etAHWftjfEWTwN+zcuuaad1xJJCV39MNGzf4V8p+B f20tais5PtW5X35HlAkY/AV9efGL4bWPxt+FcfhCKaTdD5fKjk+WhT1968p8NaV8OP2LoG0PxdIH vNSb7VEZbVZSEHXlmHrQB8t+A9W8VeIvjxZ3uitNNqd1cs9tFO7CJj5Zznt0B7V9aaRqvxg0SSX/ AISLRfDTeYf3W9lbnvjKV5n4R+PGoaf8Y7fUofD+jxeG0uGeO6WNVkEewgHG3+9x1rqv2pvjt4S+ K0eli91zUtLFo7FDaDBkz64YUAe/+E/i1a2XgyFdReG31iOI7oICohV8cAAY4z7VFovjPUviPcta GGzYQjf2/wAK8b+En7Ffh74ieGdL8RW3izxDJDdFZU3O2Gxg8jfXs/g/9nHT/h7etcWurX8zyLsI dj0/P2oA8c+Ovww+Jt146muND0jRZtJVAS8pG73/AITUf7L3xp8P+J/ivBp+j21qmp+U+StuqdFY nkD0Bro/jZ8UfiB4D8U3Ol6DpNjqGkCMZuJ5iJOev8J/nXzx+z1a2ujfFNLr4bySa14t2PttLseX EVKtv5G7ou49O1AHqX7dnxbm8I/FDT7e6murdpLdTtgLbSMj0r1jSLjwH4J+FWm+KtSt7dljsYrm ZzbIzklAxJzyT1qPwl8G9e+MOny6h8RtHsdO1eAmOFIR5qmMd8lV/lXh/wAWPBlj4gtdX8O6bql9 Ldea9vHbkkR8ErjGenbpQB7x4B1j4f8A7VizTaLawzLpLCOXfaImM4P/ALMK+W9f1DSdA/a3fQI7 WARw6gIgPIXH3M+lezf8E/fAk/wIsPEEerZjN/MHTnOeEHf6VxviL4J+Kdc/apk8QW+m2r6VNfCV Zyx3FdmM/d9fegD2b9pH4D3Pi/w/Zw+H7O0S4imYyEAR8fL3A9jXkcHjDwr8H4l8IeL7dU1x2Ad4 rYSFQ5AUh+tfQXx8+Kdr8J9Ftby8kaOO4lKKeucY/wAa8Ze50H4v+ILfXNsczySogZogSSGHegD9 hP8Ag270610v9k3xJDYyTSWo1qVo2lJLkGac85Jr9FK/P/8A4N77UWX7OHiyNVVVXW5AABwB5s9f oBQAUUUUAFFFFABRXzvq/wDwUl8E6brOozRw3V34Q0TVotC1PxLFlrGyvZTEscZYKVILTwruDYBk 9jXvza3Zro39ofaYPsJiE4nDjyzGRkMG6YI5zQBaor538E/8FI/BPjTxB4f2w3dn4Z8X6h/Zega/ MGWz1W4LRqioSoADmWMId2GLHGcGu6+Ln7Vfh34XeONM8JxedrvjDWE8620ewBluBF82ZZAoby4/ kb52AUkYzk0AenV85/8ABXD/AJRu/Fz/ALAh/wDRsdfQWjXs2o6Vbz3Fs1nNNGrvCzbjESOVz3x0 r59/4K4/8o3Pi7/2BD/6NjoA/mO+AHx/8J+FPgDHpOpzI2pNbSJl4JGbJjAHIGOteVfB74iw/Drx 9JqiybVYSKCVJ4O70+tekfs8/BnRfFHwUtb29dVunib/AJZgn7gxz+NcV4w+Cy6bp8klg0lxMJMB GXAxmgD1vRf2lPCmt2rTaubWS4BwC0Ejcf5xWfoXinwX4m19be4v5Ft5m5CxNx/47XmHhH9nLxd4 r05riw0uOaFW2kl8c8/4VL4N+EfiDwz4thuNQs/Kt4WO8luBQBe/ao0PQNO1fTR4dmluo2i/elk2 4OW/2R7VN4R0XT7jwjZ/bwbe3aFfNmRfmQYGSOD/ACrsZfCUfiAhvs8cnl8ZKg4rjPGvjnUNIsb/ AEddKtFtoVaESY+YAcZ6e1AHO/FTwv4TsrC3PhnWNR1aZmPmpMh+Qcc/cX3qh4Rs9LjS1W61C9t7 nzBmJVOB83H8P0r0L9h/4ieEfh74o1abxdDZzW80KrCLiBZRkbs4B+orb+Mvi74ceKfiXd6pptxB b27eWY4obYIgKoo4A9xQB7l+zBFb+HviC0807bTbEAt9R7V5F/wUM8O3PjX9ojTbvT1Wa3WzgjL7 wuD50pPU+4qz8MPH118UPELab4XDXGoLGZCoJT5B15/Kj4n/ALPHizxD4qhvNSkurO7iRdsaznDA MSO/c5FAH094A+GUOheCtGu5pZtQK2UO61nIaIkoOwA6fWvG/wBsX48al8Htc0mHRdB06CO7ikZx HE/JGzHRvc11/wAKPF3xYtNS0+xvPC9i2l28IiWY3G5nVQApIx3Ar0TVfFej28if8JxoGjpcMMWw lt1myvfqOP4aAJfgdd2HijwZoWpT2dvFqF3FvYqhBU5Yd/pXeeLvh9pfjVIo9ThW4WA7kDjODXmP hf8Aai+H1/4vtNB028jjvpJPKhgjg2qDjOBjp3r0rxV4w07wmkbanctbLM21CO5oA0dE8NWvhvRo 7WzQRWsA+VV4AH+RXjH7bvgbxF8UPhLFp3hPzG1JbpXPlSrG20EZ5YgVqap+2f4DsfE3/CONq0gv riRbVQIj95zsHP1r0Dwrodvpt95wvJLjzEyFc5AzzQB8g/Cr9pbxB+x14b/4RTxVCrakzmcecjzt tJLfejO3+IV9TeMfFmi6V4I/tS9mjkt2UMyEFhyfQc1D8S7rwRH4gxrelaXeXmwfPPaJK2OO5B9q +TfhxZeH7H4lrNP4w1zU7UO3+hXLO8B46bSxHH0oA9U8V3998TriKfwTo9lfWsC7J2YeVtb6My+o o+Hv7I81h4107xBfeItahulmF1NYrcRGCNidxQDaTtByOvTvXQaN8bvCPw+ikggmjtxcHcQkW3P5 Vxs+i61p3imTxle6pqUPhbzzfM4mYqsBO8fLn+6elAHs3xA8FxamLby726j2k52MOf0r4h+N1rYW Px51CxuPEetRKJo1eNRlQDGp/uGvojU/2zfB+nBW0XUpNVJ/1gmjP7v6da6Xwn4B8J/F62tfFM9n Ztdagd5zbKclSU6kZ/hoA4j9nCx8I/DDxdd3lpq+oXLzQbCs0TFQOfRB617ebWy+ImlzXFrd3CxT o0OVG3BI9x71nfELxB4G+Cekxajr1vY6fa3D+UjpaqSzfl7157qXx08XeIrn+0Phr4c0/WPBkYy9 47eUwYcyfLjsuDQBw/xC+Amo/syWt1410HVNU1fUPPaNbW9mQwbXJc8AIeCoH3u9aXwb1G+/aB0O 61LxZpunw3lnIIYgjDlT9Wb0rlf2u/2vNF+IXwXuNF0+826ytwnmxplSjKrq4z7McV5t+zD8E/En xt8HahfWeuazZx203lFbe5ZQTzz1oA+sfi38CLPSfgtql7pcfmahFArQxMyhCfMUH07Z714j+zb4 K8Xa2+ofbPDemXGxFxukVsf+RK+gvjFoU3hz9kzUrS7vrqNrSxjSS5DEyg+cvOc574rwn9gD4h6f 4Ln14trF9qXnxx/8fJZtn0yTQB2HiH4veA/C1heeHfEGu6hoWprE1vc29pbyMtsSCp2kRsOOe56V zPwr+HXgn4ga5NbeEfHninV75EMkkVwPLVVz1BaFR3Heum8WfGz4fa78UGsLzTNJuNRvLlYC0lmj MzM2BkkeprrvFHhS38J6fHceGtJ0+zupCA720axMV68lRn0oAs6J+zVp9no5e+1rUDcR5Yh5kOf/ AB2sL4AePbHxD8S47G10vT7WTY+JYY2V+FPcmoU/ZP1f4w27a5eeKvEGkzyDabW2uHEfH/AhVj9m H4O6l4L+LEN3dRt5McbruY9flYf1oAk/ah/a3k/Z88b2ekMtu/2qESfvI3Y84H8JA713ln4WtV8C Wfi+1tYJry8tY74K/CEuof2P615H+3t8F/F3xD+Kmm3nh/w/Z6paRWyq8shAKnI46V7BefDibxn8 ArHw3dX1zpN1JpsMErWz4e3cRbSFwR0J/SgDzf4k+BNU+PcltJIU0n7AuwCznRPMznruLev6Vv6Q s/w/8GR2SkXE+nx4DyMGLHPcjA79q+ef2kfgzb/s63GmxTfEDxTH/aSFx/pEnbcP73+zS2/xF8Xa f8MPMs4W1LTY4cx3s0pMsq56nqc0Aa37S97rnxw8L2NiYYo/ssrSZjcKedv94n0rrv2a/C+ieBfh Zbw6xd3MWp20jy7Au8ccjlVI7eteF/Ae7174/wCu3Wns9xZ/Y4xJujdgTnP0/u19bfB/R/D/AIF8 FQ6Frcwm1KSQqXmjDv8ANwOTQB+oX/Bud4kHi39l7xZfLt2ya9Oq4BHAnuAOv0r9Dq/Pz/g3o8Lw +Dv2cPGFhbsXhj1+ZkJGOGnuG/rX6B0AFFFFABVPxALhtCvBZ/8AH15LeTn+/jj9auUUAfjd8HEN r/wbp/EuO83nX28QFLoP/rvtx1S1EOf9rmHH4V90eJT4iH/BIrS7K1mk/wCExX4c6ZuQOPPEwtbc OSPXOcn3rrtV/wCCdngHVPEl9J5d3B4d1bVItcv/AA7FIV0y8vY/LMczwg+WSrQQsMqfmjBznGOz tf2ZdHtfj/dePhqWuNNdaK2hHSDeyHSkhJgO5bbPlhx5CgMFyAzDuaAPzV+IcFvd/wDBG79kW10L /kLTeJvCKWRj/wBYs32u1BPrwSuc/jTf2bIfit468YftY/GHSvF0Oh/EDwXfxafYWl7awTLFZ22m afcvDiSJ9iyfveVwd0nUZr758C/8E7PAfgPxPod1Al5caT4VvTqGhaNNIXsdIn3IweKIkou0xRld qjaU4qX4g/8ABP8A8I+NfiN4g8RWd3qvh+XxjEkPiK202dreHWgoVcyqjKGYpGiFmDEooXpxQBc/ 4J4ftKal+11+xr4B+IGs6f8A2XrHiDSYJ76ALtUTmNfMKjP3S2SPbFc7/wAFcDt/4JufF3v/AMSQ /wDo2OvdPh94B0j4WeCNJ8O6DY2+m6PotpFZWdtBGEjhijQIqgAAcKBXhf8AwVu/5RvfFz/sCH/0 bHQB/J/8D7bVdSstDuPtl9Z2guIt8CufLKgrnjjgiv0FvLPwP4o0WG1VNPhl2IzMkCbiQBnv7V8F fCm18Ujwlp91pmjR3enRbX80yKMgYJ4LA9Paun+MXx91bXvBf2S2hj06ZZFzLBneMEZHJPpQB6P+ 0p4i1D4beOYbHwt5k2ntEHYxMYlDYU9Bn1Nb3xi/aA8DfET4LXGh6TdWMfiK4hCjyQvnB+c8g5r5 p8I+CfG3xO0039qLu+jRthkaWNcdfUj0r6A+Jfw30bU/hHLaaDawt4lMShAnyvv78t8v60AcT8DF k8IWF5HfTSXTSvlTMckcD1+lcP4p8ZS+K/idd6Hb2MLNeXTQIwPJyxHTFXPDf7M3xD1KKQyW15Ey njbcQ8/rWN4D0O48N/HrTdNuo2bU7XUBE4YgneGI5I46igDp/E/7DXjZIYxpejXF1ICdwEbDA/I1 6F8OP+Cd9ncfD+HUPEmqXWl+II1d5NO+z7hlWbYMlgfmUKfu969k+N3xp8X/AAHsLW70/Q7XUWvH KMs0gwmMejj1q78PfiXqXxL8BxeIdUsYLHUJg5e2Q/KNjMo/iPUKD170AeM/s7ePZvgZ48k1bxV4 csPDelmFoFuxhdzZGByq9cetd78R9J8K/tT6z/wkun+Pr/Slt4vsq29p8yO6lnByJByd4HTtVbUf F+u/HyL+w4fCOnTsjedtV9p447yY716F8I/C9j8MvBdxZa/pFrpWo73mSEZfcNigHKkjqpHXtQB5 d+zP4M+JGkfHWxXVpNWk8Owl0WeWZ2WRBwrEEY5GD1r6S+I3wCtPitd289zqM9u1qCq7Y92c4/2h 6V86/Df9pTxX4r+MLaHHotvHaCaRIpVODtUkDq/p7V9LeBbnV57eb7dCYW3DaNwOevvQBy3hv9jz Q/CPiO11aIxyXNm/mK5tQGJxjrn3rd+MHwaj+M1rZxSahcaf9jcuDEm7f168j1rz/UfE2p+GPiBJ qGp3s0Oj2k26diwZUTbjoMnqR0q747s/D/7Y8MFn4V8aalp8mjN505sYzEXU8fN5kZ/vDpQAtl8P vh54Rlj8P3p06414MIVu5rZPtAkb5VbJOchuR711+kfA2X4f3H2+bxBqNxE42hJAdoz0/ip/w4+B ln4D8M2NpdSSaxdWRDG/uSDM5GOTgAds9O9Yn7Wfg7VviZ8NI9N0PULqG7W4VyYHRW2jH94YoAse KPH3gTwtqX2fXtStvtmMjz0Vmx+LfSt+f4J+GWsRcWuk6arSDcrrbKCR9a8T+Ef7G0moeGDJ4l1C /m1DzD80rozbcnHKrjpivePF+qy+APCRux+8W1UKA3IP5UAeW/Ff4N+FZNQt21K7j0yRUyqrAPm6 89RXD+Cv2vtL1r4h2fw0Om6fead9pGkiR3VvNRT5YJTHcDpmvUrO2j+PETXky+S1oPLAjGM/nn1r wew8D6p8P/jw2qSeHbRdP07Umk+2GRS2wSH58B89BnpQB9QR/ATwhan9z4f0dc9dtmgzVOfwEdFv P9Dh+y2MJyscS7UUd8AcdawpPj9puvtj7Wlv5f8AdRhn8xUl1+0R4f8A7Hk06PUkm1KRCkcZif52 PIGcY6e9AHLftXfEDwzpPgmxk1prOe3a4IUXCqyg8etZ/wAEfG+peIvhq8Hg/RbefQLpngM1u21V LKFbhVI4BB61tfCPwLqXiTXp4fHHh+1GmrHuh811cb+f7rE+lesadpGm+E9ObT9HtYLOzYEhYshV J4zz+FAHyP41/wCCX9m1vcalba7fzX13MZng+ynClyWIzv7E46Vo/CrV4f2INHuNAvm86TVJPtSm b92wA9jn1r2P4jaF4i+Huhzax4V87xJq/m4WwnkVYypySckp0IA+93rz9PgB4i/arcav4809/Cuo 2H+jwW9rKjLKh/iPMnp6igDb8H/tMQ/FDxHaaDeafaTadqjFJA7h1YAFhlcc8qKwP2yvFth+zPDo zeF/C+k3Lak7pNsRYNoHTopzXlFt8K9N+CfxE/tabxDffZ9DmLMr4ZcFdvIVM/xdq9f8GfFjQ/j/ ACzrYx2+vfYcMwkjdPKz/vbaAPl+++Nlt448QfvdJsdP1bUJBGpiIMkMjHAKnAOQTkdORXvX7IPg XV9I8cXkmt61ql5bPbfIlyzMqnI6ZNeO/Ej4U6vr/wC0S1nBosNjY3moRw+fFKoaBWkwXGWPIBz0 PTpX1p+zv+ydD8G/Es1+3iDUtY+0QeX5NyyFUzg5G1B/OgDzv47/ALfOofs+fEeTwvp+i2eoWsYV vPe48tjnnpsPr616p8JP2htO8Y+J4bZVt45JIy52uCRwTXE/tC6YsPxJmC+GLDUIwozcSE7ug/2h /Kud1rXLNNP/AOLfQR6x4m42WhUxgr/F8z7Rwu49e1AH0B468YayNRUaPp32632fNJvxtP5GvJ/A Fpfn4twzXGtahIzXLM9mzkxqS4JXr0HTpUnwg8b/ABGsNAmj8QeG7exunc7U85G+U8Z4kNcP8W/2 cLfwtoOreMJPGOsWdwWa7eJdpSFmy5UfuycDp1PSgD1T9pb4P6P8VLvTG1eZYGtUKxgxCTIy3qR6 15T4W8X+DfD3jiz8J/2tHN5E3kfZ2VdrcE4K7q8l0TwP4k+Mm6Tw74m1fV1sztmJdI/LP/AlX1HS vN9DN14D/aDtbfVS32iwvB58kh3NnaeTt479qAPun9pvXrf9nHw3Y6h4S8L6XPeXkrRTCNBAQo24 5CnP3jXm3hr9rvw/e6fDdeJIbOw8RCRcaeHUs3I2jcQDz/u16tZ+JPD/AMbp2snvPO+y/vMbGXGf qPaud8QfsZ+E/FHiiPUGvpI5ty4VcdQeP4aAP1p/4N1/FTeNP2X/ABRqT2bWJutakYQs+8oPNnxz gfyr9Ca/Pv8A4N5vDq+E/wBmvxZp6SNIttrkqqzdSPOnxX6CUAFcD8ZP2pfhv+z1CreOPHXhPwqz LvSPVNWgtZJFzjKq7AkZBHA7Gu01qO6m0m4WxkjhvGQiF3GVRuxPB/lXxD8dfhP+zJ8DPjf4W0j4 1Wc3iTxd4+Zhbaxrst1dWbON21DHvMMIJXA2xquW+poA+ofg3+1/8Lf2hJfJ8E/ELwb4ouQCTb6b rFvcTgA4yY0ctj8O4r0evj/Uv2NfgTo/xq0bR/DXgSXwrrWo2Zv9I8Q6BeS2tvlSo2lYpgHzk8Oj LxnqBX1h4UstQ07w7Z2+qXS3t9DEqTXCqFEzADLYAAGTzgAUAaFFQtqNul2tu08KzsMiMuN5/DrU 1ABRUMeo28t00CzwtMv3ow4LL9R1pt9q9rpm37TdW9vu+75sgTP50AWK+c/+Ct//ACjd+Ln/AGBD /wCjY6+iopVnjV0ZXVhkMpyCK+df+Ct5x/wTd+Ln/YEP/o2OgD+Y39nr4h2+gfs/xWUiIZvs7gE9 clAKw/2P47fxR8bGt9ZtYbyxaKVvLnXzEzhyODx6VR+BOh+KL7wTpc9j4Zm1LS9y7rkBtpXjd/CR 0969E/aV8QWHhT4X/atC0630bUhKim4tsJIBlQRkAH1/OgC1+0L8cYPgZ4yj0nQ9LtYbWSISEQ4j XOFPQD/aNeU/Crxff6b8SrXVNX1S8t9NZy8m6Riqg+2a7j9nX4UW3x58FzaxrmqPJdwymIGZPNbA LDqSP7org/iZ4j0WPSL7T7WS3aaFvLXaRk4oA+lPDP7YnhHwOksYvoNQ8453SD7vT/CvDdf+L9v8 UfjjcQ6ZpNnbyatfEQX8ICyoWY4YHGc85614TespK103wT1VNA+Knh++nfbb2t2kjFjgAA0Afbfg f9jXXNXvZk1/xXrV/CozGLmRpAp56Zb6VwnxI+Hnj7wB8SZPD+h295eaHG8arciUrw6qzHHsWb8q 9K+LP7Z89lZ27eDdMj8RXLMfPjhucGIcYPyq3v8AlXNeHf28JJ9RtLPXfDtrY6pNKsckUlzl0yeO qA9CD+NAHp/w2+Btz8E9d/tnT7641a4ePyjBIdoAPJPX2rL+MHxL8Xf8JnAkfhK3vIXjQNI7jgFm B7elekfGT4T33xT8Hx2Gm65eaBceYsv2m2Qs5GOnDD19a+Q/jr8P7r4N/EK10vVPipq32to451jm yjOC7ADBk7lSKAPszwl4I0bSbSz1RdH0+1v3hV3KQqGRmAJ5x611FncfazuSNVCkdBXi/h34zah4 T8Kafd+JrP8As3w5Dbxq+qzy4RhtG1jkAfN161etv2nB4hRn+HljD41tYv8Aj6lt5+Ldv4Qdofr8 3p0oA84+MP7I3iS81fWtcs/EGrag0jebHpTSN5M3QbCM4x36VP8Ashaf4q+F+qaxNrPhW30dbuEL GQQN5ypx09q+kvDl7capo9rdXlubW6mXdJbnkxnnjoP5Vxf7Qv7PGrftDafp1vpfiTUvDDadIZHe 0jZzMCCMHDL6/pQB0l3rsPivwheWcl02n3WoW0kAeM/NAXUqGBHcE5/CvNfgj+zjqHwj8Zy6rceN Na8TRyIyi0vJGaNc55wWPTNa3hGw0f4H+FofD+teJBqWpaWp865usLK+AByCxP8ACe9dF8NfiHof xE19rDR9SgvbpULmONgzYHsCaAO+0O8tTZfv4445M9MV5j+0b49uPBPwu1DULGxh1ieErttZCNr8 j616LdaX/Z8myYlWx0IxXxF8VPgz46+EGlX3iW61zW9es4JM/YLgOsTg4A5JI4+lAE+k/t/XngyB odU8O2WhyTcrHG2N49eB/nFcjZ+JbPW/Hn/CUN4y1G5W8uTenSXkYwHc2/ysZxtGcdOleZeNPjqb +5ibVPCdp5gXCeZJk/hlK6T4C/AXxh41+KXh/UJfD95a+H9SuY5xIImaKOFiGGPlAxtNAFn9rb4t zataaQNFhGlMrN5htW8vf9cYrzj4Z/FK+t/GujCeaWedbgZ3uSW69a+7/H37Dmk+KRbqbjyfLJ/5 dM5/8eryC9/Y+8M+C/iLHNLrUayWMyyMjWwX+H/e96APe/EXieT4gWyWt7dS6BHEd4mhY5c+nGPS oNI8Daj5anT9YvtStdw/fM569x1qTXvjl8PvDFsk2p6lpkULnapkdACfxNdh8OPiVoPjTwkb3w5J a3WnszIrwMCpbA9MjuKAMbxv4vj+EXhj+2L6YtFEVibeeMkE/wDstM+F/wC0hovj6wkuVnjXyZAh ArzP9tPxbe+EfgveX11p/wBrt/tar5cjYU5VyOx9K+e/g18Z/FOr6DdSeHPA5vrdJMO0MhwG9DiM 0Acrq2u33jT9qG+06CebUYry/ZUtHYmOUCLOCDx2z+FfWHwM+F954HudQ+0aJb6EJsAeQoXzMeuA OlYvgP4W+DfEOr2F0mo2em+LLolmhjiXzoJMHIB3A52+3evWLfR7n4SszalqNxq/2vhBcgr5ZHpk mgD4Z+OHinVrX9q+4sYdTvYIW1OKMFJWGwGXGRz2r68/ZosNQt/FFw0mu6hqim3/ANXNKzKvTnk1 4l8b/hPY638QtW8VecsLRsbvaI8hdmW+9mu5/wCCfnxAh8WfE7UrdLr7R5doTjfuxgqKAO++Lvxx g8F+PW0u50u1unwMySAFiD+Fdr4h8O2Pw50Qax4Z8Pafd6twFjSJY2weDyB6E1xnx0vLKP4lss2l W9zJgDzGAz/KvV7+9t/CWlLeXj+XAoA+fgc8d/rQB84fGD4weLLnxDA17pbaTIIxiKOU4YetUPjL 8cZvEnwSvtLXSoLi6ktgmDyXOwj09a9113xr4H8RXKy6hPp7SqNq79pOPzrkfi54j8M+GPh1qGoa Po+m6veQxloLZQq+dwSOQD7dj1oA8Z/YS8cw+C7LXV1ixg0tpplMYC/fGE9vY14v8QtOXxP+1jeX gjX+z7q/DeZjjbs64r2Hwv8AtTNYLJ/afw60+xYnKB5h835xinRfs1za9rq/Eqa4msdLkf7Y1oIS YI1Hy43ZAx+FAG78R9T8N/CWwhvLfWPsbXDlC0a7C2Men1rzuTw/4w+KHiS213w34i1mbSWmTaI7 l1RirAkYzXcfErxfoX7T2nQ6b4T0mw1W6sXM0sdtiRkU4wSFB/un8q8/s/gz8RPDXjLT4LGLWNJ0 +O6iZraJXWMDeN3GAOlAH7vf8G5z3z/sseJv7SVkvF1mRZAzbjkSzjJNfoZXwN/wb+xmL9nXxUrM WZdXIYnqW3zZ/WvvmgCrres2/h7SLi+u5BFa2kZllc9FUck182/tBeBvh9+094/0+TXrzwN4o8C6 hpMmn6jaX8sUpH+uKSxbgw3KzqQcAgoDnivoD4maTZ678PtYs9Qn+y2N1aSRzy5x5aEYJ/Cvzm+N f/BGH9kPwp8O9NuNJ0/TpZpNWsYWnHiFS0qSXcayZw2OVZhwOKAPR/2T/wBmTVv2cv2tdL0nR/ix a+NvhXb2M50PRL64M2paJIZFYRpI0jl4FBlAAVAoKKBgCvubVtSj0bS7i7mz5VtG0j49AMmvk39l 3/gmv+zr+yj8dLHxR8M1tNN8TzWb2LQwaqt19ogZldspyfvInzDA4x3r62urZLy2khkXdHIpVh6g 0Afkz4V+NHir4of8ExvHv7Tt1rmsW/jrT/EyX2lSJeSBLGxhvLWCS0Xn/Vuiz5AwP3zcHJz99az+ 1HLpP/BPyy+LskH+kXXhCy19og2MPPBFIRnHYyenavkmx/YE+Ingb9kHxd+zLp+itdaH4j8Sw3th 4h+0xCK30s3Ntczh13A+YTFcIBgH5kO09/pmT4Z+JNXs3+A9z4PK/Cmx8EQ6bb+JxeReZNcQLaxR weVu3DK+ad2wD9115GQD4yPxK8VfAz9h79nn4/SeINYvPGHjDxFor+JXlvJGXUra/uLZZomyTlVX zNoOQvmNgcnPQ/8ABSDx3fN+0Vpmu/FvwN8Rl+CNnDZx2niXwrr09vDp8k23El3CsQTYZZfLLGTo w+lbugfsPfEr4j/AL4KfAvxJov2PRPhTrum3ura0LiIx6jbWE0EkQjXceZfLlBABIyMgZ59++KXi f4h/FyLxn8JZvhNPa6FdQJp1h4gn1K3ks7m2aOPfIYw+9XX94ADj5kBwR1APfvhM+jyfCzw23h66 N9oLaVatptyZfNNxbGJfKff/ABbk2nd3zmvEv+CuXP8AwTb+Lv8A2BD/AOjY69h+BHwug+CHwT8I eDbWVp7fwpotnpEcjfekW3gSIMfqEzXkf/BWNkX/AIJ0fFgyKGjGjZYHuPNjoA/ls+An7Q0fgT4O Wul/aEVo4m+UZPJQDqPpVbwR4ib47eIm0O6OyFg02fpk/wBK1rH9mnSfiZ4OPiTR57fS7L7KXW2i j+UFV3frkVxv7K/w0vviZ8XW0iw1WTR7hYpG+0p1wobjj1x+tAHrFj4W1D4XRHT9Lkka3f5yVxjP 4/U1w+u/s3ax4Qjm16XT5r1VPmGJ3XD5/EVt/G/4d6r8JfFkem3njq4kkeMSAszDjAPr717z+0l8 UPDsf7Ll3Hpuq202qrbIFMZO9jzmgD5z8Dfs4X3x7t5rhdPbRfsJ2bUZT5nQ56t6/pXmPjfwhN4F 8ZX+jBmebT5mhBOMkgkf0r3b9jb483HhvRNWW8lkmaSXKl3PHC1zPjrxND4j+KuoXk+gqttdXbO9 6wBABYnd+uaAOi/YE8WaL4K8X6xL41vIbG1mhQQNcKzBmG7ONgPt1rW+Mdj4a8YfHxtY0W8guNNe aBkkjVgp2ogPDDPUGqei/B7w/wDF6V7fStUtbmS1G5xGm7AP/wCqvdPhv8CdD8DfC1Y7jTLS8urO OWTzDENznczD+YFAHsw+K1vcwRx6Ps1K6CjMSgrgevOBXyv+2J8L5vix8atP1XUQ2mzw28MQiyDk CV2z3/vHv2qT9n79rqz0fx3JJrGkrotqImUXEjfKTkcVsfGP9r3SNY8d2raZ4eh8RW7LGn2tGBCM XPy8+mQfxoA9/wDFuh+T8A7O2GjJ4kEVnAgsXbaJsIBnO5f5iua+DHhm6bTr37P4XXwV8y5hhcN9 o68n5n6fh96vTvDuseZ4M066Zfs6TW0b7M/6vKg4/Cs/XPFU0bx/ZY2uFwclT0oA6TX/AIanxv8A Di40e31iTT9RvofLS6QfPC27ORlSOg9K5v8AZz/Zm8d/s432ozLqmpfEQ6lGIjFO0SfZMEHcOI/T 3610Gj3dx9lhnLPC+M5z92vSvgv4w1KG9vvLvZpvkGQGPHSgDm9X+Dvh7xPY3OpeIre303WpI2aa zk3MykAnBK5HXI61wvhnwRovhLU2uNHtIbW6wVLxZ3EfjXoHxv0XV73TvEWsQwzXNzHZTTRoPvSO qMwAPueK+U/2YPiX468cfEq4sdf8O6notikbstxM+VJBOB1oA971TU5hc/vSXbHU1xPx+0aTWvhh ewu7SKxHynvzXpun+F4LyHdcXaiTOPmHNcr8S/C0vi7wtcafDIbVpCMSjtg0AfL/AId/Zz8O+LLZ 5tWmhtZIeEDBjkfgDXhejeM/FTftD/8ACH6Vr15b6dHqjWFq0e3CRrIUXGR6Ada+5vBPwfj8J2c0 epSLqUkhyrSL90enNcrpHgrSLP4oLNF4BtYJluyy6kI13A7v9ZnGfegDpv2bvAOveCbzUf7c1y71 YThREJ9v7v6bVFeT/H/43aDpnxT1jQ5Ps/2/KRglX3ZMake3Q19L2kW+X5W28jp3r86v2m/Cupwf tnapqT2c0mnRXcDvMR8u0QICT+NAHaP+ytqHxlH9n3F7cW62/wC8DfLyfyPpX09+y58LLf8AZ8+C zaLcT/aWt5ZLkyP1xsX0A/u1zOgftA+H9Zu2j8JW9rq18q5kitj8yr6n9a9S8H303jbwJc/b9POn 3N0kkGx+SoK4z+tAHgvxe8faD+1vol14B0/U4Y7xrgy/u0YMNm5Dywx1auL8Jz6X+wvYyaDqV5Hc y6m32tWlUkgD/dA9a7z4H/sHN8EfjNN4wl1xbiOQzfuTFtx5kgfr7Yr1Px/+zz4Z+M2qQXmqWdjq EkC+UrzRByoPbkUAclN8D7fX/BA8TaNLs1C8iFxbtHwwJbacZHpnrXk/xC8f6x8FI7V/Fl1NML7I g+0YOCOuNv8AWo5v+Cgq/D3x9J4Rh0Zls9JmNqhWTaoAXdwPxro9T8K2f/BQrELyR6X/AMI784LD zN+6gDyzVNCuPi3a3F3Y6xKq6ujRxW6DAJYYCjK9845Nem/8E+f2bNa+C/xP1HUNVhmhguLQxqZG Ugksp/h+lei+E/gH4f8Agx4VghkurSabQ087f5e0sUGf/Za6r4U/GK0+I2tTWduys0Me44bPAwKA Pl79u/WfFNp8f7xdJt7h7JYkIkRkAHA9TmvOPB11r/xY1hNGb4h383mKWMexeMAn/nn7V9ffGzVv CVr4uuIdVvLKPUGjA8uQfMeOK8B+EXwg1zwX48XUh4Jmhj2sBIEUZBBH9aAMt/2WvEW8NH4n1C6V eS3ycY7fcFdZp/x1ju7aHwp/ZsMl5bqLNpsnc7J8hPXGSfavVdLk12SFtvh64jBOCBiuK+KVr4b8 EeFNR1uLT7O31a3zIzqoEiyck8465FAHbfs/fDrTfFttqDaxpcLmJwsfmE8Dj0PvXP8Axi+L3iC3 tta8E6b4UP8AZe37LDOki42nDZGXz19q8e8FftYXltHN9nuZo9x52yn2qh4h+MPj7xNLcnTdF1SZ br/U3UcnX3HNAHM+HfCviz9laVtUs7G4LXw8k/Onb8f9qvrr9mCbUPih8JrXxFrDNaz+c3mCRlwq rjknpXkf7Gfgrxh4q8Z6lD8Q7PUL7T44FNut+d6K/wA2cAk88L+le/av8VfA/wAN1k8H3Fzp+nLc Dy2tc7fv8dAKAP06/wCDfvUbfVP2fPGU1rNHcQnX5gskbblbE044Nfflfnr/AMG63h2x8LfsxeLL PTfL+xJr0zxbPu4ae4bj86/QqgDn/ivov/CR/DXXLDbLJ9ss5ItsX3zlcccjn8a/Pn4df8Eb/wBl f4keH444PFHjW5ktX/ewXXjnWIJIpAd3KNdgAgkEbeK/SavnX9qP/gld8F/2utcbV/FHheO11x0C PqulbLO+kAJPzTBCx6nv3NAHlnwh/YY+A/8AwT7+Ktt8QdF8Y61HeraPpzW+o+J7/WFmR3V8JHNP KFbdGvIAOM88nP2b4U1//hKfDtnqAt57VbyJZVimAEiAgEAgEjP4186/s0/8EiPgb+yz4kj1rQvC /wDa2tQgiHUdcZL+6gyQcpIyBlPGOD0r6aoAKKKKACiiigAr5z/4K48/8E3Pi7/2BD/6Njr6Mr53 /wCCs23/AIdy/Frd93+xef8Av7HQB/Mf+zf440jTP2e4dPuNcs7W9kt3RbZ5lWRmMYAGM55PFV/2 Ifh1r2n/AB7aefT77ToWgmIuHgZVOVfHJAHP9ad8OPgf4f8AEfg2z1S3u4d6oHRQX+8ACO1WPGvi 7xp4Z0XztHF1DdIwRXRY87cgd/agD1j48fDzwhqPi6N/FGsaXDqHlAKLpkV9uF/vMD6Viax+xmtt orXn9sJfWbLuWAW/ysv13GvnfxJ4Y+I3xcvl1K/sNQ1CaMbBJ+7XA6diPSvY/h38UtW8WalY+H18 RfvmXyzDsXKkdvu0AcX8VdBHwVvLWGy0tplvF3t5abcdR6H0qtdfHKPV/BT6OvhGRryaHyRMGJYt jGcbK3f2p/B/ibTNX01YxPqW6LllCjZy30rN8KfFrQ/DukWdndeHUuNatUCSAud7yAAH+IDrmgDu P+CaXhCbw54315tYsJLOOS3QI08ZQMfn6ZAr1j4t+MbrTfiJdWlneMungxjy1f5SCikj8ya5H9nz 4tat4o1i9ji8E3Nu0aAkh156/wC3UPjz9rDSfCPxT/4R/VvA+6+82KOSV5SCN6qQeJOwYdqAPUPB nw78B/EDVjY3ug6a0Wzf84Vhn8q77R/2cvAujwbdP0XTYYw28CONcbv8gVmfEz4e6ePDMbaHfR6L eM4JnXLHbjkcgj9K4zR/EnizwK0djbx3XiWOSQObtAihckDb/D0xnp3oA90trW8SKO3bTZvscYCr lDtwOB2rQ0vw/JcK3kWLLyAdqE5/StjRhqSeHrO4urWRVeBGdGxwSoqQfGLRPAThNSeG1eb5kD5+ bHXp9aAOFT41+G/+EjGhHVtN/tLf5X2X7SnmbsZxtznOOelex/Am9t9KvdQM0ca7kAG447ivlC2/ ZRtNT+OS+OLfV45I5br7UkQDc/Jtx93+tfRGm6nNYSu0MTPu64oA89+Nn7YeseH/ANoKfwnZ6Rdz WM11HaCZJjsw8hQnG30969OtvBbRhZH3Q+YobJT1Ga5vVPhVba7rp12bS910ricSknIKncD1x1rS nOseOY/sVneSQyLzkKOg/A0AP1jwldNd/uJJGjx1VCRVaci0i3Pzt65qpf6nqfw9m+w3180k2N2W UdPy96iuPG2k+IYfsttcQtcP0AzmgDx/9pn43eJPh5r+nw+H/BuqeJYZ490stoHZYjk8HajVseIP jpH4P+BUnie+sfJvrXTlup9Pkl2SRvsDGM5GQQcjkdula3jzxlqHgm7hhtdDm1dZl3M6Y+T25YVy +o2sfi61kXXtDa30m+BN35jYVEbrna2e56UAeS+Bv+CkusePzcDw/wDDnUdZe3AMotJ2lMfpnbEc V7Rp/g2y+OXwrk1LVvDf9i61rUDLJBPGTNbsGKjOVU9FB6DrTfhp8IvBnh+W6/4Qc2lnJIB9pMBd tw7Z35/SvStKtm07T44ZD5siZy/rzQB8f/C79nPxB+wxrM3iTTdJ1DxxNqSfZWs7a1eNoQM/NkB/ 73p2r6a+DvjHV/ib4IGqaloN54YumkZPsVwrbwAAd3Kqe/p2ra8ZavfaXYRyWtpJeSM2CigcD8cV 4D8VP2hfiB4b+JEOn2HhXUJbFzHukQx7RlsHq2eBQB1X7Wtzqlj8ILqSLxLJoLC5UC6J27flfj7w /n2rm/2OPHusaV4J1JXv7jxwxuQRdRsWEPX5eN3861P25dat7b9l37XeWvmtJLA0kRJG1jE5Pftz XAfsAftFeCfA3w81a31S+stFkkvFdY5d7FxzzxmgDsfiD+zb4E8QWmpao0Wk2esXREjEonmRvkDn kHOKx/gza3XwAe8fQdOm8StqCgSi0Q/uceu0N1/CvPINd8ZePPjdJHb6feSaDqF03lXI2eW0YTII 5z1GOlexr+z94puXYaTr02hlT85CK3m/mrUATTWP/CY6r/amra3HpAuHD3Ol3BAZFzlkbJB5GRyK x/jN4osvhXoNvefDzTE1LVZZBHMmmndIEwck7ATjIFN8Z/C/UNJ8JatBd6g19q0dpL/pW3Bd9hwc AAdfavHfgB4N8YQ+KrvztSuJF8o4BVOOR/s0AeoeBPgnJ+0DpsPifxQW0jVpH2tbXkWZQBwPvFT2 9K+oJxDHp6xteRqqgDJIx/OuF+F/hS4j8B+ZfMz3C7iXYYx+VeVfAT4hr41+KC6a3i+HWBtc/ZFT aeFY/wBwdMevagDV/aV/bjtf2ZvGFtog0hda+2QiXzluhHszxjG1vX1rxD9oH4S6/qPwd1fxrNqV 0un6nEdRFo0R2xrIrSBd2cHAOM4r6m+In7NPhX4kaql5rGnQ3VzEmxHZnBUduhrxj4jfAXxF4Y0P UJr3xe2seGbUsF0Py1VWhGdse4IG4UbfvZ96APnv9jL9lW6/aesNalt9dOj/ANmSCMgQ+b5mQp/v DH3q9mi8EW/wTvhZj4l2eqajobYGjq6rNcN/cC+YSDzn7p6VU+F/7QB/Z3iuo/DngOaZdQbzJvKk zgjHXdJ7Crfir9nC7+I1hd/EiOGSx1W+X7YtpnLRsMLjuOnvQB3vw8/bGa81Kb/hLvC83ge12jyb jUZjEkzc5UF0QZHHfvXj37RHxQ8J+L/ipNqFrYafqwZECX8UyyKpHQ5AI469ap/CzxtNq2qTD4ra e0mkqgNqLs7FEnOceWQf7vWvPfjpDY3vxJkm8H2KroCqu2OFiUYj7wyxzzQB++n/AAbA37an+xNr kzXf27frc+JQc5Hn3GB+HT8K/SyvzF/4NW7lbr9gzVnW1Nj/AMTqcGEnO0i4uM9z161+nVABXzL+ 3f8AHL4f/AHxFpOueKPiRrXgvXY7Nhpdhp9ubptVOZBtECQSySE5IwnNfTVfLH7YHh+48W/tf/Cu 10rwT4J1y/s83V7rHiQbl0y0zLkWq+XIDOQsg5C43L83oAct+zN/wUS+I/i/wXrnivxt8K9W0f4d 6Uf9B8QzEWtxfQ5C+c9pI32hRnPBiXscYIr6y+GnxN0H4w+ANJ8U+GtSt9W0DXLWO9sbyE/u54XU MrDPPKkHn1rwXxZ+0toviT9s64/Z516O113TPFPheXWIltCB9jjjlt4jDNt27Q3mlgQWOMdOlez/ AA9+Ceh/BX4MWPgfwbYx6Hoei6eun6bbxuzLaxogRACSTwAOuTxQB81Xn/BU1rvwf4g+I2laHb3v wj8K+IIPD9/quW+0yvLJbxfaIxuB8tZLlAf3Z/1b89x9VP8AEfR0+Hcfir7dD/YU1imopdE4RoHQ Or/Qgg/jX5G/Cqwk8Kf8G/3xL8E3kLR+KrTxMNEmtWH71rufUrQx4HU/LPEc9vwr7f8AEHhm61X/ AIJmWPwpttQi/wCE/tfhxp0Etn5hEyNFbWyu3ToGIGf9oUAZngr/AIKjSato/gHxprHh+HTfhn8U NXg0jQtRO77QjXEkMdtJKNxwsjTL1Rduxs44r0D/AIKD/t2WX7EPwVXxJDpreINUuLywt7exjz/q 7m8htzKxGMKBIxBJGSoHJOD8G+PJI/iV/wAEiP2TPCGiRt/b154l8L2iW6jEts8V1a+axx93ZvUk 1T/4Kb+Pfjdof7LfxEbxN8Gbye3m1HQLa11wXitFa28Wp6cUjRS4I8yZMZ25zKecUAfrd4M15vFP g/SdUZBG2pWcN0UHRS6BsfhmvBv+Cto3f8E3/i4On/EkPP8A21jr0n9lDxHq/iz9nHwXfa5o0nh/ U5tHtTNYyMGaA+SnGQT/ADrzT/grkSP+Cbfxe29f7EOP+/sdAH8kvhT4jal4FtLGztb6VrWDY5VG IUjjI/SvpP4DftJeH/G/jWPT9bhhsrPyCxlnf5NwU/1ArwD4VeHNJ1f4fW73/wBjbUpEKom4b2OB tAGc5zWZqvwd8VafA003hnWoIC3yu9lIqkdudtAH6f8Awm1LwjqfhySTSxZ3luHILxH5Qcn/AOvX les/CrwH8GNRuPF1ta6XNeWjmQJGoWQk++K479gLStS0P4PXUM9rcWzm6JCvGVJ+Z/WvP/EOlePP GGtXmnyeG/EC2s0pAlazl2EeuduKAPaIPEmn/tF/6TZtHo62HyMrHd5nfP8A49+leQ3v7H13p3xe bxFNeLNp8N4blh5fDpuJ612XwH/Zq8TSWN7u1Cfw/wDPjZPbshl4HIyR/kVy1z8eNZ0H4zt4F1C+ lurO3vTYzSs+I3UMVJx0xx60Adr8XdW1nV7C2Hw1ubjSb1WJuXsidzLxgHGPesjw/wDDPQdX0iPU PHevWEnjjlphejNyzAkR5zk/cCY56Yr2/R/CHh/wFO8mja5pWmyTDa7LMg3D/vr3NeO/FfWfDx+K szXfwzvfGeob4v8Aie28bSRzHYuCCsbD5eF+9/BQBRPxI8V+GT5+uQ6hNY/dUSn5c9q+iv2U/F8H jP4dyXnl+RtvGTBOeiof61xGr+J7PW7FYfGOntpekrgrLqB8mLf2GXAGetel/Am28OyeFGXwx9ju rBrkgvaSLIgchcjK5Gcbf0oA9sn15E0ZA1wLlQqjys9eK+df2uv2adc/aT1zSbvQdcPh2PTopI5Y whbzi2zB49Np/Ovo/Xf2ftV0zwkupNJNZwsiv5rwFVUEZ6k1zmlXv/CEBo7m4XUzcchlP3Mfn6/p QB4T8K/gX4w+HetaS2peMpr7T9Nb99AQwWVeeOvvX0BHfL4nZl0ePa0fMnl+ledn4t2mv+Nf7Kax ZVuJfLLF+Bxn0r2D4V/DO+urq8Hh9pIpFX975MZbI464/CgCbTfAHia70XzN91Hash3ZHyhcc9/S qenWi/D64+3C4WdjlCq8GvWj4g1jwt4FutLu55/OjtpEfcCvVMdDXhdhD/bd68N1exRx5LZcjGfz oA7Sx+Csnx2h/tlY/lB8v5l3dOP6V5X8TvhnpPwv8NXWrWcdst5bEAGNcNz719efst+I9E8HfDhr WfWdNjfzmbDXCKere/vXyX8cvDF14w8O6la22pJG00mVYDd6e9AHzn8RvDvjz4z31vdeG/F154ct 7VdksSM3709c8Eeteh6pqureDfgsY9UsbrxNcafYKlwve+ZUAY8/3iCfxridU8bRfs1utjrGsWsk t9+8QySrDgdOhPtXrNj4lj+IXw9t10/VIIbjVLVTDIsgbaWUEEYPPWgDxL4X/Ej/AIS97pbXR5fh v5IBLy/L9s9uPSvbrUTTfC+Rv7W3yGBsajk4U7vvfh0rzzxd8OdQ8HRw/wBtWdz4zWbIjWKFj9n9 c43dfwruPCKR6j4Bi0+TT5LCxmRo3sZRgqpYkgggdevTvQB5z+ylJqkfja9+1fE2PxrH5AxaI7Ex Hn5uT/nFe2ausN2ZFki/0h0KrITypOcH8DXG/DT4GeCPg1rE2oeG/Dtrpd5cJ5ckkQALL6dPeuk1 vTrrXhJLb3P2dmjKpxna2Dg0AeY+KP2VdZ8e281rrfib+1NKmkMos5VLKOuODxwCRXA+J/2R/BPw 6uo7a+8P6dqLTLvDGFeB6dK9Q+HHw08d+HPHTX2reL5dS0wh8WpjKgZYEc7j0GR0qr8ffh1rXjPx DaTWmsGzSOEqV2ZyfzFAHMfDv9mDxZ4L8Tad4i/4TmRfDdoxlXSgGCJGVKhOuPvHPSvZ5de/4SB/ 9BuvuHLbTXj3xe8T+IND+BmqWsOozC4t7dEWUA9fMXnr7187fA3x/wDEzdefYbvVtSO1d3kQu+z6 4zQBY+K/xK8ZQ/tjpo39sX50eXWYIJIN58tommCsuM9CvFfVHj/4J3XiTRrePwvff8I9e/K0k8S8 uuORxjvXxLdad48u/wBo7T9Uv9K1uUrq1vNNutZBuAmBOTj61+gPw8+IVxq995c2j3liqxA75QQC eOOQKAKXw6ll+Gfg/wDsTxDrq6jqHO+WQnJB+tc18GP2ZfDPwz+IC61pdnYx3gVwGijCthlIPOPe vRfEHgrQ/FV615fWcMlxj7zYzxXmfj74o3Hwa0KTWrezn1poWEYtbfO45IGeATxnPTtQBz/7YNh4 0vPiFYt4b8TXmh2fkKJIYi2HbI54NbXi/wCCeveIPgqsUniRoLq4s0Ml0wOdxTljz6nNVfA/jK5/ aWsG1i5srjw+9q/kiC6B3PjuMhf5V7FcmFfCEdneFTaxwqjs5wpAXFAHwD8Wfgv8R/h1NZx6Drmo eIVulzK1qG/cnng8+w/Oub0n9pv4haPfQ+GrrVtWguI28iSJpWyp69M19hfGL4+6D+zzc2Mdp9mc agu9vLuFXpn6+lfEPiSTUPiz+0fNqlnFcW8erXgeOcKXVPlxnPQ9KAPf/hF8GNS+OGs3Nh4luGv7 W1QSRJcrvVWOckZ+gq346/Y61LwzqVwuizeTZQRmRIIY8KxAJwMetb+j3PiX9ly5k1WT7b40W+Hk /Z7SNt0OP4jjf13enauni+KHij4keGLjWrf7V4bkaNgtndKwMZA+8c7ePwoA/Tb/AINc4Lq1/Yg1 6O+tpLS6j165V45PvDFzcjP49a/TKvza/wCDZPVr7W/2OPElzqV7BqF4+v3IlnhOUci4uBxyenTr X6S0AFfGf/BV74i6JcSeF/AI+G/i74i+L9eWS506Pw9cvZXenRrlmkFwsExjyI3/AIecYzzX2ZXx H/wVrms/D/jT4Y6w/wAaNW+EupfbzYWf9laX/aF5qEk58pQFFrcFUDSfMzAKBuORgkAHn/8AwSu+ FUnwU/aG1Ir+zr408DX3iOzdtQ8Z+J9XfVL26w8eLUytZQHBCqwBY8QjjuP0cr43/ZX+FnjjwP8A tP29t4q/aC174htHpBu00HVbO3t90btEy3MZjtot20OEIDHBkORkcfZFAHn2pfsseAtX+Ii+Kbjw 1pcusecLhpWt0PmTAYErcZLgBQGzn5V9K0YPgJ4RtvjRcfEKPQdPXxldac2ky6qIF+0valomMRfG 7aTDEcZx8g9K7CigDz3wv+yv4B8G+OW8R6b4b0y11XzHmjlS3QeTI+N7JgfKzYXJ77R6V0nxL+GO g/GHwfcaB4l0y01jR7qSKWW1uYxJG7RSpLGSpBHyyIjD0Kg1vUUAQ6dYQ6Tp8FrbxrFb20axRIow qKowAPoBXzz/AMFb/wDlG78Xf+wIf/RsdfRlfOf/AAVwGf8Agm78XP8AsCH/ANGx0Afys/Amfwvp ngrS7zUreOW7tWWYjzGBbbg4xnHavqz4P/tQ+GP2ofFEfhGHQZ7VliMvmSkbfkUnsxP8NfAvhHTZ poNPH2WWaFmQNtH3xkZFfbH7EXg3SLP4xwyWXh640i4+xvm5lUBfuNkfjz+dAHWfFn4nTfs/+I49 H0nwpqep28iCUy2oDIDgHHzMD/EfyrsdU/a38J6L4VW8aSF7mOMFrcMN4Pp16159+2T8ZfFHwu+J kGn6NZ6leWr24dntk3IDtQ+vua8rt/g94T+Mrrpmlx2mn+INS+bzpW+4/fIxQB2fxZ/aKvPi9d2s 3hfxRa+E47VNs0dwqsZjzyPlf1Hp0rz3w1+zm+sfEWz8R6p460W7aa5FzcH5lMmTk9EA713/AMP/ ANhDSfh9bTx+KbW38SzTtuheBeIRxwcj2P515/4h/Z2k0D4iXF0lxb2vh23uC4smGGSIMflP0GBQ B7d8VfEmg+CbK3m0vSZvGTzMQ8OnSEtAOOTll6/0pfAHh/xN44trHV9Pgn8O6bLLkadcxhpIgrFT k4bqQT97+Kp/2cfiZ8P/AIfa5fzabHbWLTxhWYyDkc/41uePP27bfQ/EFxY2PhXWtUt1ACX9sA0B yoOQfYkg/Q0Aex+MfhT4d+MWjR6TrVilxaqwl2l2T5hxnKkHvWHpFrpX7NVxDoHh3w7dSWMkq3Ra BjIockKeXbPRBXn/AOzp8e7jxv49e0mvvtiiAv5atkjkV7fc+JBHMB9z2NAHvPxD+Ny+K/gjFp/l yRtJbxZVgPlwo4NfDX7WPxx134Ua3pcOj6DqmsR3UUjSNaojCMjZgHcR1yfyr6V8GQt4u1m3sZOI 5lyS3Sun1z4MwWssaqsUm7PQdKAPibRtL8SeP9KhuLFZtD1bUF3RTzoD9lb1Iww6D0PWvsf/AIJL eG/FHwe8U+LpviN4ysvEUF5aKloqxiPym3Jk8Rp6H161554n1nSdMvLqygvLX7dEdqxq3zZ47V2v 7LXwg1742alqsMFyLVrGIOTIp+bkD+tAHpvx7e9134jatdabeK2lyZKxIAdy5bIBx3HvXPfBf4Lj 4yeLW0lLVtNZYzJ5sxO04+ma9OuvBcPw58FXmm3lq1xqdlbSH7Sg+XcEOD+BGa85/Z68c+Jh49l8 jUireW/5c0AXviT8EX+EfiD+y9y3XyB98ZbHIB749a8b1a1vLNJJJYZFjU9SK9i+OPiLxTfeMfMk 1B5G8sc4PoK+U/AP7an/AAur4gr4SbSdSsmmZlNxPjyxgZoA4X9qbQNF8SeItPk1LwjfeIXjiwsk LsojGTwcOtegfDq+8N6T4T0mOzs/sd1BbRrHbM7GSEhQNpyTyOn4V6NqGkjQG2LNHJuBOVr5h0vU Y5f2kDGbyFy2quPLDcn96eKAPqT4baZcfEGW4VI2j+z4+8Ouap+MrG38M3d5HMgaa2XLYPXgH+td d8JvH+l/Dq5u2v5I7UXGAm9tu7Fcl8RvGOh+LPF97JHJDMl0VAIbO75QP6UAeG/EX9qBfBGkw3EO gahqzSPtMVvt3L78sKqeFP2oNS8U6UL5fDWrWMAYhklVMqByT94/5Fe5eD/gzoMl/Jvggj+XOW71 S+IXgJdKS8tdPliW1ktnGxe5KkUAeVXf7Zfhqxh/eXcXmL8rpuGQe/es+fxRfftCSrqXhnxFa6ba Wf7mVHUNub1+61eKeEP2Io/iL8Rrqzk03yfPlllMkifKfn/+vXvfwr/ZMPwH0mfT4WgjW7k80hBi gD538Oa94uu/jhFo/iXVTceGjctHdl41WN0EZI+YKCPm29K+mPD/AIM8N6PLN/wg+oWFsW4ufLdp Mjt97Ncf4s+Dh8YfbNNWSJJLs7QzdARg/wBK3P2df2eLX4E3GoNql5Zst8FVMfL0oAx77x7pml/E SHT7ySK51EXSIWXjexfA44717bokn9oTbWt5IxtBya/Pr4v314v7dcK2Mp+x/wBvWwQryuPtAr9B vD9/cWjK1zJ5ymIYA7cCgDyv4x/tHXnwy8cSaRD4N1rVoVUH7Vbqpj5+rg/pWP4z8v49aA2geGb2 HRNWmIkW4l+ZVCkMRjDdge3evctc8R2JsLhWvLe2maM4jdvmr4w/Ys8IeMbb9omOXVo7pbDy5fme MhT8jY/pQB0N14v8RfshSf8ACP6zZ3njK6vR56XdjGqxxA/wnOzkZ9Kydc8UfErRNPm8TahrUl9o D/6SdIWBBKI2+YR52DkLx978a9i/aO+Anjr4ieLre68N+JLXR7SOEI8Uiklm9eK5Pwj+zr488O69 b3Pi7x5pd94cgI+2Wzbl3rxxz7ZoA+Vv2hPjfbfEWfT2utDvrH7OhCiYgbuvTDH1rv8A4daro+j/ AA/0/VIbPdcQRb1UN82ckeuK9O/ag+Bfhfx3d6W3h6G11JYIyJjbHfsOW68e4rU8A/BLw9a+FLGx ks4Y7tU2lTwQcmgDyaX9uiXSF33ujahtbgblTr/31X0z+zd4n0344/B+LW5rNooblpIpFkOMKBz9 0+hrwP8Aa3/Zyh0/wjpzQiG3ZpmBJHX7teR+FPi748+FMUHhPRdakg02aUR7Iwdv7whT/OgD+hb/ AIN2ND0nw5+zP4ws9FVF06PxDceWEYsATcXBbkknrmv0Kr83f+DZfw5deFv2NNetL2UTXX9tSyyO B94vPcN/Wv0ioAK+UP8AgpN8PWuzpnibR38CzeKbO3+z2lr4ndo42RXZt0LrDKySfO3KgE4Azjp9 X18a/wDBUHSvBN/4q8LyeJ/2ddd+Pd5HAwgSy0iW/j0xSX5bZBLtJ5647UAec/sKeC/HPxq/b3X4 lfE7xh4GttQ8P+EX0Tw/4R8NX8900Ft51p5lxO7wQ5zJFwCXx5o6Y4/RCvzj/wCCePwltx+2t/wl Hgv9l+f4E+HYfD81pql9qWmSWM19KZ4CscSPBETwucgt9w8en6I67qR0jRbq6WNpjbRNIEHVsDOK AMi8+LPhvT/GcPh6bWLOPWrhd0doW+dhgn6fwnv2ros1+Ofw5v5vHn/BEH4mfGLVHE3jy78Urr6a mebiCW21CzjRFf7wBS3Vfoxr9APEP7QeuaT/AMEudP8AiUFkk8QT+BdP1eTk7mnmtoWc+vVyaAPa tL+LPhvWvF1xoNrrFnPrFr/rbVW+dOv4dj0qn4n+Pfg3wZ43sfDeqeItOsdc1L/j2s5XIkm4J44x /Cep7V+W3iWzPwR/4Ja/stfE7Sm/4rNvE3h2+u79eJ9Qa7ubQXKuw5bzBGAfXNe2/wDBWbwP8M/C /wACNP17xP8ADfU9Qk8TalpF5qXjGw0xrmbw2y3dsyyvIsZ2qzIkWWZcCTqehAP0KByK+df+CtcR m/4Jw/FtR1bRCP8AyLHXtnwtv7HVfhl4dutLvjqemXOl20tneFgxu4WiUpJkcHcpDZHXNeK/8FZ9 3/DuX4tbWCt/YvBPb97HQB/KH8Or7UfBU+i6b9lurgLND88cTFTlgPQ+lfbXi7/hJ9S8LQx+HdRj 8M6gwQi8vV2xBcDK5JXkjI69685/Zh0zwTc/DzRW16SDVNcWRAbiN3jUt8uPlyvfPbvXpn/BQCPW dN/Z28zQYZJLz7TCFWCPc2zfH7elAGd4U+Nsnwp09tO8da9p3iDVpG3pcW06qoTk4+83Yr37VyXg mL4UeGfHseuaTYwzatvMirFdI7kn0AXNfMtn8P8AxZ46T7Xqa3EFwp2BZlKNj6Aewr6a/Z8/ZJ8P 6P460i+a4tZrhVyyLdSsxP0JxQB9FfCbxbD8QLW6ks7O4s1hfDCQH5uB7D1r4X/av8W+LIPi34ws Vvh/Zi3c0Yj2HhN7DGc+lfol4Q8JWfg2OWO0h2LM25sEn+f0r8/f2kfiFoq/tDeKNPvLK4uh/aM0 cscf3pP3jAgcigDG/YH+F/gT4heKtah8bTafDawQIbc3V1HACx35wX69B0r77+Hfw38O+Hvh3HpP hmS2m8PbZFjNvKssbBmYuAy8feLV8g/s8/Cb4XfE3WL63v8AwvrGnpbxhlaa6mh3de6y89K+qPAM 2l/CPwRFo/hyyuxo9iHaFdzTHlmdvmclj8zN1NAEfwU/ZX8H/C/xhJqeiaa1jePEUMjEYIJGR0Fe ia34YtZL9WlTzWUA5X615z8OP2g28feIWsYdJ1KxZUL+ZPEqqcduprvY9cuVuo1e3mmXeMsq8Yzz QB6d8J4rPWfFFlZWdhcLclMK20noB7V2nxF1n/hV97aw38MitcAumRt6Y/xrpfgR4i8DaF4g0m7W xkjvVgG9mkPDYGeN2K84/wCClOo6l8RvF3h2bwfcQ20FvBMs4dQ2SfLx2PoaAPCNL+CPhPVPjjH4 gm09lkluvOaVmAUfJjOcV95fsaXXh3w5rOttYT2sbSwgN+/U5GVr458M+FtQv9OtbW4urc3Ui7Xb pz+VegfDn4a+LvClxdNod1G0kq7Zdg8zjj1BoA+tPi54ZbXrHXL6GaOaF7SZgiHcX+RjgY9a+Wvh J4P1vWfF00Ohw3Gh3YVibi5hZUIyeOdv86+kfhjNq2l/C+3fXFeSWGJnuTsAyoUE9h71S034n+E9 fuzBpcJtbpclnY8H17mgCDwN8D5L3RmbxOy6tqO4/v4h8oXnA7+3evhXVfgfpPhjX7q801Y47yOU 7GyDiv0k8LavOdN/0W4jaPPoD/SvmPxj8IdD1BLoabGsWoSPkO0rkZ78ZP8AKgD53TT72If6Q3mE 9wvSuR0r9m7wfa+Pk8QxaWw1r7Sbnztw/wBaW3E4xnr717p4k8KxeApFh1ILNJKu5TGTwP0r5atP 2yIJf2g5PC8Wh60u3U3s1nMK+TxIV3Z3ZxxQB7P4r+Fmk/EjyV16JZFtiTFuIXGevWvG9d/Z91vw /wDEf7Rpep2tr4dtZVdImH3U2jd824D72e1fRmhpa+LHkF4jARfdySv8jWT4kuPDazXOkzsm2RfL dPNO45weuc0Ac5471IeOdNjt/BmtaaNQjbdL5UyzHZ9FYH1q34I8Pa1pnhzbrVwt1eKzM0gXaoXH 1PvR8Lfgz4M+Emtz32j6fcQXFxH5bs9zLICOezuR3rtNS8QWM9nND5ErCWNkOPcEetAHF+HfjHo/ hPW/tE2qafMseYzGtym4HP19qveIfiTY/Eq+iurBlaKEbG2uH5/CvH9b/Zj0u5u7i4s4JI7iaVpM tcSkckk8bsd6teGvgt4u8NRGLQtStLO3dgzrKN5J/wCBKaAPLfDF94xsP2io5tQ8V6WPD8d4xkt2 cKwTyzgEl/72D0r2b4y+E0+MwtV0HVLGT7EzGXypFlwD0+6eK+U/C/w08Ta1+0tHZ65q9ncabNeO tzEh2M48okYKqCOQOhFfTmsaVpf7OjhvD8ci/wBpErJiRpuB0++Tj8KAPD7/APYb8ZWPxOh8R/2z arZ2N3HeNGY+dqOHIzv9BX0T4E8TSa1ftE08c3lx9EbJ4wK8C8c/t8TTeLbrwn5k1vc3z/YVmeGM RxNISgYnrgE5PHSul+BHgXxfZ+IriSz8XaFqEkkRJjgw7KDg8jZQB6j4t8BaDruvfar7R7u6uuP3 qKdp/wDHTTvit8V9Q+Cvgx9als7zVoYWWMW1rGzSHJA6KCeM+ldZ4WtdcsdJWPUp4bi5B5dYxjH/ AHyKx/iNqTW3ht2nt3uo9wzGqAk8igDM+A/x9h+OHhm41KbT7zRGhlMXk3wMcje4DBTj8K5z9pnw SvxA+EWvaXCVs3vEYLcy8RLlWGSTgd/Wui8Aadp/iLSpJ3tXsyjY2PlCcewNcl+0F8ZrO7+Fus6P /ZeoW6xo0H2l0AjG0Mud2c4oA5z/AIJ0/BMfBrT/ABFHeavpuo/bJ1ZTBKp2DCdcMfSvKfG3jDxp D+2Lc21vZ6kdDGohVlFrIYtnl9d/3cZ71D8KNN8deILe8PgDWrSzjjbF15qCXc2BjG5Gx29K+j9G 1O30D4ZRrr15YXfia3g/0kxgBpJM9hgdsdhQBkftjRR6v4S06OK3l1LbOx226mRl+71wD/kV8yj4 j+CvBviuz0zVvDeo/wBsefHtdsptJYbeCnrXr19+1jpvw0jW68QaXqUlvP8AKg8teCOvUj1FeC/F nxjpvxi+Mlt4t07RNQTTFmgLSGM4XY4JOFJoA/oG/wCDdmaa4/Zf8TSTbgz6w7AEYIUyz7R+WK/Q ivz1/wCDdHxLa+Lv2VvEV9ZSebbyasyq20r0kmB4IB7V+hVABXyN/wAFBPDviXxz8aPBmj2fxd1b 4O+H5LWSSfUbOO0xqE373ETSXEMqJt2oedud2ASeK+ua+Pf+CpOveJ/F83hvwH4f8G+E/EtjeyQ3 +uXPiAAx2dl52H8gGKT98VicA/JglTu9AD5t0f4d+LPGP7aUfwg0D9rj4jeJZZ/D0usz3WmW+k3E enMksEYjllWxMY3CbcADnp6Gv0Y/Zw+FGqfBr4M6P4Z1zX7vxVqOmwLDcapdhPOvmChS7hVVdzEE naoHPQV8t/st3fws/ZL/AG6LP4SeD/Bfh3TdW8a+ED4lm1Cwt4/t0GyS1RoZ5docozShgCxGFTjg Y+4KAPhd/wDgl14k0X4PeJfgppOp6bH8J/FXiKDXpLiQn7dZQpNbTtaJ2w8lsckoeJj8wPT3mL4F +MJ/HE3hG4m8PyfA+LwoujWmnBJP7SW5jFskZZs7fLCJN2zkp717fRQB8N+C/wDgmT4quPA3wu+G fibVtOuvhz8I9ZtNVsJIyftmqLaSwyW0cnb5TCd2FXIk4Pp6Z8WPg/8AF79oLR/FHw98S2vgez+H +rTQR219ZrL9s+yxvDKUYM7DeWjZchMYI6HmvpiigDH+Hfgiy+Gfw/0Pw3pqsuneH9Pt9NtQxywi hjWNMn12qK8N/wCCtZYf8E4fi3t+9/Yhxx/01jr6Kr56/wCCrsog/wCCd3xWkb7qaPk/9/Y6AP5L fCd/rEEWn3jyx281uySiMLtYlSCOK+0P2RP2nvEHxU+KMOi+IIbyLT1tWYNPHtQlUbHP4CvkLXdY bxj8VtGvbRWFrJPbL0/6ac/zr9HNU8BW+seGraGxkiW48uMn5h0wM0AeVftcfGLw/wCBviNDZzQt MzQBt0ZGOi/41Z+C/irwXrfjbT10XQNS0/VpuY7mUDy1PrXmv7Tf7NFxr3jyGaa1uLphCBviQsBw v1r6g+HvwWXQNP02ZdqtDEvXGRQByvx//a+s/wBl/VLG11q3utQk1FPMja3xhRlhz/3ya+IrXUT8 Wv2to/E0dncrpusauboI68hGctz+Br6l/bs/ZL1z47+IdEuNNnt41s4dj78cnLn1HrXhHww0Pxl8 Nfi7pOgXF1ataaXeLbuqpyVU7ePm9qAPqH46fBHVPiDp1rD4IurfRLqFyZ3uR8sinGAMfQ/nWH4K 8K/FT4ewWek3Gv2NxFbyfvDGpwysxY/zr3awlGoTsu1o9vQsNua8x+IH7VOm/Dr4kP4bm8OeIr6a N41N1bWsjwHeqt94RkcbsHnsaAPZCLayjV1iO7ocV03gnXNtgqCzuJI2lwxVcjHGaxvDml/8JXd/ Z7VWSTbv+b0roY/EmvfDRDplvzHL+8OIy3J+XsfagD1zxrofgXwj8ORq8Nt/xMFjRmCuN24jnis/ 4M3Xhn4iWN5NKixfZ3UASuBnOf8ACvN/C3wvufHOvxw31tcSw3mZHVUOSTzWv4s+F+lfCi6ihOl6 jtugWOEPbH+z70AVtT8ByW3xBlktZI1t1mynPbbXqnwt8Yav8P7m7ksWadrhdriFd2Bx1/Kvnnw3 +zn+0Re/Ea11b+3NFHw/km8z7GYD9o8jbjGfN67ufu/hX2T+yv4fj8IarqzXkcgWaIBMjHcUAema XrEvif4A6heXysLifTbguGGG/wBUf8a+Svgh4Sg17xzcQxQsrbXOT9TXu3xA+JOqP4yutJtrqCPS rhvs7I3UIxKnnOOh9KteB/Bnhn4Tat/avmws0i7CFnQnn6UAeV+OvjY3wI1r+xdkx+USfJ05wf61 zvxC+K3h618KTXWk6ZeWOpHBWeTG1T3qv+2R410DW/iss0em6hdr5CjfApdfur3CmvPvE/xB0/x3 4fbSZLW5aOQD5QDnj8KAPFv2mf20P+Ff67Yw6ho+r69JPFlZLJNyx9Rg15F8JPBvjzxZ8b9K8VTa ta2/hnUr4X32CVSJ44HfeI2/2gpAPuK9Z+LHx80P9mfULXT/APhE/Euqfb18zfaWkkypyRyVjbHS vVPgtpfhj4oXugahNpuoW6a0Ip2hkGySPeA20gqCCM4wRQBsTeHv7bYDTcK0f3u9eb+JvhXoL+Mp Zbx4P7W3qSC+G3bRjj6Yr64h8AeGvhnKG0pGszc8SGeQfNj04FfHvxu+CM2p/tGX/iaNWa3WeKbz BymFiVevTtQBW+PHxNuP2fvDNtqmoaRqWqRXUvkrHax7mU8cn25rpv2fPH1r8bfhqNdjsbrS1aV4 vIuxtkGFBzj05pf2ifip4j+L3hS0sfA+saTHqVvMZJS7LINnHYMPQ1tfAH4S+LNR+FEk3ia+sbjW N8nzwgKuNgxxuPfPegCrPGbeVisi8MQMGq7a5HZ3CLNcxxMxyAxxmuc8P+D/ABXpvi2Z9UljfTld wAqEH73HOT2rY1v4LaP8QrpLq/8AlkhGxcyKvH40AfC/h34oWviD9r8aTBHItxNqDosp+5kQk5/S vqH4hfCXXtaeEWd9aqY2O7Oary/sNeBvB3iV/Emm28lvrVrIZYriWZPLViNpJ4HYkda7jwNPfWzz td6hZ324Aj7O4bb9cE0AfB/jb9lHVdb/AGkol1K5tZrW41OFLhRnLxmUBh+IzX2l8GP2XvCvwE1q TU9Fsvs1zdQiJ23ZyDg/0rel+E2kan4qj1q4jczrMs7EMOobd6V6Vo2iab41m+zQr5bRruJdgOKA MQXIlG5WwtVi1rcnb5kbHrgNWL8VLfUvBniGe1s23W0aBsKu7P4ivJfgh8etI+JHxEj0m38P69ps zIzfaLuCSOLhSTyyAdvWgCl+1Z8fJPhF47s9Pt9H1TUEnhVzJax7kXJHWtL9oXXf+Ep/ZPvpWt5r j7ZpySG1QfvvmiJ249ecV6/qOg3kz7rWSHy9pzkBufzrxm08R654T8ey3d7puoTWNtcvv2Wr4YBu oOCO1AHkX7BXjSH4YadrytoeqWf2qUMBJHjdwn+Fd940s/C63194suNHvHuIz5746k9Ks/Hv4o65 46uNPbwwv9irboVmF9EUMh56Z2+o9a5O9/aY0e18Ky+H9b3XepCPyrkwtxI2c8DB9vWgDyP9on9o rw7+0D4cstPt9NvLJrSQyFp8ANnb0/75rD+Hf7QF18MvD8OhWUM0lismTtTch3dak8fT/D+10+H7 ZousRpuO0sNvPHrHWX4e+J/g+0eDR9OsbyOG7kWFN5zguQv90etAH79f8GyGqx63+xjr11GsarNr czYRQqj9/cdhX6TV+bv/AAbMeCP+Fefsaa9pYxiPWpZBg9nnuH/rX6RUAFfCP/BXz4p+CfD3xI+G fhX4nahpeg+APEhuRe6uLhIdUsZUjdozbsxwuZFjDHaeC3SvtD4peIrnwl8Oda1SzEZurCzkniD/ AHSyjIzXzj4m8Uapp/wW8C+IPGXhfQfibr15qEVs8siWwTThcSpBlFkZAVG8k8E9fagDy/8A4JlN +yb8NfjnqmnfBnxE3jD4g+JrMy6jqt5eQ3t+9qjRLteWNV+QEQgAj+FfSvvyuJ8NfDbwT4a1uwvb PQfDek640exDZW8UMvPLL8mMjI75HArtJplgiaR2CooyxPYUAOor8+4f+Clvjbxf+zt4s/aC0drN fh34U8Rw6VFpDw/PqFkZ7a3muSfvB0aeVgAyjEI+U55+zbn49aHa/s+2/wASHmKeH7nRodaSRgc+ TLGsiZHXo60AdvRXwJ4W/wCCjXjzQvhN8JPjJ4m+wr4F+LWuWOmnTFh+bR4L6WCO3lBHzFh5rl8s wwgwOuei/bP+JX7TPw98L698U/BuoeD7Hwf4XMNxD4cvY99xrFqWjWRmcZCvh3KgOv3FGMkggH2z Xzr/AMFaRu/4Jx/FrP8A0BT/AOjY69a/Z8+KD/G74DeCvGUllJpsnizQrHWGtHGGtjcW6SmM8n7u /HU9K8j/AOCtwz/wTe+Ln/YEP/o2OgD+Ubwb4U1+5bSzo8O6NnjEMhj3KrZGCTg+1fWvh/xH8Tf2 dWj8RfEC6t9Y8NiMQ/ZtNt1a43sMKfuJwCy557Gsf9iD49eHvA3wS0DQ9Tt5P7RMqrkxg8sEA689 RX2Rd6fDq2nRrJHHJG4VgGXPoaAPmf8A4aA1/wCLf/Ey8K3Vnounp+7aDVreJZi3TI3Kxxwe/cV9 EaB4/sdS0+1t5FkhumQb53AWLd65z0/CuE+J37Hfg/4va8mpast3FcxpsAt5PLXHA6D6Ct/X9I0v xb4U/wCEbmjuVs9giynyvge9AHQ6vNDJIuy4t7rjrE27FfG+ta1ap+1hNGWXf/azDbkf89Gr6f8A h18J9H+F9vPDpq3rLcNubznLc8f4V8qaxqPwxj/bGmjmt9a/4SIaywZh/qvN8xs9+mc0AfZGv65b 6eqtJBM2T/AtdL4S+H9v4r8Mx6qsViqsGOJ0HmfKSPQ+nrVa9my/KrnPcV4x8R/20dB+GvxKk8LX dlrEl3G8aF4Id0WXVWGDn/aFAH0l8BtPbxN43a2sF2zLCWy/TGR9a9hufCmi6Q/l+ILKe4v8bleI kKF7dx3z2rxr9n/xxD8LvGZ1ORZNskBTgZ64Neu6j+0Jp/iy8WRo5tr4i+4O5/8Ar0AaPgfUtR0/ xRC2kzWfmJkQoUVmC9gQVNc7+1D4t8ayavpvmLbufLfGy0Tj7v8AsV6t8NvhN4T8Aa/Z+KoWuJLr Z5pTzN3LjJ4o+PX7Q+l6Rqlgq2c7blYnMIP92gCfwp8RG0r4S2c2oSQ5ht8yoqKG+8e2BU/wq+KW j+Orm7S3hn/coGOAB6ehr5313UdQ1zULi8uN39k3DbnRRhtvT+dcn4w/aksv2YYobnw9b3xbVG8q XfFv4HP9BQB9ea94a8K6rrMkk+5buQ42mdlOc8cbvWsjxl4I0HQdLWe5tb+aMsFCxzSE/wDoVfMn gD4jH4x+IdI8W3U0kct5dxStGW2Hh1bG38a+vY/ipYtBGGt7hsKByntQBS+HHwY8JeONA+2fY2h+ crtuZXD9SP7xrlNf/Zb8E+G7aW802NWvkPygXUj/AKFiK7OfxJoetnzpoL9W6YjG0Vh+MPgzpfwq 0KXxFY3EhuIcFQ8u4c8dKAPnf486avhPWLOOO0tWEke4+ZAsh7/3gawfCPxE8MeHtas7oyxi/t3D NGjjhx1AXOOvbFepeLrnTvidPHcaqy+ZCuxNp28f5NfNniL9gDRNI+IF94yt7mVpFu3v0T7ST1Yv 93+lAH1Z4F1DQf2k5Zo72G6ZdNwVw5ixn/cYZ/GuA+MPgrU9FutX0qxSP+wlQKFK7pNpAJ+Ygt1J /iq3+yDrcPhG81gzxzN5yoBtFdT8QfjvZLfX9isM25lCAtH6gGgD4v8AC/wksfBF69x4Nhu7PUJV 2yveTSTIU9g7OM9e1epeBvH3ifw1oX2O7urdpN5J2RLjBAH92uW/aItPHlx4VtV8Cz6XBqXnHzjd fdKcdOPrXV/sy+Gb24+GcbfEeSCfxL9oYM9mf3Xl4XH453UAb2h+IZde1DydWaNrNhuIVQhz9QAe 571X8ZWGhxalCtvHPtZedsjf/FV0nj3wLoa+GWbT5f8ASdwxl+2D/wDWrz2XyfDR8q4mjDP8w3NQ B4VqH7Xug+OfH9x4BbRvESm6mNqZjBti+VfMzvDZ7da9B8DeB9H+GMlx9nka3+0YU/aLhmzj03E1 6I1vo72HnQ20f2ojIfYOvrn6VxPxJ+D+m/FmK2XVGmX7ISU8p9mc+tAGxNeKbCSaNhJGqFgUOc4H avPfHf7Vdp8AtOj1K5sNWukuH8kC2gDsOp5BI9K9m8FeCPDvgv4bxWMK3DSWtuwQs27nbxz+FcuY 7fVG8uSGNlXkB1BoAwfhz8c7X46+Eh4gt7O9t45SVCXUISQY9gT6Vwuu/GXT/h5atqN8sDW6NtIt 4YxJk8dsevrXf+IPiNp3gvzbJrWbaq5byYxjFeAfDG6+GP7S/jf/AIRe30vxNbzzhpd9yuyMbQW6 5/2aAPVPh/8AtOab4x017jTbe+aFZNrbo1PP5mvXvG/xU0uz+Fcl01usTi3Vi7wpwdneuM8A/A/R fgXpMum6PG32eZjM3mHcc14h+0P+0DZ/F3wZr/gPS7PUYdVune0jlki2xBhuTOfTJFAEfxn+IWl+ NZ7JxdWy/Z0I+VlT1/u/WsSP9knwX4q0T+3LC4t18SXS+ZC0l/Lt8zOOU3FemeNtfJnxP+BHif4a ParftJMbhSy+QzNjr1/KvXvh9+yF4msvhrYeM7e6EbQxG5RJJ2+XkryKANbx1+xr8UPHFhDBrGpe H5o42LKIh5ZB4/uxj0FeYaj+yR4j8BeObQXEtk/2OeKdvLdjkKwJx8vtX0H+yv8AFrxV8RfFV/Br l9pywxQqyENt5O7/AAFdJ8QNdsbD4jRW91HNcMZIw0sI3R4LetAH62f8G4eur4i/ZO8RXKrIn/E3 eMhxg5WWdT/Kv0Qr4C/4N9UtY/2c/Fgs8G3/ALacrg/9NZ819+0AYvxH8LyeNvAWr6RHIIZNStXt 1c9ELDGa+DB/wb9abeaRb2t78fvjxPHbuJUjHjHVVijcNvUqn2vC4bBGOhFfobRQB8i/sq/8Eqm/ ZV+Otr40h+LHxM8brHZSWL2HifX73U4Ywzo/mRieeQK42AZABwzc8kH6w1vTRrOj3VozMi3MTRFh 1GRirVFAH4+eC/Dl58Nv+CP3xC/Z8vofL+Ix8VJodtpg/wBddrcX1pMZ0HUosUzMT1/dt6V9j6sm g+JP2X4/2V49YjX4laV8NrNZ7TPKxW8NnE79d33pIx0/ir6uk8OWMutx6k1rC1/EnlpPj51XnjP4 n86mXSbZdTa8EMf2pk8sy4+Yrxx+g/KgD8l9Ut7j49/8E7P2Y/grp1u0fjbTfEmhW2s2GP3mmJY3 Fqbp3A5AVWJ/4CelfQX7Tn/BQr4I6z4pk+D/AIm+IuiaHpfhlbYeIvPn2vePEI5kt0GecsIickZG 4YI6/cFr4bsLHVpr6G1hjvLkASygfM+M4z+Z/Os+5+F/h+8uWml0mzkkY7ixTkmgCr8FPGegfED4 VaDq3hVVXw3dWUTaZsRUjNtsHlFAvATZtxjtivIf+CrxI/4J2/Fba20/2PwfT97HX0Hb26WlvHFG oSONQiKOigcAV88f8FbAW/4JwfFzb97+xDj/AL+x0AfyuXPgHxBrvxF0e/W9gvVWe3YSb1XOHz0z X6U+ELnWmS2S48kRrAvT12/Wvj/9kb4J6fr3wy0HUdUkuPt4mRj+8bttI7195eFdKtdTnht2DBVi HI46CgDwX9oP44at8OvGUVjDNp8atEGxKfm6L/tD1r2zwVerc29lcJtM0kYbJ+7k187/ALcn7EOs /GX4sW2qaPKy2sdsEINzJHyFQdB9DXv3gHw+9hpmm2Eu4tbwiNiCc5FAHrHgHw3H4shme8aJWibA 2sF9PXNflX8X/D15pH/BSXWNlrMLODxNLiZoz5YXz353dMe9fo9qOsXngpljs2kUTfM27P8AntXl vxa8O6Df+H9a1bWLVVaSN5rmaGIed3JKng5565oA7aeRPELstrcW9y0fJEEquR9cE12fhP4F6frf hqPULmOP7V8zHcyA5BIHB57Cvmj/AIJ8eM/AKeLta/4R+48R3E3kJ5g1Iu6gfP03O3PWvo7UPFNx d+I1WzaQWsjqqgcDtnpx60AUb/zrSDdfS2trBnAeVxGufqTivTvgh4F0vxd4MluvtlvO6zMitDcI y/dUj19awv2hv2W9D+NfgKPSfEVxfWdgJlmEljcPBJuAOBuRlOOfWsP4Jfstz/Azwz/Zvge81C70 Nbn7VK99dyzS78KGALFzjai8Z9aAPbfgR8N9b0T4uWtxqgVdHQuN27t27/0rS/bQ1KTSvEOjroka zxvFJ5h2eZg/Jjpj3roPCn7RPhv4pwWng2x+0R655SxOxiVF3oMN8wOetS+KfC7eCriGO8MMzTAs DK3mEYx/e+tAHHeAZ7zxhDp+k3H2RVvBsdQQrDqe59q9Ek/Ys0O/O3UVlZVPybZI+v8A3ya8IHg/ xpo3xA/trS/s22GXzIAznb0x0249a91+Dfxc8U6xe33/AAmggWFVBtvsqjO7jrhV96APCfiT8AvA XgP4qzNF/bH9pabOs0KqwaMyK5K8CPkbh2Nev/BH4iap448VfYdQtPKtY4cq32d4846ctxXnHxW1 2+uf2gGuLO38yz+2RMpkizkCTPPBr3/RfF93rDpD9ks4dqA7ordUbp6hRQBB4vl1zTdU8vSW0xLX bnE7qGz/AN9D+VY3iLw94B8aaQ+n3V9eSPNjesVwpOfYbTUfj3QtL1XW/M1K4v47jYBiGRlXHHYM K+WP2PLZ/E/7T9jYXV3eSWrySDa0zHOF+tAHdfG/9mXTzq1p/wAInJdfZvL/AH32mZQc89OFrltO 8E+H9HkjhuNWtjqFthJIRexFt44I29eueK+gv2mvCGoeE9ds4dCUNDJETIXyeefY1+enxH/Y1aX4 lax4l8NanrTeOpr6W7tbe41Cf7F9pZ2baU3ldm49NmMdqAP0C/ZI8KaVrN7q37wDYE6uo/pVb4s/ CLRNQ8ZalGGk86TaoIddudq98V8ofst3P7QXwmutVfxt/YcK3aqLb7K/Ujrn92tfRVhrd34j8Kfa L6T/AIms6HcVb5dwOB+gFAHA/ET9mufwjpMVwk0MhkfbhbiN/TsDXP6f4V8O6Zp7QaxPcR3xB4SR QMY47H3rettB8VQP/pk0csZ6AylufxFZut/s3XXxAu21SZ5VmVdoCTOq8cjgYHegDzLx83hP4T6T LrUdxfKVk2AzP8nOT/dHpXEf2J4X/aTH9qG4vJPsf7jMEgC8/VTXdfHT9le6+JvgGbRddaSHS/OD b4JnjkyoYDkYPQnvTv2Wf2RNL+DfhK+sNJkup4bmcSOZ53lYHnoWJoAp6PINEhgso9xt7cbF3ctj rWhcSPe/8e/8PXdxVx9HstP8SMlwJNkbkPt+lWvETaYBH9hEy8/NuGP60Adj4R+Hun6l4UhuLxpF kZMvtcADj6V53+0b4a1TQPC1rJ4Cks5dSabEwupFZdmD6MvOcd693+Hfw+s/Enw2t1keZTdwlGIc rjK49feue8RfsltaW6tolw01wzfMJ7l2UD8SaAPLvgr4K8Qa94JhuPE0VodTLkP9nxsx/wB9N/Ou v8e6Fofh/wAOtPa/Z4ZlYDeSqgcj6V6P4J8IWfgTwm1hrTbdQXJPltlcdu4r5t8feHYfG+lTafd3 F4kDOGzHKytwQeoI9KANBbxb35kljmHQlGDCrl5o+mR6cZPJ/ebckhRyfyrhvDXge88DWrWuiNJP bSNuZrh2kYH6nNdjY3M0sMcc+N20Bxjv3oA5Pxj4y8O+D3hXUoZCZhlMR7uP++T6VxfxE+PHh3xx 4I1PwxpMjLqGoQ+RbqwKruyDzkAdq9E8ffDDSfHUtu195oNuMLsJHr6EeteV+K/2R/DPhd7rxNZ3 V1/aVn+/iRrl9u7gcrux39KAPjH4jfsffED4P6Vb3WpNaxx3DGNTFOhORj0c+tdN8L/2jvEvwz8A r4R8uM/aC0Rn+zvIyCT5SQwJHevb7e/1z9pc/wBm60bVYbP98mwiPk/QD+6KpSfs0eLtG8QW8ek2 +jS6SkqMzzYaTGRu5Kk9PegD9av+DXvw+3hj9iPXLVria6b+3LiVpJfvMXuLhjngetfpdX5+/wDB vTpkej/s2eLLaHaVi1uQHByN3mz5/XNfoFQAUUUUAFFFFABRXketftv/AA60H4iP4buNaUXMF4mn XFyNv2W1unClIJH3ZWRt8eBjnzE9a9aaVUjLlhtAyT7UAOoryPwf+3B8OfHPj+Dw7p+tpJdXtzJZ 2dwdv2a+nQqHjibdlmG9MjH8a+tbPxH/AGqPAvwo+LHhXwPrmu2tn4o8aSSR6Tp5dfNuikUkrYBO cBIpDxn7poA9Dr59/wCCqSLL/wAE+PikrfdbSQD/AN/o6+gq8B/4Kltt/wCCf/xOI6jSh/6OjoA/ Dv4Z/B3Q5tF0lo7l4JG8vZH5m0buMcV7H8ZvE0f7JHgNfFviZZG0lWS3H2ZfMkyxVRx/wIV8xTfs wRfEf4h6H4nuNTuLZo5raVo4ryOOMBH3fdPPevvb4s6z4X8T/Dq30+S6trxYxEDGJFkOV29ufSgD wH4fftC6b+0Xora14dW4WzifyWFxHsbdyOn/AAE13umHVPDc0d/DDEzxDI8xflrEutOstKlEekxx x255IC7ef0969Q1TXvGnxJ8LjQdIsNLa8uECxbhszj3LgUAUtC8bab4ljZvFCCOaM4hFsgAI9/1r zzxc+hX/AIivYbeZXhkkZUjkIyRk8EVtap8L/FHw1kSLxpaxQXFwN1uLRhICvvtZ/Q+lfKetfs7a DcftJT6+L/xALptTa48nfiLcXY4xszjn1oA+iNJ8E2OnSM1taQ2zMMEwxhSfrivXvAElrpHgiHMa tLEHYF1yc7mNYvwp0a68RaldJaw7mRQW3jGOvriuk1P4T+I/trXQjtVto8Ow85AcAc8bs0Acnf8A j/Wvien9mqoXa28bRt6V9Kfsf6S2h/CK8tdQVGuJLqTG7k4MaAda5f8AZa1fQ/H3xHexQYZbdmPy behHciu/+Lmo+FfAXi+Gyurq8hmaNZFWMZU5ZgOinuKAOF8Efs7al4K+Kz+IGWNbfzpJAVbnDMSK 6T4s/Ch/ipfWszXUkP2dWXiXbnOP8K9H1XxtNN4OjCi2+zmNNjHhiuOM8+leH/G621jxTqNnJpvz LEjBvLbgE7ff2oAh0n4rat4d1iHw/wCXayW9s3k7yuWI69a9E8PeMmtJZfOijwRxhKy/h58LvDPl 6bNeXV0NS6yJvX73P+z6V6hbeCtLidvssu1j97znVfyyBQBz8Xii+nh82Cy05oOoZ4xvx+VLafEa +06TzEhtt3TlKPGumW2iaVqV1DLuurS2kliVXDKzKpIHHXkdjXztZftYava3b/8ACSWsNtp6kqrw 28m4tnjuf5UAfR7+FLr4ot/aUixq33MKdo44/pXjXw8/Zsk/Z08fx+MJz+6s2YnDbuox0rofhr+1 v4fbw+fLmlC7z1hkHc+1a/iv9qjwV440KTS9RmvltpsbjDbSbuP+AH+VAHRD9qDRdWy11BJM3QEQ hsV5jJ8NbcePJPFjJtsZLlr3HQhWYv0+hrsPhZrcEmm3H/Cv7cahZhv9IbUYirK3HTOz27GsP4h/ GTQ/Fenan4XmF5FrlyHtJFjt3WNZeVIDbduN2ec4oA308N+D/ja2y4kvFFjyPJ+Xr60ur/BHwVpG g3EVrd6gt5DGfKV5P4vesr9j/wAAzfDe+1Zm3SfaAg/esGxj0xXmf7Qvw48Qan8YdY1a1ZRDvR0X zlVeI0HTPtQA/wAG+A/Ek1/ILz7O8YX5QjZ5r3z4SfDry/BG+7VfMV2JHtgV4X+z38UNc8L+Krqb VIrQwvDtXYC/PPYMa+h/DfxH07xPoTzTGZJ5NyBY42C9OO3vQB518YvC2n/EnwpPo1mrR3Hnbt2N vTcDz+NVvgR8C7PwRoF1DfSbpJJQ65fPFM+LOga7oXhya906BGmab5d3dTk+o9q8j1G18aeIP3sk ccbIMAK23+bUAejeIP2SYY9RutUyPJL+ZkvxjgV5/wDE/wACaH4TjtWvGb98Tt8og/nX0l4y8Ey3 f7Mk0Zkb7a1kmQrjOfNHT8K+XfC/7K3i34kLIulxNMbUAv58qrjPpuIoA1NL+KmmWfhb+xtPM/my RGCAlf42G0c/XFRfDrSvFWj6tLJJJDtdCB5jnHWvX/BX7JEPgLwXb6prSTrqGjxm7nWN0dcxjecA Ak9Oxrj/AIs+K4/jro8OmeHY5I7q1k3uZImgG0ZHVgAetAHmHxQjubvxezX7zecQN3kE7cVF4n8G +G9J0fz0N6HyPvDjrXaaB8Vbf4Lacuh61HE1/CdxJjMnB91yK5f42/HLTPEfgaa2ZVUNIpzHE27h h7UAN+HfhGTW9Jmk0kQNbq+GM33s1z/i59Ftbe8ih87+0o2ZSP4N4zn8M1N8FfDV3438OXFzpBkN vHIUbc2w5+hxUPif4Y6npMF1dSRj92zFjuHv70AcLf8AiD+ypIxcMq7+RXw18fv2g5rf4s69p9rJ fGRZgiDB8snaD+Vfanjj4aW/jd7dr6W4hMAwnkuFz165B9a82+L+kaJ4S+GutJBCsl1aW/yPJHkk 5HU4oA+YPhhp/wASPiXqlxa6N/Z8c1ugaQlivBz6fQ17f4c8IfFjwv4Cube8/swvHDKzESEnG098 V4Z+yB+1rY/CvxZqF34o/c2txAqRm3heQlhuzkKG9RW/8Yv+Ck+uX3jmaz8Hw6fcaLdIsMbXVvKs hZuDnLL6+lAH7O/8Gtc11P8AsPeIGvWaS6/4SK7EhJzz9qua/TWvzR/4Ne5NQn/Yj1yXVI4Yr6bX J5ZVi+4N1xcHjk+vrX6XUAFFFFABVPxBcz2eh3ktqnmXEcLNEv8AeYDgVcooA/G/4PytqH/Bu98T tbvpGk16+8RHULl3/wBZ9tj1O1EOe+f3cIA69K+7vEvjXxJY/wDBIjS9et1mbxQ3w80y5ICnzDO1 rAX465yWqvqH/BLnQ5LLWfCdnrl5ZfC7xJrkPiLUvDaAFZbqJ4JFVZCDKsfmW0LFVkAJ3AggkH1K 2/ZrvIfjbc61J4pvpPA8vh7+wovB5t4fsMBBt9swfZ5u5VhZQC+P3p44GAD84PiXbx+EP+CM37Je p6G27WrbxH4Tns3Q7pJJmurXI465KrmvpH9vjddftf8A7INxOn+lSa7eNIxHzBjol+T+ua7zwD/w S90bwrJ4M0W+16+1TwF8N9Tj1Xw3oUoGy0lieJ4Q7gCR1iaGMqGds/NuzXY/tNfsbXX7QPxt+Gnj CHxFJo//AArS+l1C0tUhRluHktp7ZgxZCceXO2MHqBQB7zXzx/wVhkeL/gnV8WGjUtIujZUDufNj r6FiDLEoc7mwNxHc14H/AMFSnEf/AAT/APiczfdXSgT/AN/o6AP5i/h98XF1y40XSPE1z4i0fWNQ mis3gjdl2ByFBG18dSfyr9APAP8AwTPt/gJeQeKI/EXifUmmhA8i91CeaL5167Xcjjd6dqx/hb4d 0LxXfeG9SXTrG6Hn25854VZ+GB6/jX6TeOVttZ8FW9tpMFvdXYWM+WyjGAFz/KgD4bm8O6doj+Td STrIwyAP/wBddt8F/hx8cLDx/YXeoaRocPh4HImjlPmbO3/LMfzrx/8A4KE638XvCHxntLfwt4W0 m609rVWZ3JBDbY/RT6mvrzwj8U/FXirwPpmm3Gm2lvNLbqJDGeVbvjigDpBoMNy+fFEULyf8sflE nH4/jXxl8QrDWpf2ktRtdH0zS5LVtTdbYvEoJXe2M/Ke2K+v9L8A3WsqzapLNCyHCbW6j/Oa8Ptv hR4q0j9pSO//ALPik0KHU/M89iSxjDnnp6UAegfDL4e+PdI1C4a40rSoVZQAUGM9f9ivmn9pn9oj x94K/aXuvCq28awNLbwkITtAkijJ/h/2q/S9/GWl3jn7CI3YctlQK4rxbo3hXUPEEmo6jY2DXa7W eRoFZuAAOfoBQBxHwj/ZV1j4a+IRqliq+dJDtOZT0ODT/iv4Q0R/FcR8WXNzDq3lr5awncpTc23n I/i3dq7OP9pTwe522mpXEkg42svAH51T1H4Z+Hf2gbxfEDajfRtb4hAj+6dp3ev+1QBjeIfh9q/i 3wkNP0dnZ5EXyC0rLlQOOR7VtfAXwPq/wg06+h8Rw2ck106tD5zCXgbs8sPcdK7rSPFFn4ahhhby /JtEEQfHzEAY/pXmP7SPwYh/ab1fTry01nVdPGmo8ZW0kKB923rg/wCzQBpX/wAJfDel+IZPEral frNG/nGFJT5ecbcBd2MfhXzh/wAFLf2nbzwZ4d8MyeGbi6imuLlhPtYx5GG9Pwr0uz+E+j/CyKO8 /wCEg1i9vNJ+byJ5NySnphhn3rzX9qD4m6R8TtM0uPVLO1tltpS6GOIcnB/xoA779kPUdS+I3wF0 HXtSlmmmuVDyh5C24BVJBz16muw+M2n+E9c8KLDrNqtpaiQESW1qoct+GK+fPhb+2Q3w3Gk+G9Pt bN9Nt7iONWZcMVJVT+gr6n8P/Gq38e3C2dvp+n3EmwSbGjFAHmPg34AeHPEulfaNDmmaz3bf33yN nntk+9bHxQ+FMPwy8ET6vptra3V5b4CpIgZTk+mD/KuL/aZ+Inw58N/EHyPFniPU/DOp+UCLTT8L EVwuDjcOcYP414FZ/t2fEP4c6l/aVzo+l32lW5IQXDFxIvYkEUAfZP7JfjTxNrvhzUHGm6Xb7ZcY WNY88D/ZrsNd8P2SvcXl7ZabHNkyTSJEm8N1JBwD1r5x/Z8/ao8QftUaNe6gNNsdH/s+TytlkPLV +hycD3rqrzwVpJlkup/EGr/bmYvJB5hKB+pXr0zxQB7N4Ge1vpZv7LkUsuC+8ha53x98CdY8UX19 dxsNtwBgiU44AHb6VyHgf9nu1+MslxGut6vY/ZAObeQpuz6816LbfEzwz8FfDDeD5NVu7rUNNQpu m+Z3ZjvGTn0agD5913wFrn7PFsurSJHMt2fJxI5kA/Ag+taXgn9rPUtNNrZtY2e2SdVJEKnAJA/u 1p+Ln1D4nWCWbR7vJbzP8/lXb/CT4Wabpngv/ToY/tyOzKGQHnAx+tAHqniW+XXfBNudPht5r2ZI 5NkqDbyuT2Pc+lea+IJLPR7hU8Qxra3DLlFtoxtZffpVjw7471Dw9rfmeIIY7LRY8oJoz83X5fTs DXeeH7Lwz8WbV7yzuGuI7c+WWZRwfzoA56+0DxJB4RN7piQ3EPlhoEnc7GG7HIII9a4l/i/8RPAQ Df2TocP2gf8ALIKM/kle6eLPC6al4GutMM0kFtJGE8yM4ZRuB4rwjxZ4Y8J/CGOBtV1zVHW74j8w 7un40AW/D37Yd5q/iGx0PVreH7RfXEdpOqwhk+dgp7e5r0T4r/DS0Oh27aXa2lvMzgs0MaxsQRnq oqp4A8L6f4i8J2d9p9nbTafMu5Ltox5u3j5s+oHNTeLmtfBNlHcWt1cXTSNsKynKigD5K+PHhW3s fiFLDe+c1xtGSF3Dp61l6z8H9N0bT/tOoO32XjOPm/TNfQfiTxB4x13U2bSfDOi6hYyDb9omX95/ 6Ca53xF+x1rGo6Ywja4kkcg7Gc7RQBsfsb/CHQfEHw9vprKSby1uCDxt559DXPfGHSrGw0jWIZPM WKGR0LBecDcK634QeBPGHwO0GbTbWxhkjnk80mRzn+VbX7SGk3TfAPWLi6sreF2t98jqOQxRiaAP mHwt8JtL+IiSNbTTYtzhstt/r71498fvg3p6aN4hsJncR+XsZgeQOD1zXW6V4kn0HctrJIPMOWw2 K8C+KH7W3hfxb411PwHeX9xDqN9J9kkKL8ysQG4OfagD5pj/AGcNF8MqJdHZr6Z/ldZ/mAHtkn3r TT9mTw7d6DNrmpLdR39mpl8q2XCkryMDIFexaR+x7H8ApmvdJv8AUNYmuh5Tx3rFlQDuOv8AeP5V 6p4G8OQ6n4Le31KGK3uLgPE+xeVDDGR+dAH3R/wa163/AMJB+wzrV1skj3a7cIFkxuAW4uAM4z2F fppX54/8G53gO1+Gv7MPi7R7Gaa4t7fxDcMry/eO64uGP86/Q6gAooooAKKKKACiiigAooooAK+f f+Cqtouof8E9finbszKs2kBCw6jM0dfQVeC/8FPbdrv9gz4lQxjdJJpqqo9T50dAH5B/stfs9TfD r4VaHoum3F5qUPybLi4dfMJYKOuAOw7V9Z/D/wCEPiL4M6vHresTXX2HyvL+adJRlhgfKhJ7itX4 Bfs92/hP4EWLeIJGsdatbQzGILnGEBHP1BrH+CnxJ1b4geP20tfM1VVRyILiQumFDc4OR2/SgDY8 TeN9G1G+WS6WGaTbgF4mz2qx4H+Jl7qPiS3tdL02xuLknESEFQ34lhUPxU+Hkd/4hVtSUaVMEwIo FwpGBzxj/Jrt/h38ENJ8NazZ6jY6hPNdxjKoRgH8c0AT6x4Y17xjIr6vZx6W8I2oLeVcOPf5m9a5 gaz4+8O679k/4RvS5NBtpNn215VMrRDjcR5nXGD93v0r1LxT4c/teaJr7ULmxZRhRG5w3X3FeC/F T4k+LNBn1fTba1M+l25eJLozHe6AkBunoB3oA1/jp4/VNKs/7JaPfvO/GV449cVR8AfAxPiNptn4 gvtX1CCaZ9zwxyL5eFYr3UnkL696+eNa8YaXfQqviTXr7SoFyYnjckufTqPavqH9mhPDN98FdNlt PEd9dWrGXbKxOT+9fP8AF65oA9C8e6Ho9/oSR6XZ2rXQcZwu3j8cV5/qHxhsPhGW0i/aO0mmXzdi ozcN8ucrkfwn8qrfEnx/4b+GOgjULfX7q5dpPL2O3Az/AMCNc94dtPA/x/sTrWqa3NBdRt9nCrHu 4GGHOfVzQBmnX7eXUZLrQ9SuNS1OZzJHazZWNgTk9QvT61ct/wBrfVvgeTBr1jptrJefPEMNJuC9 fuMfUVk/H/wX4b+C/wAK73xFoutXNxfWhURJjbkH3Br49+IfxzTx/LDLql5NHJArKmWLZBxnr9BQ B9xfD/4Ga94w+IWneNrgSto17N9qdfOj8sptK/dzuxkV1H7ZPwZtvinpejR6DawhrWYvLtZYuMN/ exnqOlcf8Lf2l9H0L4KaTHb6pNNcW9thYWb5WO48da8D/be/bK1z+xdC/s2SawbzzvNtO0ZcYbrt xQA7xX+x942s766mtdLjaCNS6yfa4M8ZOfv1rfsvaZ4t+EHxEk1LU4N1uYGiAeVZBn6K2a8T8G/t 16xFb2drq2o3iWrSKl1K1y7MkZIDHr2GTXrWi/t2/Df4aXI1DQda/wCEo1Bl2NZ3sYMag9TyWGRz 2oA8e/4KQeKW8b/H1byZfJf7Ki4VSB9xPX6V4l8IvjdZad48tTd3ZuoEyDFMjsp49AK6D9uH9tm2 +KfxhXUoNI061QW6pshRVX7qjsB6Vy3wr8AfD3x94vtbPQfEE95rNyCy25i2gnvzuoA/Tz/gmtNo fxo8C69dW7JaLa3OwiBCgbheu4e9dfe/Bl9L+IlxeW80k6x3bOiSSLtf5jjPSvi/4S/HS/8A2FdP uNJjXd/az+ecvt9B/wCy16Fp37eXh/xW8K6hr1zp7XuDO8bnMJPXHI6ZNAH0z4/u/FWhJbtpOm2q s5PmbJV/+LpnhT9n9vF1xZ+IdWe4j1CV/MliDqUG3KjsewHesH9kr4q6H40vNWXw7rFx4raEL5ov G3eRnpjcW616F4o/aKttBkutJaG3hvoxtEa4GCcEfoaAO38U6u/h+zjm0vS7C4mY7WDDoP8AvoV8 pftHftUyeDfjAmn3y2+n3GyNvJjRyvLEdiR+tejeCfjZN4N1GS48XSfZbGRdsTM/mZf6H8K+Zf2u 9N8L/Gn9ou216z1aZYSsEeEX5SRIT6+9AHuXxP8Ai3efEP4bxWENvArSiOQOgKsRsPqfepv2dtPv 7Lw5eLNPNCWmGArjms/9oLW/D/wd+AVtrFvOkk0KwRYKgZzET/7LUf7FnjnTfjp4K1C/e8e1+y3Q i2xng9fcUAWPEn7ZureHL27sLOC1u57RvLjR0c+Z0PPzD1q98MZ9c/bKe6i13ToNNGigNF9mOzfu 653s36V83+PP2g9N+EnxO1TUre2ttVn0e5JS3uIwUnJUD5sg/wB7P4VjeKv+C0usaCIWtfCmjaH5 p+Y2e2LzPrtQZoA+7/D2veOvhjdWnhu30XTpPDtnIsL3TzqZhDkBmwJByFycBfwrS+N/xW0HwN4c t7hbhpmkkCkSQuQODnotfm74B/4Kd6944+NPh+61C4nh0u91a2FyguWKLEZl38dCNpPFfohqPxY8 B/Hqzh03QfsOpXduqzSRvAnAxye/c0Acpo3jC18fJHqFveXEEbttCRIyr+RFeteNv7U0/wAM+YAq 8jkSAnqPeuHPxH8IfDGzk0q+jsbS8jG4RrAnGa8o+Gvxa8WeMvGIspEnmhYMwR52ZSACen4UAe9e EviDpej2Dprl5NDc7sqAjPlfwBrnfi5+0B4L+JHgfUvDC6rMJLpTD8tvKpyAV6lMd6ot4ivtEby7 zRbOaR+QZFDHH4ilj+E0fjNxG2l2Vmb75jLFEodM+hAz3oA8G1HwhpfgsoumStqAm5cz/wAB9uB6 V5vq/wAPNGvfFM14dFsftrvu83y/m3Y9a+qvGX7FMOoSwj+1b6E4wNpIz1968Q8ZftV/BL4e+ILz 4bzeIFk8Z2LfY/La2BkMpw33s5+7QB5x8TYdW0HTYJLSzhuXdyCHYcdP9oV8QftF/tQ+LPBX7QsO jrp9tGjyW67VDH7zgdmxX6Dt4KuT8upSSLGv3cndzXz78bfgfeat8Y47yz8O6fqVurxEXMsKl+GG ecHpQB+oX/BvXcTXf7NPiea4QRzS6uzso7EyTGv0Ar4P/wCCC1s1n8CfGMTII2j1p1KjouJJ+K+8 KACiiigAooooAK8T/wCCiX7VP/DF37H/AIw+IkcP2i60O2U20W0NvlZgAOeOmT+Fe2V8/wD/AAVC /Zevf2xP2IvG3gTS2VNV1O3V7Ildw81GBH6ZoA8L/wCF++OP2Qvi/wDs6w+JvEl14ktfjdKdI1yK WKPbDqDPaxxSRYUbFL3TZC7RhR8tfelfnrr3gDxB+3F8bf2YZP8AhHtW0O3+ENydf8Sve27Ktrdo 9nLDbg4GW3W0gOcEccGv0KoAK8D/AOCoWoLpP7A/xMupG2pb6YJGb0Amjr3yuR+O/gLwz8UfhFr3 h7xl9n/4RnVrYwagJpvJQx5B5bIxyB3oA/G3Qv8AgtX8PbT4brYvqVrd3BsTEHkYFiSmAOteJ/A3 /gqj4f8ABfxGk1C4nt7OFlkAkV8dQ2P51+iXgj/g3J/ZB8e+F7PVtB0e81TSbyMSW1zb6rK8cqEZ BU7uQQRWr/xDNfss/wDQr6r/AODKX/4qgD5U0P8A4Kz/AAf8WWjXOveKorW8U7VUhWyPruHoK8/0 r/gu3oq+LY7G8h0+w0tpfKjvFmG4jIAwMd8+tfdX/EMz+yz/ANCvqn/gyl/+Kps3/Bsj+yrcbfM8 K6o3lsGXOpTcEf8AAqAPlW0/4Kj/AAf+JWZNc+Itxoklt8saxYbzB6/fHqfyrzrXf+CjXwzg8XXE cHjSS+01ZiFkkx+9TJ5I3dxX3kf+DZn9lk/8yvqn/gyl/wDiqP8AiGZ/ZZH/ADK+q/8Agyl/+KoA /Mz9qX9rj4T/ABf0HT7bTfEyWj2sjMxgjAJB29fm9q2/gx/wUQ+G/wAKfhJaeGD4uLXEaTBNxAZt zu3Td/tV+jA/4Nmf2WV/5lfVf/BlL/8AFVwXxQ/4IWfsL/BzxHY2PirboupXjBLdLnVpgcnpkgkL n/ax1HqKAPzJ1D9rTw5qqMlx4wvJo924K75H/oVezfs5f8FUfBHwO8CyaFJ/Z+qLcXLStc3GN8YZ UXjr025/Gv0Ktv8Ag2i/ZVu4I5ofDepSxSKGR01SVlYHkEHdyKf/AMQzX7LI/wCZX1X/AMGU3/xV AHxnrn7ZH7PTaS2qN8UJtUvLjEr6TNEpgVm5K/6zopOBxXzp+0x+0/8ACH4k6/p/9h65aWv2OJhM lvEq/e24yA3+ya/VYf8ABsx+ywD/AMivqn/gyl/+Kpqf8GyX7Ksc7SL4V1QSMACf7Sm5x/wKgD8j Z/2jvBWneE2jtPGV21zHHiOIcDOf96ue8Mfts6b4SeRrqO38RecMBLxtwh9x1/ya/Zb/AIhmv2WR /wAyxqv/AIMpv/iqUf8ABs1+yyP+ZY1b/wAGU3/xVAH5Wr4y+AvxM+GN94k1bx62geLbizlkXQoL dTCJhGWSMHeOGY7fu18n3HxV07U5Zo7WWOHyZShkiPPtn6jH51/QD/xDM/ss5z/wi+qf+DKX/wCK rzi5/wCCIv7B+h/FP/hCZJ44/Fk0m3+zF1adp2fZvxgEjOzn6UAfi74c8beHWsP+JjdRyz7vvSKG OPzrnfhl4jsfA/j+HVIdSltTGTh0+UjI+tf0Gf8AEM3+yz/0LGrf+DKb/wCKo/4hm/2Wf+hZ1b/w Zzf/ABVAH4t2v7UmiSI7alqH9pOM7XuDuKD2ya4SX4oeHtV16TUINZb7PNM0iomNgBOcDmv3eP8A wbM/sskf8ivqvP8A1Epv/iqbB/wbKfsr20YSPwtqiqvQDUpuP/HqAPzF/wCCfP7Vvwz+G+p+IG8U eOrnw2lwsfkmID99jrn5h0rk/wBpL9tzRb34t65N4Z8V3mqaYxQ2t0ZNrS/u0z3PRsjr2r9aP+IZ n9ln/oV9U/8ABlL/APFUD/g2a/ZZH/Mr6r/4Mpv/AIqgD8Pk/bN1HWI5BrfiLUI7SEb90lwWUH8a +1P2Ov28fgX4R/ZqubHxfr9k3iZjO0RnhWSTmIBMMWz97NfY3xb/AODff9i/4M+E31XxjZy6HpDO ITPeatMiMx6KPmySfasH4Q/8ES/2D/jxrU2m+DbiPxBfWsYllgtNWnZ405wSCRxwaAPysl/atsfH PjbULPXPFN8vh2S5mkh3y749u87MKTj7pr0v4X/tTfD34b6TNaWPju8tY5n3sIsICfX71fqd/wAQ zX7LP/Qsat/4Mpv/AIqk/wCIZr9ln/oV9V/8GU3/AMVQB+UXxZ/4KV+E9b8Faloa6LorPdBYI9SI HnyHcp3Zx1OMda+dtV+MumskY8m3utvH7wA4r945/wDg2R/ZVuQok8K6owU7hnUpuD/31Un/ABDO fstZ/wCRZ1b/AMGU3/xVAH4T6T+0Xp9jbRxrp9nGyYw4wGU+o+ldJ4c/bAudAumls9dvtPdl2l4Z ypI9K/bT/iGb/ZZ/6FnVv/BnN/8AFUf8Qzf7LP8A0LOrf+DOb/4qgD8qfh1+1L8PPEGgw3Xiz4la hba+5LC3dg7OAfUuD3HavXv2cf8Agsf4R8O/EqGTXLPS7HTY43U3GQSTtbHHHU4r7G+If/BAn9iX 4YapDH4htJtPvChZVfU52aNOMswUnavTlsCus0//AINqv2UdVs47m18PahcW8y7o5YtVldHHqCGw aAPnPxf/AMFovg/rV8rx6lp23btyFXj9a434Wf8ABQ/4N+Hfi5aeIL74qX32UXBnezbHkoCwbZjf 0HSvsL/iGY/ZZ/6FfVP/AAZS/wDxVH/EMx+yx/0K+qf+DKX/AOKoA+bP2mP+Cyfwd1vVdNj8LeM4 7p4Y91wqFVKZLY6Ma8TuP2iv2Zda1ZvF974g02TxVI32hw9mjO0n3eX356d8V9+r/wAGyH7KqXDS r4V1QSMNpb+0puR/31Tv+IZn9ln/AKFfVP8AwZS//FUAfnj8Rv8AgpH8PfGWnQwxatBatG5YtHjJ 6e/tXWfCX/goD8EtL8GxLq/iS1bUEdmIkiVmPpzur7j/AOIZr9ln/oV9V/8ABlN/8VVXWv8Ag20/ ZN8N6VcX+oaDfWVnaoZJp5tVkSOJR1JJbAoA6H/gg58RdJ+K3wW8da9ocqTaXfeIZjA6DCkCacf0 r7urxH9gf9lv4V/so/AqDRfhCkP/AAid1NJcJPHctcLO5d2Zg7E5+Zm6cV6j4V+Jvh7xxq+pWGj6 zp+qXmjuI76K2mEjWrHICvjoflPHtQBu0UUUAFFFFABRRRQA2OBISxVFXd1wMZp1FFADXj3sp5+U 5H5Ef1riv2kdCs/EvwK8UWd/bx3VrLYSb45F3K3FdqzbSvyk7jjjtXOfGHw/qHiv4Z6xpmliE31/ bNBEZT8gJ4yen86APnr/AIIloI/+CXfwcUdF8OWYH/fiOvqqvD/+CdX7O+vfsnfsi+D/AId+ILm1 vr7wpYQ6f9qt12JcLHGqbtu5sZ29MmvcKACiiigAooooAK+M/wDgrz4L8G+FP2bfE3iDV/hjP42m 1SW2S/1K2sIbq80iJZIx5yPIytGFCKPkYda+zK8H+Kng34yfEPxd4n8PR3Xhe38B6zCkFpdfZiby 2QxxiUOPN+clvNAIC4BHBxyAdp+yRrGha/8AsufDu88Maldax4euPDlg+nX10xae7tzbxmOSQlmO 9lwT8x5PU9a9Erk/gX8H9K/Z/wDg54Y8E6GrLpPhXTLfSrXdjcY4YljUnHGcKK6ygAooooAKKKKA K+qpcSaZcLaMkd00TCFn+6r4O0n2zivzT+HeneLf2Gf2xfCsHx2+H3w18ZWfj/V7mHRviLpmmwvq 2n3LQzPHDcs9vGwHlp5QZZHOHUYx0/STxbBqN14V1KPSJobbVpLWVbKaaMyRxTFCI2ZQQWUNgkZG R3HWvn/wh+z58RvjVceG5fjRdeHLlfCeoSX8EOk2piS9kw6xs26WTaFDKcddyZyOlAH0hRRRQAUU UUAFFFFAHF/GP9nnwb+0FbafbeNNA03xJp+mymeKy1CBbi1L/L8zROCjEbeMg4yfU180/wDBOr4G +C1/aO+LHxG8H+FfDvhrSRer4Y06PS9Ohs1lhhjinMmI1AyXndc8n5a+svH9nqmoeCNWg0WaO31e a0kSzkkGVjlKnaSMjgHHcVx/7JnwIX9m74D6J4TMy3VzYiR7m4C7ftEjyMxYjJ7EDr2oA9IooooA KKKKACiiigD82dI8T2fw4/4KIftEaZ8dNLkvNB8WWVtN4UvbuBbi1axj80Swx78bGAltwQowSvJ4 Fepf8EAfHfiH4if8E0vCOoeILq9vv38kWnT3chkmltAkZQsxyT8xfqT9a9o/ay+A3ir9qPw5deB1 1hfDXg3VV8rVbq1G69vICMNDGdwEec53FWHA4r1D4bfDnR/hH4F0vw34fsodP0bR4Rb2ltEoVYkH YAUAblFFFABRRRQAVwX7U+jWviD9mj4gWl5BHcW8nh6/LRuu5SRbuw49iAfwrva5f42eGL/xv8IP E2i6Z5X27WdMuLCEyH5UMsbR7j06bs4yM4oA8B/4IxQrD/wTr8CxKMRxi6jVfRRcSAD8q8//AOCZ OhWnhz9vD9q21sYI7a3/ALft38tBtUMZbvJx+Ar3j/gnx+z3r37LH7L+ieB/EFxa3t9o7TH7Rbrt SUPK7j5dzYxuA6muX/ZE/ZS8WfA39p/4weNNYuLC4034lX8d7bwwrh7PY87bWO47s+aOcDpQB9LU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2ZmWJii7mxwPWvz7/AG5/jz8eP2R9 M+FLP42sZ9Q8f+MbXQ72IWcLRWkE1xBF+7Pl53BZCcknnFfoNX54/wDBejxJY6VrH7OkNxcRxyJ8 RdNuGUnlYxe2uWPt8p/KgD2j482XxQ+Gnw88QNqvxh0zwtYzXtq2l6/dWsJkgG0CSB1EJU723EEI TgDkV7F4w/am8A/DHUZtL1/xVYWuqWNj9vuLfa8kwhAJMmxFJIwDwBn2r5r/AOC8l5peof8ABOnU rif7LcQy6nYyWrOgcFi+Qy577c8+ma4ldP8ACHiz/gtHYyalY6JqUM3w7VnNzbRzJINrfeDA5/H1 oA+tov25fhLPH4fePxxpMkXih/L02VRI0dw+5l2ltu1GLKRhypJwO4z0XxP/AGjfBPwZXd4k1+20 0bQ7HypJvKU4wz+WrbAcjlsDkV+QnhjRfCOm/wDBGjxJfR6bo0eoaf8AE/TFtLgWsfn2oGuaaWET 4yg2liQpHBPqa73xj8XvAvgj9sT4keFP2gtY1rStA+I+iaRc+GNQeUnT9TtVsrcSwKS64k3OnAUg +WxJyOQD9atG1uz8RaTBf2F1b3ljdIJYZ4XDxyqejBhwR714N8A/jTa/D3wZ481zxz8WtH8U6Tpm veQLwRrDHoqusKpasViTLb3Bz8x/eDn07j9kX4f6F8Kv2bPCfh/w5Dq1t4d0nTo4LCPVJmmukgVQ FDszMScf7Rr8svENx4bm/wCCc37YVk0emtC/xM0l44PKXaf9I0bcwGMf3sn60Afqx8Pf2qPh98Vf HNx4a8P+KLHUtctrYXj2iLIjmE7cSKWUB1+ZeVJxuHrXjP8AwV+/aH8bfsq/sg3XjfwLqdvp+r2O q2NmRcQrJHIk9xHE2QQegYkYr590Cx8NeCv+CjP7KLaFa6XpM2o/C66iu3soEga73HRygkKgF8gE jdnvXov/AAcL6vZ2n/BN/WLO6nWOS+1zSlRA213UXkW8j6A5z2oA6v8Abn/aQ8bfAv8A4JiXXxI8 O+IrFfGWmaZpt68sscbx3DXNxbxuCu3oFmOMAfdFepfBT9oez0P9l74e+JvH/iC3XV/FGg2WozMs JZ5pZbeOR9kUalioZ+y8ZHrXx3/wUz+EPg3QP+CM+qa3b6prUk0+i6IbYSaxcSRSuLuz3AIW2nAD cEcbazvhT8QB8P8A9qL9mrxJ4yeO6+GOs/CyDStJupwJLPT9SNtpmVZW+VXfDEEZPyNQB99v+1T8 PU+H9v4q/wCEq00+H7q6SyS9G9kE7siLGwC5RizoMMB94VoTftAeDbbxt/wjkmvWcetf2f8A2r9l YMGNr8v70HGCvzr0Pevyx+L3wdvvD37N/wC014g0a1x8L7z4j6TrOi2cSYt7eKC402S4uIU+4sYj j/hxyjV2w+OHg34r/wDBRTwPqWj3VvqWlt8GLu0e9WNWgkk32x8vd3I2kYI6qfSgD7y8O/twfCfx bcyQ6b440a8kjtGvW8suR5KjJYHbg8HoOfauq+Gvxy8K/F+a8j8O6suoS6e224j8iWF4iQCMrIqn uPzr8x/2J/gl8G/Ef/BHa31DxFFYeF7q7aTTpvE+m2Ua6jpbSRABjKCj+WuCSm/HHSvoj/glp468 Wn4sePPCHilfDPiptDghktPHGjWcdr/bELBAsNwiIv75OSSWfKsnPYAHtnx9/aak8P8Ax58H/Cfw 3Iv/AAl3iqKTUp5Cu4afp0RCSTHPGfNkgUA5OJDx3HkPh39pL4jt/wAFfNQ+EM3iC3m8D2Phi31t ITbILhpJGuMqWCfdxEvvyea52bTL7wv/AMHCEOo6sWbS9f8AhVfW+kbjlVkW+0feBnoSUc8e9Z/x MuF/Z9/4LlaT4y8T/wDEt8K+OvB6aRYalJxD9rgaXdET6k3MYGM/hQB9EfHXxd450/8Aac8GaD4d 16Gx0nWrK7ae1khRvMlS2uXjO4qSBvjjzyOAa+df2u/jv8dP2Z/iv8C/Dcnjqzmm+KHiVdJ1Qiyh K2Ubxyyfuj5XVdgGW3fj1r6CufFWn/GP9srwndeHbmPVLLwrYzS6hcwndHE0kVxGqZ/vfvEOPRhX zZ/wWT8Wado/7Y/7J6XV1FC1v45SeYMf9XGIJgWPt8w/OgD3v4oeLvir+y18MPFfjTXtct/FWieE 2bV5QII0kbTIwXuQwVU+eOKN2GOpPfpXvXwv+Imm/Fr4eaN4l0iZbjTdatUuoHX0Ycj6g5H1Fef/ ALfmpWtn+wf8Z7i6Kta/8IJre8H+Mf2fPx+Ncb/wSJ8N6p4S/wCCc3wxsdY8z7fHZXMjBySwR7y4 kj6/9M2SgD6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACqt/odnqkqvcW8czIMKWHSrVFAFe70i1vrVYZoY5Io8bVI4GKjGgWSzeYLaLzNu3OO 3pVyigCj/wAIxp4t/J+yQ+WW3bdvGfWlvvDtjqaQLcWsMy2xBiDD/VkDAxV2igAI3DFUf+EY0/y3 X7JDtkOWG37xq9RQBTGg2Ymjk+zx+ZCAEbHKgVJqGk22rKq3MMcwXoGHSrFFAFSXQbOezS3e3jaG P7qEcD/OaZd+GdPv9K+wzWkMln/zyZflq9RQBCunwrYG1ES/ZyhjMePl2nqKhtPD1jYWyww2sUca qUCqOACckfnzVyigCmnh2xjsnt1tYRBJ95McNTtG0Oz8PWf2ext47aHO7YgwM1aooA88+N/7PWn/ ABh1Tw/rKzNpviTwrdi80zUI1BaM7XUow6lCHJIBByF54wez1Tw7a+KNGFpq1tb3kbgeZGy/IT9K 0KKAKWg+HbHwvYC10+1htLdTkRxjC5pb7QbPU5hJcW8czjgFhVyigDgvjx8Eovj14ftfD+pXHl+H ZJlk1G2VfmvUVgfKJ6BGwQwwchu1drpGlwaHpVrZWsaxW1nEsMSDoiKAAPwAqxRQAUUUUAFFFFAB RRRQAUUUUAFFFFAH/9k= ------=_NextPart_000_0001_01D2BD12.A95078D0--